
Annals of Data Science (2022) 9(4):695–722
https://doi.org/10.1007/s40745-022-00389-6

A Survey for Sparse Regularization Based Compression
Methods

Anda Tang1 · Pei Quan2 · Lingfeng Niu3 · Yong Shi4

Received: 10 October 2021 / Revised: 28 February 2022 / Accepted: 2 March 2022 /
Published online: 16 April 2022
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract
In recent years, deep neural networks (DNNs) have attracted extensive attention due to
their excellent performance in many fields of vision and speech recognition. With the
increasing scale of tasks to be solved, the network used is becoming wider and deeper,
which requiresmillions or evenbillions of parameters. The deep andwide networkwith
many parameters brings the problems of memory requirement, computing overhead
and over fitting, which seriously hinder the application ofDNNs in practice. Therefore,
a natural idea is to train sparse networks and floating-point operators with fewer
parameters while maintaining considerable performance. In the past few years, people
have done a lot of research in the field of neural network compression, including
sparse-inducing methods, quantization, knowledge distillation and so on. And the
sparse-inducing methods can be roughly divided into pruning, dropout and sparse
regularization based optimization. In this paper, we briefly review and analyze the
sparse regularization optimization methods. For the model and optimization method

B Lingfeng Niu
niulf@ucas.ac.cn

B Yong Shi
yshi@ucas.ac.cn

Anda Tang
tanganda17@mails.ucas.ac.cn

Pei Quan
quanpei17@mails.ucas.ac.cn

1 School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100190,
China

2 School of Computer Science and Technology, University of Chinese Academy of Sciences,
Beijing 100049, China

3 School of Economics and Management, University of Chinese Academy of Sciences, Beijing
100190, China

4 Research Center on Fictitious Economy and Data Science, Chinese Academy of Sciences, Beijing
100190, China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40745-022-00389-6&domain=pdf

696 Annals of Data Science (2022) 9(4):695–722

of sparse regularization based compression, we discuss both the different advantages
and disadvantages. Finally, we provide some insights and discussions on how to make
sparse regularization fit within the compression framework.

Keywords Deep neural networks · Sparsity learning · Compression

1 Introduction

Now we have entered the big data era. Big data provides great opportunities for
academia and industry. It is a reality that no one can ignore and our environment
whenever we need to make decision [1]. The meaning of big data contains both data
science and applications such as business data mining or artificial intelligence [2, 3],
where big data analysis, across data science and applications, is also a subset of big
data [4]. Facing the challenges of big data, the core of big data is intelligence still
where deep learning is a focus [5].

Deep learning is a branch of machine learning. It automatically extracts data fea-
tures layer by layer through multi-layer network structure, and uses parameters and
network structure design algorithms to make the network have the ability to fit any
complex nonlinear mapping. So far, deep learning has made an important progress in
pattern recognition [6], computer vision [7], speech recognition and natural language
processing [8], etc. Nowadays, the research on deep learning is in the ascendant. The
major technology companies in the industry are competing to occupy the commanding
height of deep learning technology [9]. The excellent performance of deep learning
is inseparable from its powerful expression ability. In order to achieve a strong repre-
sentation ability, deep learning needs to rely on the multi-layer structure and a large
number of parameters.With the increase of data, the improvement of learning accuracy
and the complexity of learning tasks, the number of network layers and the amount
of parameters are increasing. Taking the famous Imagenet image recognition contest
as an example, the champion algorithm AlexNet [7] in 2012 only constructed five
convolution layers and three fully connected layers, which required more than 60 mil-
lion parameters; while the champion algorithm ResNet [10] in 2015 achieved 96.43%
accuracy through 152 layers of deep neural network, which successfully exceeded the
human visual ability (94.9%) in the field of visual recognition. In the language model,
the Bert [11] proposed by Google in 2019 has more than 300 million parameters, and
the gpt-3 proposed by openai in 2020 has 175 billion parameters. Despite the rapid
development of deep learning, the state-of-the-art algorithm in a series of fields has
made great progress, but it is still restricted by time and space in practical application.
Deep networks have a large amount of computation, even with the help of graphics
processing unit (GPU) acceleration, it still can not meet the needs of many application
scenarios in time. In addition, large-scale model also take up a lot of memory space,
which is not suitable for mobile devices such as mobile phones. Therefore, how to
compress the deep neural network and improve the efficiency of deep learning is the
key problem that must be solved in the process of deep learning.

There are many kinds of methods to compress the network, amongwhich sparsity is
the mainmethod of compression. Iterative pruning [12] is proposed to achieve sparsity

123

Annals of Data Science (2022) 9(4):695–722 697

by iteratively remove connections which are uncritical. The work [13] makes neurons
sparse by employing sparsity-inducing priors for hidden units. Structured Sparsity
Learning (SSL) method [14] is proposed to directly learn a compressed structure of
DNNs by group Lasso regularization during the training. The work [15] studies Varia-
tional Dropout [16] in the case when each weight of a model has its individual dropout
rate and proposes Sparse Variational Dropout that extends Variational Dropout to all
possible values of dropout rates and leads to a sparse solution. The work [17] proposes
a solution through the inclusion of a collection of non-negative stochastic gates for �0
norm regularization for neural networks. A lot of sparse methods to compress the net-
work have been proposed. We classify these methods into three categories, including
pruning, dropout and sparse regularization based compression. Among these meth-
ods, this article focuses on sparse regularization based compression which is with both
highly optimized implementations and approximate methods investigated [18]. The
sparse regularization based compression has many advantages. On the one hand, this
methodology does not need too many assumptions and is easy to apply. On the other
hand, the sparse regularization has a good theoretical basis of statistical learning,
which transforms the maximum likelihood into a posteriori probability estimation,
and introduces a reasonable prior in the case of insufficient data, which can improve
the effect of the model. We represent the details of sparse regularization based com-
pression, including their general model, sparse-inducing regularizer and optimization
methods in the following sections.

The rest of our paper is organized as follows. In next section,we review the literature
of network compression from a global approach Sect. 2. In Sect. 3, we will represent
the details of sparse regularization based compression, especially sparse-inducing reg-
ularizers. In Sect. 4, commonly-used optimization methods for corresponding sparse
regularization based compression are introduced.

2 Compression for DNNs

Recently, deep neural networks have become the dominant models for heterogeneous
computer tasks including but not limited to pattern recognition [6], computer vision [7],
speech recognition and natural language processing [8]. To deal with various difficult
tasks, one habitual method is to deepen the networks to confront more complex data or
to improve performance, resulting in a large number of parameters in the deep network
model. The network needs a lot of storage space and computing resources, so the
model can not be applied to devices with limited resources or real-time requirements.
Therefore, the compression and acceleration of neural network is a very important
research direction. Compression requires joint knowledge from multiple disciplines,
such as machine learning, optimization, computer architecture, signal processing and
hardware design, etc. The existing neural network model compression methods can
be divided into four categories: low-rank decomposition, compact convolution filter
design, knowledge distillation and compression from a parametric perspective. Then,
we further review the literature of these four categories of compression in the following
content (Fig. 1).

123

698 Annals of Data Science (2022) 9(4):695–722

Fig. 1 Network-compression

2.1 Low-Rank Decomposition

The low rank decompositionmethodmainly uses the decomposition ofmatrix or tensor
to estimate the meaningful parameters in neural network. In deep convolution neural
networks, most of the computation comes from convolution operation. For example,
if a convolution network has l convolution layers, the number of filters in layer l is nl ,
the size of the filter is sl , the size of the active graph isml , the sum of the computational
complexity of all the convolution layers can be denoted as O(

∑L
l=1 nl−1 · s2l · nl ·m2

l)

[19]. Therefore, reducing the amount of computation of the convolution layer can speed
up the overall computing speed of the network. Convolution kernel can be regarded as
a 4-dimensional tensor which usually has a great redundancy. Tensor decomposition
is an effective method to remove this redundancy. The fully connected layer can be
regarded as a two-dimensional matrix, and matrix decomposition is also effective for
it.

Based on this methodology, many decomposition techniques for matrices and ten-
sors are applied to compress and accelerate neural networks, including SVD [20–22],
Canonical Polyadic Decomposition [23], Tucker Decomposition [24], Block Compo-
nent Decomposition [25, 26] and many other tenser decomposition [27, 28]. Sainath
et al. [29] decompose the last weight layer into low rank matrices. Denton et al. [20]
approximate tensors in convolutional layers by SVD(singular value decomposition).
Jaderberg et al. [30] exploit cross-channel or filter redundancy and compress filters
by constructing rank-1 filters. Ioannou et al. [31] train base filters and combine these
base filters into complex ones. Wen et al. [32] compress CNNs using a low-rank reg-
ularization. Yu et al. [33] approximates the weight matrix as the sum of a low rank
matrix and a sparse matrix.

The low rank decomposition based method is a very direct way for model compres-
sion and acceleration. However, decomposition consumes a lot of calculation and is
not simple to implement. The model needs fine-tuning and retraining to achieve con-

123

Annals of Data Science (2022) 9(4):695–722 699

vergence. In addition, it can not perform global parameter compression since different
layers have different information. At last, it does not work for some networks with
small convolution kernel.

2.2 Compact Filter Design

The compact filter design is to save parameters by designing structural convolution
filter, so as to economize storage. Taco [34] points out that the convolution layer can
be effectively used in deep networks because these layers are translation invariant.
According to the translation invariance, some algorithms design specific transforma-
tions and apply them to layers or filters to compress the network. Zhai et al. [35] define
the transformation as a set of transform functions which are applied to 2-dimensional
filters. Li et al. [36] introduce a multi-bias non-linear activation to generate more
modes without adding too much calculation through the transformation. Shang et al.
[37] also use a new activation called CReLU. CReLU function saves the positive and
negative linear returns after convolution, so that each filter can effectively represent
their direction. Sander et al. [38] propose four operations to establish rotation invari-
ant neural networks, including slicing, pooling, rolling and stacking. However, the
application of this kind of method is limited in some wide network structures such
as VGGNet, but can not achieve comparable performance on narrow or some special
networks such as GoogLeNet and ResNet. At the same time, the assumptions of this
method make the results obtained on some data sets unstable [39]. Therefore, some
studies [40, 41] consider designing compact convolution filter to replace the loose filter
with redundant parameters, which can directly reduce the computational consumption
and improve the computational speed. Christian et al. [40] replace per 3× 3-size filter
with two 1 × 1 filters. Wu et al. [41] propose SqueezeDet with two 1 × 1 filters.

2.3 Knowledge Distillation

The basic idea of knowledge distillation is to extract knowledge from a large network
which is called teacher network and learn a small network which is called student
network, and makes the student networks have the knowledge extracted from the
teacher networks. The seminal work [42] compresses the networks exploiting knowl-
edge transfer, but this method can only be applied to shallow networks. Jimmy et al.
[43] prove that the shallow network can also learn the complex functions learned by
the deep network, and obtains the accuracy that only the deep network can achieve
before. It adopts the idea of knowledge transfer to mimick the deep networks by shal-
lower ones, which is referred to as knowledge distillation. Hinton et al. [44] introduce
a student-teacher paradigm as knowledge distillation compression framework. The
soft labels corresponding to the training samples are obtained by training the teacher
networks. Combined with the real label, the soft labels are used to calculate the loss
function of the student networks. Romero et al. [45] divide the training process into
two stages. In the first stage, the middle layer information of teacher networks are
used to train the parameters in the student networks. In the second stage, the final
output of the teacher networks to train all the parameters of the student networks to

123

700 Annals of Data Science (2022) 9(4):695–722

get a deeper but narrower network. Luo et al. [46] compress the model in the face
recognition tasks. It uses the characteristics of the data sets, and exploit the network
output of the previous layer of softmax as information to select neurons. Chen et al.
[47] first trains a small network, and then transfer the knowledge to a larger network. It
uses the trained weight of the small network to accelerate the speed of training a large
network. Zagoruyko et al. [48] improve FitNets and merge the attention mechanism to
transfer the attention map as knowledge from the teacher model to the student model.
Yim et al. [49] represent the data flow relationship between the two network layers
as a flow of solution procedure (FSP) matrix and transfer it as knowledge. And the
knowledge is added to the optimization process to reduce the FSP difference between
the corresponding layers between teacher networks and student networks. In the object
detection problem, Chen et al. [50] uses fitnets combined with a new loss function to
extract knowledge dealing with sample imbalance and other problems. Huang et al.
[51] utilize the consistency of activation distribution of student network and teacher
network to conduct the training of student network.

2.4 Quantization

The model quantization method compresses the original network by reducing the
number of bits required to represent each weight. The parameters of the network are
generally represented by 32-bit floating-point numbers, but in fact, it is not necessary
to retain such high bit-number. The bit-number required for stochastic gradient descent
method is only 6 to 8 bits. The quantization neural network compresses the scale of
the network and speeds up the training and inference process by using a small number
of bits, such as 8 bits or even 1 bit. The calculation operation in quantization neural
network is usually bit-by-bit operation, which is performed by arithmetic logic unit
(ALU), which consumes much less energy than floating-point unit (FPU). Therefore,
for mobile devices whose power consumption is limited, such as mobile phones,
quantitative neural network is better than full precision network.

In neural networks, there are three components that can be quantified: weight,
activation and gradient. By quantifying the weight and activation, a low-bit network
model can be obtained. In the distributed training environment, the communication
cost can be saved by quantifying the gradient. Generally speaking, quantifying the
gradient ismore difficult than quantifying theweight and activating the output, because
a high-precision gradient is required to converge the optimization algorithm.

Gong et al. [52] propose vector quantization to quantify the neural networks. The
basic idea of vector quantization is to cluster the weights into several groups, and
then use the cluster center to replace other weights in each group. In this way, only
indexes and cluster centers need to be stored, which reduces the memory requirement.
However, the accuracy loss caused by k-means cluster can not be controlled, and com-
pression ratio constraints can not be imposed either. In order to solve these problems,
Choi et al. [53] propose a k-means cluster method weighted by Hessian matrix. The
basic idea of this method is to use Hessian to measure the performance degradation
caused by weight quantization. In this way, the weights that have a great importance
on the network performance can be prevented from excessively deviating from their

123

Annals of Data Science (2022) 9(4):695–722 701

full-precision values. Wu et al. [54] also adopt k-means cluster method to quantify
the filters and the weights in fully connected layers. The responses of the convolution
layer and the fully connected layer are estimated by inner product approximation. The
performance is improved by reducing the estimation error of the responses of each
layer during quantization process. Park et al. [55] propose a method of weights cluster
based on weight entropy. In this method, there are more clusters around the important
weights so that a more automatic and flexible multi-bit quantization can be realized.
These methods represent parameters in the cluster through the cluster center, so as to
reduce the required storage. However, one disadvantage of quantization using k-means
cluster is that the calculation is very expensive due to the large number of network
weights in deep neural networks.

Somemethods focus on reducing the number of bits used to represent per parameter,
so as to reduce the memory requirements and computation of the model. Vanhoucke
et al. [56] employ 8-bit quantization for the activation, and limit the activation to the
range of 0 to 1 by a sigmoid function. Gupta et al. [57] take 16-bit representation in
the convolution neural network training based on stochastic rounding, which signifi-
cantly reduces the memory requirements and floating-point operations. Micikevicius
et al. [58] still save the weights as 32 bits, but truncates them to 16 bits for calculation
during training. Wu et al. [59] propose a heuristic rounding function to quantify the
full-precision floating-point weight into a k bits integer. Seide et al. [60] propose a
subgradient representation with 1 bit quantization, so as to speed up the calculation.
The extreme case of 1-bit quantization of weights is weight binarization. Courbariaux
et al. [61] propose BinaryConnect which trains the networkwith binaryweights during
forward and back propagation. In the forward propagation stage, the algorithm quan-
tifies the real weight through the symbolic function, and uses the quantized weight to
generate the output. In the back propagation stage, the symbolic function can no longer
be used to back propagate the loss, because the gradient is almost zero everywhere.
The usual approach is to use a heuristic method to estimate the gradient. Courbariaux
et al. [62] further propose BinaryNet based on BinaryConnect which quantifies the
network weights and limits the weights to −1 or +1. Storm et al. [63] propose a
threshold quantization method to quantify the gradient, that is, with a fixed threshold
selected in advance, the gradient above the threshold is quantified as +1, the gradient
below the threshold is quantified as 0. Rastegari et al. [64] propose the Binary-Weight-
Network(BWN) and the XNOR-Network. BWN only binarizes the network weights,
while XNOR network binarizes the network weights and network inputs. And XNOR
has significantlymore acceleration effect than BWN.Hou et al. [65] consider the influ-
ence of binarization on the loss function, and proposes a loss-aware binarization. Kim
et al. [66] propose a two-step binarization. In the first step, the weight is compressed
to the range of −1 to 1. In the second step, the compressed weight is used to initialize
the parameters of a binary network. Hu et al. [67] train binary weight networks via
hashing. Lin et al. [68] believe that the binary representation is not enough to com-
prehensively represent the weights of neural networks, and propose ternary weight
networks added by the value of 0. Li et al. [69] propose ternary weight networks with
−1, 0 and 1. Zhu et al. [70] introduce two full-precision scaling coefficients for each
layer, and then quantify the weights to one of the two coefficients and 0, rather than
between +1, −1 and 0. Mellempudi et al. [71] utilize multiple scaling factors to con-

123

702 Annals of Data Science (2022) 9(4):695–722

sider the asymmetry between positive and negative weights in the ternary networks.
Deng et al. [72] propose gated XNOR networks which train deep neural networks with
ternaryweights and activations. The calculation trigger determined byweight and acti-
vation turns on the calculation as a control signal or control gate in the network. Wang
et al. [73] propose a semi discrete decomposition of weight matrix. It decomposes
W ∈ R into the multiplication of X ∈ {−1, 0,+1}m×k , Y ∈ {−1, 0,+1}n×k and non-
negative diagonal matrixD ∈ R

k×k+ . By choosing a different k, a trade-off can be
achieved between compression ratio and performance loss. Wen et al. [74] introduce
the TernGrad method, which quantifies the gradient into {−1, 0, 1}

In addition, some other quantitative methods have been proposed. Muller et al. [75]
draw lessons from the idea of integer programming and propose a stochastic rounding
function tomap the real value to the nearest discrete point or the second nearest discrete
point based on the distance from the corresponding point. Polino et al. [76] propose a
uniform quantization. Given a parameter s in advance. Uniform quantization generates
s + 1 equally spaced points between 0 and 1, and quantifies each real value as the
nearest quantization point. Koster et al. [77] quantify networks in the training process,
share the exponential bits of the stored data, and transforms the floating-point operation
in the training process into the integer operation of the mantissa, so as to accelerate
the network training. Cai et al. [78] propose low precision Relu by half-wave gaussian
quantization. Mishra et al. [79] propose wide reduced precision networks (WRPN) to
quantify the activations and weights. This paper points out that the activations actually
occupies more memory than the weight, so it adopts a strategy, that is, increasing the
number of filters in each layer to compensate for the decline in accuracy caused by
quantization operation.

2.5 Sparse-InducingMethods

The sparse-inducing methods seek the sparsity in dense networks. It trains a sparse
network with smaller number of weights, connections, filters or neurons compared
with the original network to reduce the memory demand and computation. Denil et al.
[80] points out that most parameters in neural networks are redundant. Therefore, it
is feasible to train sparse networks with comparable performace. The neural networks
with a sparse structure and fewer connections need less memory space to store these
weight data, and the compressed networks require less computation when applied to
new data. In this subsection, the existing network sparsity methods are mainly divided
into three categories: pruning, dropout and sparse optimization methods.

2.5.1 Pruning

The main idea of pruning method is to remove those unimportant connections that
have little impact on the final output of the network in the process of network training.
Assuming the neural network architecture is f (x, ·), where x is the input sample.
Such an architecture includes the parameters of the network and the operators it uses,
such as convolution, pooling, batch normalization, etc. For the specific parameter W ,
the neural network is denoted as f (x,W). The pruning of neural networks actually

123

Annals of Data Science (2022) 9(4):695–722 703

takes f (x,W) as input and generates a new model f (x, Ŵ) as output. Ŵ is the
parameter set after pruning. In a pruning operation, it can be denoted as M � W ,
where M ∈ {0, 1}|W | is a binary mask to change some specific parameters to 0, �
is an element-wise multiplication operation. In practice, instead of using a mask, the
parameter is directly set to 0 or removed. Generally speaking, pruning methods follow
such a framework,

1. Initializing parameters W , M ∈ {1}|W | and training f (x,W) to convergence.
2. According to an evaluation criterion S(·), scoring the existing parameter set, and

update the next pruning rule according to the current score and pruning rule, that
is M ← P(M, S(W)).

3. Fine-tuning the network f (x, M � W).

In the last century, several early pruning methods were proposed. Biased weight
decay [81] is an earlywork for pruning.Amagnitude basedpruningmethod is proposed
to applyweight decay related to its absolute value to each hidden neuron in the network
to reduce the number of hidden units. Subsequently, optimal brain damage(OBD) [82]
and optimal brain surgery(OBS) [83, 84] take the Hessian matrix of the loss function
into consideration. These two methods get higher accuracy than biased weight decay.
However, the complexity of calculating the Hessian matrix is O(|W |2) so that it is not
feasible for current networks which are deeper and with more parameters and neurons.

In recent years, pruning methods have regained attention. Many works have been
proposed to prune redundant network connections which do not provide useful infor-
mation for the network output. Srinivas et al. [85] observe that similar neurons are
redundant. It calculates a saliency value between two neurons to represent similarity.
And then it removes one of the neurons with the smallest saliency. Han et al. [86]
consider that the weights whose value are less than a certain threshold are redun-
dant. It removes these weights from the network to obtain a sparse network. Finally,
the network obtained is retrained and the weights are fine-tuned to ensure that the
model performance will not be affected by the removal of some connections. They
also combine this pruning method with quantization method and Huffman coding to
compress the networks [87]. Molchanov et al. [88] propose a pruning standard based
on Taylor expansion, which approximates the change of loss caused by pruning net-
work through first-order Taylor expansion. Anwar et al. [89] introduce the particle
filter method into structural pruning. The importance of each particle is determined
by calculating the error classification rate. And it removes the particle with lower
importance to achieve structurally pruned networks. And It is becoming increasingly
popular to focus on setting different pruning standards on neuron-level. Narang et
al. [90] propose to prune with a monotonically increasing threshold and the sparsity
rate can be controlled by setting the shape of the threshold function. Lin et al. [91]
propose a global and dynamic pruning strategy. Specifically, the model uses a global
discriminant function established based on a priori knowledge to globally prune the
filter that is not significant, and then dynamically update the significance value of the
filter based on the pruned sparse network, recover the proper filter, and then retrain
the model to improve the accuracy of the model. Molchanov et al. [92] propose an
adaptable structural pruning without requiring per-layer sensitivity analysis.

123

704 Annals of Data Science (2022) 9(4):695–722

2.5.2 Dropout Methods

Dropout methods randomly discard some neurons and connections of networks in
the training process. It is worth noting that dropout is proposed not only as a sparse
technique of neural network, but also as a regularization to reduce the overfitting
problem in the process of network training.

Dropout was first proposed by Hinton et al. [93]. In each training process, each
hidden neuron is randomly removed from the network with a probability of 0.5, so
that the existing neurons cannot rely on removed hidden neurons. Dropout can also
be regarded as training a large number of different networks in a reasonable time.
There are different networks for each representation of each training case. Extensive
stochasticmethods are inspired by this original dropout andwe refer to thembydropout
method in general. DropConnect [94] extends Dropout [93] to the connections of the
fully connected layers. Adaptive dropout [95] substitute the constant dropout rate
by the adaptive rate in Dropout [93]. Srivastava et al. [96] comprehensively analyse
dropout. Dropout is found to promote a sparse distribution of weights. Kingma et al.
[16] propose variational dropout which sets an independent inactivation rate for each
layer, each neuron and even each weight. Molchanov et al. [15] extend variational
dropout [16] and build a bridge between pruning and dropout via sparse distribution.
Poernomo et al. [97] propose Biased Dropout and Crossmap Dropout on hidden layers
and convolutional layers.

In general, dropout methods are originally an algorithmic mechanism used to avoid
overfitting. On one hand, its algorithm framework background is conducive to being
applied to a wide range of neural network topologies. On the other hand, since it has
good mathematical and statistical properties, it can be expanded to a compression
applications. It can be seen as a sparse distribution of weights, which narrows the gap
between pruning and sparse regularizaiton.

2.5.3 Sparse Optimization

The method based on sparse optimization is to transform the sparse learning process
of neural network into an optimization problem by introducing sparse regularization
terms. By solving an unconstrained sparse optimization problem, the weight of some
network connections will be set to zero. And the training objective function can be
denoted as,

min
W

L(f ({W (l)}Ll=1), D) + λ

L∑

l=1

Ω(W (l)) (1)

whereW (l) is the weights matrix of l-th layer, {W (l)} is the set of all weights matrices.
D = {xi , yi }Ni=1 is the dataset containing N samples, xi is the i-th input sample
yi ∈ {1, . . . , K } ia the corresponding label. λ(l) is the hyper-parameter to balance the
effect between L ({W (l)}, ·) and regularization term Ω(W (l)).

The method based on sparse optimization mainly designs different sparse regular-
izaiton terms to maintain the prediction accuracy and sparse the network at the same

123

Annals of Data Science (2022) 9(4):695–722 705

time. [98] studies the use of three sparse regularization terms as sparse constraints
to sparse neural networks, including �1, shrinkage operator and projection to �0 ball.
The model training process using these regular functions can still be performed by the
stochastic gradient descent method, which makes it easy for the algorithm to call the
existing code. Zhou et al. [99] propose a method which tensor low rank constraint and
group sparsity are applied to the objective function of deep neural network to remove
redundant neurons. The tensor low rank constraint is realized by the trace norm of
the tensor. The trace norm of tensor is proposed by Liu et al. [100]. The average rank
of tensor is approximated by calculating the average value of trace norm of different
expansion modes of tensor. For the tensor connected to a neuron w̃Neu , whose trace
norm can be denoted as follows,

Ω(W (l)) =
⎛

⎝(1 − α)
√
P(l)

N (l)
∑

n=1

‖ω(l)
n ‖2 + α‖W (l)‖1

⎞

⎠ , (2)

where P(l) is the neuron size in l-th layer, N (l) is the neuron number in l-th layer,
ω

(l)
n is the corresponding weight matrix of n-th neuron in l-th layer, α is a balance

parameter. And then a majority of regularization based methods focus on utilizing
various regularizer Ω(·) [99, 101–105], which we will further introduce regularizer
in the next section.

Sparse regularization based compression has a strong mathematical and optimiza-
tion background. It can be related with sparse priori distributions. Therefore, it has a
certain interpretability in theory. Moreover, the capability to prevent overfitting make
regularization based compression can achieve comparable accuracy for model. In
addition, it is easy to practical application.

3 Sparse Regularizers

Compression with sparse regularizer based approaches in DNNs obtain sparsity
through turning the training process into an optimization problem. The compression
is obtained by introducing sparse regularization to the objective function [99, 106–
109]. In general, optimization problem for network compression can be formulated as
follows,

min
W

L(f (W), D) + λΩ(W), (3)

where f (·) is the neural network, D is the dataset,W is the weights, L(·, ·) is the data
fidelity term, Ω(·) is the regularization term and λ > 0 is the hyper-parameter.

Many studies focus on applying sparse-regularization based compression bydesign-
ing the regularization term Ω(·) [99, 101–105]. �0 norm is the most intuitive sparse
constraint. When it acts on a vector, its output is the number of non-zero elements.
Intuitivly, �0 norm is the strictest sparse-inducing constraint, and the most sparse solu-
tion can be obtained. However, minimize a �0 norm constraint problem is usually NP

123

706 Annals of Data Science (2022) 9(4):695–722

hard. �1 norm is a convex relaxation of �0 norm. It is commonly used as it is convex
and easy to be operated. The �1 norm [108, 110, 111] of a vector x ∈ R

N is defined
by

‖x‖1 =
N∑

i=1

|xi |. (4)

In [98], sparse regularizers including the �1 regularizer are applied to both convo-
lutional and fully-connected structures. Some methods [108, 111] use �1 to promoted
weight sparsity, which is to remove connections of a well-trained network.

Though the �1 norm has many advantages, it is sensitive to outliers and may cause
serious bias in estimation [112]. That means these methods may need to sacrifice
accuracy to achieve a comparable compression rate. After that, some works focus on
improving the performance of regularization, which can be categorized as two types.
The first kind of methods pay attention to the properties of regularization terms, so as
to select better regularization terms. It is pointed out in [112] that a good regularization
term should obtain an estimation with the following three characteristics: unbiased-
ness, sparsity and continuity. The so-called unbiasedness means that for variables with
a large proportion (such as the previous parameters), the estimated value should be
asymptotically unbiased, so as to avoid excessive model deviation. Sparsity means
that small variables can be automatically estimated to zero to obtain sparse solutions,
which can reduce the complexity of the model. Continuity means that the obtained
estimation should maintain continuity, so as to maintain the stability of the model.
These characteristics provide a reference for the selection of regularization functions.
Obviously, regularization functions with such characteristics should be nonconvex.

Smooth clipped absolute deviation (SCAD) is the first regularization function [112]
proved tomeet these characteristics in order to improve �1 and hard threshold functions
are proposed. It effectively combines the soft threshold functionwith the hard threshold
function. Its definition on the vector x = {x1, x2, . . . , xN } ∈ R

N is as follows,

P(x; λ, γ) =
n∑

i=1

P(xi ; λ, γ), P(xi ; λ, γ) =

⎧
⎪⎨

⎪⎩

λ|xi |, i f |xi | ≤ λ
2γ λ|xi |−x2i −λ2

2(γ−1) , i f λ < |xi | < γλ

λ2(γ + 1)/2, i f |xi | ≥ γ λ,

(5)

where λ > 0and γ > 2 are two adjustment parameters, usually γ = 3.7. As can be
seen from the above formula, for scalar variable |x | ≤ λ, SCAD is equivalent to �1 ,
and then it smoothly transforms into a quadratic function until |x | = γ λ. Then, for all
|x | > γλ, it is equal to a constant, so as to meet the approximate unbiased estimation
of variables.

SCAD has been proved the following two properties:

(a) it can select the correct subset of variables.
(b) parameter estimation is asymptotically normal, and the variable estimation can be

unbiased by controlling the parameters.

123

Annals of Data Science (2022) 9(4):695–722 707

And then the minimummaximum concave penalty (MCP) is proposed in [113] and
is defined as follows,

P(x; λ, γ) =
n∑

i=1

P(xi ; λ, γ), P(xi ; λ, γ) =
{

λ|xi | − x2i /(2γ), i f |xi | ≤ γ λ

γ λ2/2, i f |xi | > γλ
(6)

where λ > 0and γ > 1. It can be seen from (6) that when γ → ∞, MCP func-
tion tends to �1 regularization, the sparsity-inducing ability becomes weaker; When
γ → 1, MCP function approaches �0 regularization, and the sparsity-inducing ability
becomes stronger. Similar to SCAD, when the value of the variable is greater than a
certain value, the value of MCP will become a constant. And MCP can also obtain
unbiasedness, sparsity and continuous variable estimates. Different from SCAD,MCP
directly relaxes the penalty rate to zero in the later stage,while the penalty rate of SCAD
remains unchanged for a period before it decreases.

Although SCAD and MCP can obtain unbiased estimation, they are in the seg-
mented form and the model is relatively complex. As a result, they undoubtedly
increases the amount of calculation in practice. Especially when the applied model
itself is complex and the amount of calculation is large, the processing of these two
parameters will increase the amount of calculation to the model.

Capped �1 function is another approximate form of �0 to better reduce the influence
of noise and outliers [114],

P(x; a) =
n∑

i=1

min(|xi |, a), a > 0. (7)

It consists of two segments. As seen in Eq. (7), when a → 0
∑

i min(|xi |, a)/a →
‖x‖0. It can better approximates �0 than �1. When the absolute value of the variable
is less than the parameter a, Capped �1 function corresponding to �1. And when the
absolute value of the variable is greater than the parameter a, Capped �1 function
corresponding to a constant, which means that the noise term with large error will be
truncated byCapped �1. ThusCapped �1 is able to avoid the bias of variable estimation,
which is more robust to noise.

The elastic net is a combination of �1 regularization function and �2 regularization
function [115],

P(x;α) =
n∑

i=1

(
(α − 1)x2i /2 + (2 − α)|xi |

)
, 1 ≤ α ≤ 2, (8)

where α is a non negative parameter. When α = 1, the elastic net function becomes
�1 function, and when α = 2, the elastic net function becomes the �2 function. Loga-
rithmic penalty function is a generalized form of elastic nets [116],

P(x; γ) =
n∑

i=1

P(xi , γ), P(xi ; γ) = log(γ |xi | + 1)

log(γ + 1)
, (9)

123

708 Annals of Data Science (2022) 9(4):695–722

where the parameter γ > 0. And by changing the value of γ , the continuum from
�1 (γ → 0+) to �0 (γ → ∞) can be obtained.

The �1/�2 regularization function has been applied as a sparsity-inducing reg-
ularizer in many fields, such as non-negative matrix factorization [117], blind
deconvolution [118], image deblurring [119]. Without the range constraint, this regu-
larization in these works adopts the form as follows,

P(x) =
∑n

i=1 |xi |
√∑n

i=1 x
2
i

(10)

It satisfies five desired heuristic criteria of sparsity measures [120]. And It is differ-
entiable almost everywhere and scale-invariant so that it is utilized in learning sparser
neural networks [121].

The �1−2 [122] regularization is the difference of �1 and �2 norm and widely used
in many problems. Its relationship with �1/�2 regularization function can be denoted
as ‖x‖1 − ‖x‖2 = ‖x‖2(‖x‖1‖x‖2 − 1). The �1−2 is nonconvex and Lipschitz continuous,
and the corresponding optimization algorithms are effective. It performs very well in
spectral imaging [122], compressed sensing [123], sparse signal recovery [124]. This
regularization function has no hyper-parameters and is simple in form, but it is also
lack of adaptability to different tasks due to the absence of hyper-parameters.

Transformed �1(T�1) regularization function [125, 126] is a smooth form of Capped
�1, which has many good properties, such as unbiasedness, sparsity, Lipschitz conti-
nuity and so on. For a single variable x , its definition formula as follows,

ρa(x) = (a + 1)|x |
a + |x | (11)

where a > 0 is a parameter which controls the shape of the function. When a → 0,
ρa(x) approaches the indicator function as follows,

I (x) =
{
1, i f x
= 0
0, i f otherwise.

(12)

and when a → ∞, ρa(x) approaches the �1 function. And Zhang extends T�1 to
vector space, for a vector x = {x1, x2, . . . , xn} ∈ R

n , T�1 is defined as follows,

T �1(x) =
n∑

i=1

ρa(xi). (13)

and noticing that

lim
a→0+ T �1(x) =

N∑

i=1

I{xi
=0} = ‖x‖0, lim
a→+∞ T �1(x) =

N∑

i=1

|xi | = ‖x‖1. (14)

123

Annals of Data Science (2022) 9(4):695–722 709

Table 1 Commonly used sparse-inducing regularizer

Regularizer Formula

�1 ‖x‖1 =
N∑

i=1
|xi |

SCAD P(x; λ, γ) = ∑n
i=1 P(xi ; λ, γ) P(xi ; λ, γ) =

⎧
⎪⎨

⎪⎩

λ|xi |, i f |xi | ≤ λ

2γ λ|xi |−x2i −λ2

2(γ−1) , i f λ < |xi | < γλ

λ2(γ + 1)/2, i f |xi | ≥ γ λ,

MCP P(x; λ, γ) = ∑n
i=1 P(xi ; λ, γ) P(xi ; λ, γ) =

{
λ|xi | − x2i /(2γ), i f |xi | ≤ γ λ

γ λ2/2, i f |xi | > γλ

Capped �1 P(x; a) = ∑n
i=1 min(|xi |, a), a > 0

Elastic Net P(x; α) = ∑n
i=1

(
(α − 1)x2i /2 + (2 − α)|xi |

)
, 1 ≤ α ≤ 2,

�1−2 ‖x‖1 − ‖x‖2
T�1 T �1(x) = ∑n

i=1 ρa(xi) ρa(x) = (a+1)|x |
a+|x |

�p ‖x‖p = (∑n
i=1 |xi |p

)1/p

The non-convexity and the hyper-parameter property of it make it better sparsify
networks [127, 128].

�p (0 < p < 1) has attracted a great deal of attention in recent years [129–131,
131–135], which is defined by

‖x‖p =
(

N∑

i=1

|xi |p
) 1

p

. (15)

In theory, It fulfills unbiasedness, sparsity and oracle properties [129]. And when the
value of p approaching to 0, �p can interpolate �0.

lim
p→0+ ‖x‖p

p = ‖x‖0 . (16)

The changing rate of the �p function value is unbounded at zero because it is non-
Lipschitz continuous at x = 0. From these two perspectives, the mutation between
zero and non-zero is a imitation of the discreteness of �0.

Some commonly used sparse-inducing regularizer are shown in Table 1.
The second type of regularizer-based approach is to use the composite regularizers

[99, 101–105], as the following form,

Ω(W) = μΩ1(W) + (1 − μ)Ω2(W), (17)

whereΩ1(·) aims to compress networks on connection-level,Ω2(·) is used to enhance
the compression capability on neuron-level, and μ ∈ [0, 1] is the parameter to keep
balance. For example, Zhou et al. [99] utilized two sparse constraints, group sparsity
for inducing sparsity on neuron-level and low rank constraint for tensor to promote

123

710 Annals of Data Science (2022) 9(4):695–722

Table 2 Commonly used sparse-inducing regularizer

Regularizer Formula

SSL [14]
∑

l
||W (l)||F + α

∑

l
||W (l)||2,1

SGL [136]
∑

l
||W (l)||1 + α

∑

l
||W (l)||2,1

TLR& GS [99]
∑

l
||W (l)||tr + α

∑

l
||W (l)||2,1

CGES [104]
∑

l
α||W (l)||21,1 + (1 − α)||W (l)||2,1

IT�1 [101]
∑

l
α||W (l)||T �1 + (1 − α)||W (l)||2,1

Hoyer-square [121]
∑

l
αHs (W (l)) + β||W (l)||2, whereHs (Wl) =

(
∑

i
|wi |)2

∑

i
w2
i

Group-Hoyer-square [121]
∑

l
αGH (W (l)) + β||W (l)||2, whereGH (Wl) =

(
∑

g
||w(g)||)2

||W (l)||22
Polarization [137] t ||γ ||1 − ||γ −

∑n
i=1 γi
n 1n ||1 where γ is the scaling vector for neuron

competition between weights at each layer. The work [102] use the �2,1 norm, which
was used to obtain a sparse network at neuron-level, together with the �1 norm, which
tends to remove connections. Yoon et al. [104] combined group sparsity and exclusive
sparsity to promote sharing and competition for different features. In our previouswork
[101], to explore the strength of these two methodologies, we proposed integrating the
non-convex transformed �1 with group sparsity. Commonly used composite sparse-
inducing regularizers for DNNs are shown in Table 2.

Although the combination of the two regularizers can achieve good results in terms
of accuracy and compression ratio, this structure makes the optimization process alter-
nate. This alternative optimization method may lead to sawtooth phenomenon and
reduce the training speed. In order to overcome the numerical difficulties caused by
the composite regularizer, some work design a single regularizer to compress the net-
workwithout losing accuracy. In order to ensure the compression effect, the regularizer
should be able to compress the connection and neuron at the same time.

4 Optimization

min
W

L(f ({W (l)}Ll=1), D) + λ

L∑

l=1

μlΩ(W (l)), (18)

where Ω(W (l)) is a regularization term, λ > 0 is the regularization parameter, μl > 0
is the balancing parameter used to control the sparse level of each layer l, D is a
training set. By coordinating the value of λ, W (l) ∈ R

ml×ml−1 represents the weights
at the l-th layer, l ∈ {1, 2, . . . , L}, L is the number of layers, ml denotes the neuron
number of layer l.

123

Annals of Data Science (2022) 9(4):695–722 711

we can compress the connections of the network during the process of solving
problem (18). After obtain the solution to (18), the neurons, whose weights of con-
nections are all zero, would be removed from the network. Then the sparse network
is constructed.

4.1 Proximal Algorithm

In this subsection, we introduce the proximal algorithm. It is a very universal method
under many circumstances, such as nonsmooth objective function and so on. At the
same time, the speed of this algorithm can be very satisfactory in practice. The prox-
imal method is also widely used in many fields, such as kernel norm problem [138],
sparse problem [139], maximum a posteriori probability estimation in graph model
[140], empirical or structural riskminimization [141–143] and signal processing [144].
It is worth noting that the proximal algorithm is often very suitable for solving sparse
optimization problems. In addition, it is simple in both mathematical form and opera-
tion, which is very easy to understand and operate. Such an algorithm depends on the
use of proximal operator.

4.1.1 Proximal Operator

Firstly, we introduce the concept of proximal operator. A proximal operator prox f :
R
n → R

n on f is defined as follows,

prox f (y) = argmin
x

(

f (x) + 1

2
‖x − y‖22

)

, (19)

where ‖ · ‖2 is �2 norm. The proximal operator of a function is actually solving the
optimization problem. Generally, f is accompanied by a scaling coefficient λ, and its
proximal operator becomes as follows,

proxλ f (y) = argmin
x

(

f (x) + 1

2λ
‖x − y‖22

)

. (20)

From the perspective of gradient, when f is differentiable and f (x) + 1
2λ‖x − y‖22

has an minimum,

∇ f (x) + x − y

λ
= 0 ⇒ x = y − λ∇ f (x) ≈ y − λ∇ f (y) (21)

that means, proxλ f (y) is approximately the gradient descent at the point of y.
There is also an illustrative example for the proximal method when f is IC(x).

IC(x) =
{
0, x ∈ C
+∞, x /∈ C (22)

123

712 Annals of Data Science (2022) 9(4):695–722

where C is a closed nonempty convex set, and its proximal operator is

argmin
x

(

IC(x) + 1

2
‖x − y‖22

)

. (23)

In fact, it is an optimization problem of projection under Euclidean norm,

argmin
x∈C

‖x − y‖22. (24)

The solution of Eq. (24) can be seen as a projection of y onto set C. Therefore, the
proximal operator can be regarded as a projection. And if f can be divided into
f (x) = ∑n

i=1 fi (xi), then the proximal operator has (prox f (v))i = prox fi (vi).
Such property can be applied in parallel computing design.

4.1.2 Proximal Gradient Algorithm

Given a optimization problem as follows,

min
x

f (x) + g(x). (25)

where f : Rn → R and g : Rn → R ∪ {+∞} are two closed proper functions, f is
differentiable. The proximal gradient method uses the following iteration to solve the
problem,

xk+1 := proxλk g(x
k − λ∇ f (xk)), (26)

4.1.3 Applied in Compression for DNNs

Proximal gradient algorithm is the commom and useful method to train compression
model (18). During the process of trainingDNNs, a stochastic framework is adopted to
deal with the computational cost brought by the extremely large training dataset. And
stochastic gradient method cannot be applied directly for a majority of regularization.
Thus, a stochastic proximal gradient algorithm is uitilized in our previous work. In
detail, the proximal operator is presented layer by layer as follow,

W (l)
t+1 = proxλγΩ

(
W (l)

t − ∇L(
f (Wl

t), D
))

, (27)

where W (l)
t is the weight matrix of the l-th layer. Furthermore, (27) can be rewritten

as the following optimization problem,

W (l)
t+1 = argmin

W

1

2λ

∥
∥
∥W − (W (l)

t − γ∇L(f (Wl
t), D))

∥
∥
∥
2

F
+ Ω(W). (28)

123

Annals of Data Science (2022) 9(4):695–722 713

Using the stochastic gradient to replace the gradient in above Eq. (28), we obtain,

W (l)
t+1 = argmin

W

{
1

2λ

∥
∥
∥W − (

W (l)
t − γ

m0

m0∑

i=1

∇L(f (Wl
t), {xi , yi })

)∥∥
∥
2

F
+ Ω(W)

}

,

(29)

where m0 is the mini-batch size in SGD.
It is a general framework to solve regularized compression model. However, ther

is a few of differences for the pipeline of solving a combined regularized objective
function. As we known, the success of the application of proximal methods depends
on whether there is a solution of the proximal operator for the regularization term. It is
difficult to directly calculate the proximal operator of such a combined regularization
term. Under this circumstace, calculating the proximal operators of two regular func-
tions separately is a pragmatic method [101, 104, 136]. For a regularized compression
model as follows,

min
W

L(f ({W (l)}Ll=1), D) + λ

L∑

l=1

(μlΩ1(W
(l)) + (1 − μl)Ω2(W

(l))), (30)

calculation results for per regularization term are utilized ralatively to update the
gradient steps only on the loss function iteratively.

W (l)
t+1 = proxλ(l)γ (1−μl)Ω2

(

proxλ(l)γμlΩ1
(W (l)

t − γ

n∑

i=1

∇L(W (l)
t , {xi , yi })/n)

)

.

(31)

As seen from the Eq. (27) and the Eq. (31), we can find some differences in single
and combined regularization from the perspective of optimization process. Notic-
ing that the optimization pipeline of the these combined regularizers, we optimized
alternatively for the two-term structure. It in practice results in slows down the con-
vergence. Meanwhile, each part of these two-term regularizers can be seen a single
regularization. Thus, the alternative optimization of per term regularization may cause
the computational difficulties.

4.2 Subgradient BasedMethod

4.2.1 Subgradient

∂ f (x) is called the subgradient of f at the point x, if it satisfies the condition,

f (y) ≥ f (x) + ∂ f (x)(y − x) (32)

123

714 Annals of Data Science (2022) 9(4):695–722

Table 3 Subgradients and proximal operator of Several sparse regularizers

Regularizer
R(x)

∂R(x) Proximal operator proxλΩ

�1

{
sgn(xi), i f xi
= 0
[−1, 1] , i f xi = 0,

sgn(xi)(|xi | − λ)+

�p

{
p·sgn(xi)
|xi |1−p , i f xi
= 0

R, i f xi = 0,

T�1

{
a(a+1)sgn(xi)

(a+|xi |)2 , i f xi
= 0

0, i f xi = 0,

{
0, i f |ω̂g,i | ≤ t
gλ(ω̂g,i), otherwise

where

gλ(ω) = sgn(ω)
{
2
3 (a + |ω|) cos(φλ(ω)

3) − 2a
3 + |ω|

3

}
,

φλ(ω) = arc cos
(
1 − 27λa(a+1)

2(a+|ω|)3
)

,

t =
{

λ a+1
a , i f λ ≤ a2

a(a+1)√
2λ(a + 1) − a

2 , otherwise

�2,1

{ x
||x||2 , i f x
= 0
{x ∈ R

n : ||x||2 ≤ 1}, i f x = 0,
xi (1 − λ/||x||2)+

4.2.2 Subgradient Descent

Due to the non-smoothness of the commonly used sparse-inducing regularization,
gradient descent cannot be applied for our model (18) directly. To minimize (18) in
general, subgradient descent is also utilized [145], where stochastic gradient descent
is applied to the first term while subgradient descent is applied to the regularization
term. The mathematical form is as follows

w
(l)
t+1 = w

(l)
t − ∇L(f (wl

t), D) (33)

w
(l)
t+2 = w

(l)
t+1 − αt+1g

(l)
t+1 (34)

where w
(l)
t is the weight of l-th layer in t-th iteration, gt is any subgradient of Ω at

wt , and αt > 0 is the step size in t-th iteration.

4.3 Discussion

We compare subgradients and proximal operators of several sparse regularizers in
Table 3. From these two optimization algorithms and Table 3, we find that the com-
pression by proximal gradient algorithm usually obtain a threshold-form proximal
operator from which the unsignificant weights are exactly zero through the optimiza-
tion process. The sparsity in the network results from this. In the network trained by
subgradient descent method, someweightsmay become very small in the optimization
process, but it is difficult to accurately become zero. The compression of the network
needs post-processing, and the sparsity is obtained by pruning. It may need retraining
to keep the accuracy.

123

Annals of Data Science (2022) 9(4):695–722 715

We used to focus on the sparsity-iducing capability of various sparse regularizer,
which is supposed to make weights in the network zero directly. We often focus
on setting the parameter to zero and the threshold value setting parameters to zero.
However, pruning a network without a threshold produced by regularizer is actually
possible, and it can also control the compression ratio. Compression with subgradient
algorithm inspires us. In regularization based compression using subgradient descent
method, post-operation, pruning, is needed. They don’t spend too much effort on the
threshold, but they still get a compressed network with good accuracy. The sparsity
brought by the regularizer, which can be seen as the anti-disturbance ability brought
by it to the model. In other words, the ability of regularizers is the ability to select the
optimal subnetwork for the original network. It will pick some of the more important
positions of the weight and keep them down.

5 Avenues for Future Research

Considering the enormous interest in neural network compression, we briefly review
and analyze the sparse regularization based compression methods for DNNs in this
work. After carefully studying the literature, we overview sparse regularizations and
optimization methods for DNNs compression. We discussed both the different advan-
tages and disadvantages, and provided some insights and discussions on how to make
sparse regularization fit within the compression framework to help future research
endeavors to produce the kinds of results. In this section, we indicate some avenues
for future research so that regularization will harmonize the networks compression
and develop better in this area.

First, regularizer designing has attracted great attention of researchers. They
design regularizers with different desired properties, such as unbiasedness, sparsity,
scale-invariant, continuity and Lipschitz-continuity. A good regularizer with desired
properties should result in an estimator with preference. Moreover, to obtain structural
compression effect, state-of-the-art works focus on removing neurons utilizing �2,1
group sparse regularizer. Although �2,1 performs well, there is only �2,1 widely used.
Therefore, it is significant to design or utilize a novel group sparse regularizer which
can better capture intra-group information or better promote group sparsity, so that
the regularized networks can adapt to different tasks.

In addition, to obtain good compression effect, composite regularizers are utilized
to sparsify connections and neurons at the same time. One part of a composite reg-
ularizer removes spare connections and the other part removes unnecessary neurons.
Although the composite regularizers can obtain accurate compressed networks, they
are usually difficult to solve. Because the algorithms need alternately optimize the two
regularized objective. Such an alternative optimization usually leads to the zigzagging
phenomenon and slow down the training. Therefore, it is necessary to design a simpler
regularizer or algorithm in order to overcome the computational difficulty.

Furthermore, it will be very promising to study from the perspective of Bayesian.
Noticing that explicit regularization can be considered as introducing priors into
posteriors. For example, the commonly used prior distribution is Laplacian prior distri-
bution, which corresponds to �1 regularization. In the future, it is promising to extend

123

716 Annals of Data Science (2022) 9(4):695–722

the commonly used priors to more general priors. From a compression point of view,
sparse priors can be placed over connection-wise or neuron-wise structures. some
sparser prior distribution can be utilized on weights and some priors such as Bernoulli
priors can be introduced over structures such as convolutional filters or ResNet units
to promote sturctural sparsity.

Second, it is meaningful to introduce regularization based compression methods on
other neural network architectures. With the increasing scale of tasks to be solved, the
network used is becomingwider and deeper. Although there are various network archi-
tectures, a majority of methods verify the effect on convolutional neural networks. In
the future, it is meaningful to test the performance on other neural network architec-
tures. Furthermore, it could be interesting to study the pipeline of compression, such
as training models from scratch or in a student-teacher setting.

Last but not least, it is promising to explore the effect of explicit and implicit
regularizations. Generally speaking, existing works on DNN model compression
include pruning, dropout, quantization and optimization with explicit regularization.
In addition to the explicit regularization based method, other methods may impose
a regularization effect by the training algorithm rather than introducing explicit reg-
ularizer to the objective function. These algorithmic methods can be regarded as a
implicit regularization. For instance, pruning is to remove non-informative weights
which are insensitive to the performance in a pretrained network. It may remove bad
noise to improve the generalization or robustness of the networks. Dropout is proposed
to reduce over-fitting and improve the performance by randomly removing neurons,
which is definitely a regularization. It could be interesting to explore the effect of
explicit and implicit regularizations.

Acknowledgements This work was supported by the National Natural Science Foundation of China [
No.71932008], UCAS, China Grant [No. Y55202LY00].

Author Contributions Anda Tang contributed to the conception of the study,the survey for compression
methods, analysis and wrote the manuscript; Pei Quan contributed to analysis and manuscript preparation;
Lingfeng Niu, Yong Shi helped perform the analysis with constructive discussions.

Declarations

Conflict of interest The authors declare that they have no known competing financial interests or personal
relationships that could have appeared to influence the work reported in this paper. The authors declare
the following financial interests/personal relationships which may be considered as potential competing
interests.

Ethical Statement for Annals of Data Science I testify on behalf of all co-authors that our article submitted
to Annals of Data Science: Title: A survey for sparse regularization based compressionmethods All authors:
Anda Tang , Pei Quan , Lingfeng Niu , Yong Shi 1. This material has not been published elsewhere. 2. The
manuscript is not currently being considered for publication in another journal. 3. All authors have been
personally and actively involved in substantive work leading to the manuscript, and will hold themselves
jointly and individually responsible for its content

123

Annals of Data Science (2022) 9(4):695–722 717

References

1. Tien JM (2017) Internet of things, real-time decision making, and artificial intelligence. Ann Data
Sci 4(2):149–178

2. Olson DL, Shi Y, Shi Y (2007) Introduction to business data mining, vol 10. McGraw-Hill/Irwin
3. Liu F, ShiY (2020) Investigating laws of intelligence based onAI IQ research. AnnData Sci 7(3):399–

416
4. Shi Y (2022) Advances in Big Data Analytics: Theory. Algorithms and Practices. Springer
5. Wang P, Ouyang H, Zhong Y, He H (2016) Cognition math based on factor space. Ann Data Sci

3(3):281–303
6. Geoffrey H, Li D, Dong Y, George ED, Mohamed A (2012) Deep neural networks for acoustic

modeling in speech recognition: The shared views of four research groups. IEEE Signal Process Mag
29(6):82–97

7. Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural
networks. In: Advances in neural information processing systems. pp 1097–1105

8. Dauphin YN, Fan A, Auli M, Grangier D (2017) Language modeling with gated convolutional net-
works. In: Proceedings of the 34th international conference on machine learning-Volume 70, JMLR.
org, pp 933–941

9. Learning D. Deep learning, High-Dimensional Fuzzy Clustering
10. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. pp 770–778
11. Devlin J,ChangM-W,LeeK,ToutanovaK,Bert (2019) Pre-training of deepbidirectional transformers

for language understanding. In: NAACL-HLT
12. Han S (2015) Learning both weights and connections for efficient neural network. In: Advances in

neural information processing systems, pp 1135–1143
13. . Christos Louizos MW, Ullrich K (2017) Bayesian compression for deep learning. In: Advances in

neural information processing systems. pp 3288–3298
14. Wen W, Wu C, Wang Y, Chen Y, Li H (2016) Learning structured sparsity in deep neural networks.

In: Advances in neural information processing systems. pp 2074–2082
15. MolchanovAA,DmitryDV (2017) In: ICML (Ed)Variational dropout sparsifies deep neural networks
16. Diederik MW, Kingma P, Salimans T (2015) Variational dropout and the local reparameterization

trick. In: Advances in neural information processing systems
17. Christos Louizos K, Welling Max Learning sparse neural networks through l0 regularization. ArXiv:

abs/1712.01312
18. Shi Y, Tian Y, Kou G, Peng Y, Li J (2011) Optimization based data mining: theory and applications.

Springer
19. He K, Sun J (2015) Convolutional neural networks at constrained time cost. pp 5353–5360
20. Denton EL, Zaremba W, Bruna J, LeCun Y, Fergus R (2014) Exploiting linear structure within con-

volutional networks for efficient evaluation. In: Advances in neural information processing systems,
pp 1269–1277

21. Xue J, Li J, Yu D, Seltzer M, Gong Y (2014) Singular value decomposition based low-footprint
speaker adaptation and personalization for deep neural network. pp 6359–6363

22. Zhang X, Zou J, He K, Sun J (2016) Accelerating very deep convolutional networks for classification
and detection. IEEE Trans Pattern Anal Mach Intell 38(10):1943–1955

23. Rigamonti R, Sironi A, Lepetit V, Fua P (2013) Learning separable filters. pp 2754–2761
24. Kim YD, Park E, Yoo S, Choi T, Yang L, Shin D (2015) Compression of deep convolutional neural

networks for fast and low power mobile applications. arXiv preprint arXiv:1511.06530
25. Wang P, Cheng J (2016) Accelerating convolutional neural networks for mobile applications. pp

541–545
26. Ye J, Wang L, Li G, Chen D, Zhe S, Chu X, Xu Z (2018) Learning compact recurrent neural networks

with block-term tensor decomposition. pp 9378–9387
27. Novikov A, Podoprikhin D, Osokin A, Vetrov DP (2015) Tensorizing neural networks. In: Advances

in neural information processing systems. pp 442–450
28. Wang W, Sun Y, Eriksson B, Wang W, Aggarwal V (2018) Wide compression: Tensor ring nets. pp

9329–9338
29. Sainath TN, Kingsbury B, Sindhwani V, Arisoy E, Ramabhadran B (2013) Low-rank matrix factor-

ization for deep neural network training with high-dimensional output targets. In: IEEE international
conference on acoustics, speech and signal processing. IEEE 2013:6655–6659

123

http://arxiv.org/abs/1712.01312
http://arxiv.org/abs/1511.06530

718 Annals of Data Science (2022) 9(4):695–722

30. Jaderberg M, Vedaldi A, Zisserman A Speeding up convolutional neural networks with low rank
expansions. arXiv preprint arXiv:1405.3866

31. Ioannou Y, Robertson D, Shotton J, Cipolla R, Criminisi A Training cnns with low-rank filters for
efficient image classification. arXiv preprint arXiv:1511.06744

32. Wen W, Xu C, Wu C, Wang Y, Chen Y, Li H (2017) Coordinating filters for faster deep neural
networks. pp 658–666

33. Yu X, Liu T, Wang X, Tao D (2017) On compressing deep models by low rank and sparse decompo-
sition. pp 7370–7379

34. Cohen T, Welling M (2016) Group equivariant convolutional networks. In: International conference
on machine learning, pp 2990–2999

35. Zhai S, Cheng Y, Zhang ZM, Lu W (2016) Doubly convolutional neural networks. In: Advances in
neural information processing systems, pp 1082–1090

36. LiH,OuyangW,WangX (2016)Multi-bias non-linear activation in deep neural networks. pp 221–229
37. Shang W, Sohn K, Almeida D, Lee H (2016) Understanding and improving convolutional neural

networks via concatenated rectified linear units. pp 2217–2225
38. Dieleman S, De Fauw J, Kavukcuoglu K (2016) Exploiting cyclic symmetry in convolutional neural

networks. arXiv preprint arXiv:1602.02660
39. Cheng Y,Wang D, Zhou P, Zhang T (2017) A survey of model compression and acceleration for deep

neural networks. arXiv preprint arXiv:1710.09282
40. Szegedy C, Ioffe S, Vanhoucke V, Alemi AA (2017) Inception-v4, inception-resnet and the impact

of residual connections on learning. In: 31st AAAI conference on artificial intelligence
41. WuB, Iandola F, Jin PH, Keutzer K, Squeezedet, (2017) Unified, small, low power fully convolutional

neural networks for real-time object detection for autonomous driving. pp 129–137
42. Buciluǎ C, Caruana R, Niculescu-Mizil A (2006) Model compression. pp 535–541
43. Ba J, Caruana R(2014) Do deep nets really need to be deep? In: Advances in neural information

processing systems, pp 2654–2662
44. Hinton G, Vinyals O, Dean J (2015) Distilling the knowledge in a neural network. arXiv preprint

arXiv:1503.02531
45. Romero A, Ballas N, Kahou SE, Chassang A, Gatta C, Bengio Y (2014) Fitnets: Hints for thin deep

nets. arXiv preprint arXiv:1412.6550
46. Luo P, Zhu Z, Liu Z, Wang X, Tang X (2016) Face model compression by distilling knowledge from

neurons. In: 13th AAAI Conference on Artificial Intelligence
47. Chen T, Goodfellow I, Shlens J (2015) Net2net: Accelerating learning via knowledge transfer. arXiv

preprint arXiv:1511.05641
48. Zagoruyko S, Komodakis N (2016) Paying more attention to attention: improving the performance

of convolutional neural networks via attention transfer. arXiv preprint arXiv:1612.03928
49. Yim J, Joo D, Bae J, Kim J (2017) A gift from knowledge distillation: fast optimization. Network

minimization and transfer learning. pp 4133–4141
50. Chen G, Choi W, Yu X, Han T, Chandraker M (2017) Learning efficient object detection models with

knowledge distillation. In: Advances in neural information processing systems. pp 742–751
51. HuangM,Wang N (2017) Like what you like: Knowledge distill via neuron selectivity transfer. arXiv

preprint arXiv:1707.01219
52. Gong Y, Liu L, Yang M, Bourdev L (2014) Compressing deep convolutional networks using vector

quantization. arXiv preprint arXiv:1412.6115
53. Choi Y, El-Khamy M, Lee J (2016) Towards the limit of network quantization. arXiv preprint

arXiv:1612.01543
54. Wu J, Leng C, Wang Y, Hu Q, Cheng J (2016) Quantized convolutional neural networks for mobile

devices. pp 4820–4828
55. Park E, Ahn J, Yoo S (2017) Weighted-entropy-based quantization for deep neural networks. pp

5456–5464
56. Vanhoucke V, Senior A, Mao MZ (2011) Improving the speed of neural networks on CPUs
57. Gupta S, Agrawal A, Gopalakrishnan K, Narayanan P (2015) Deep learning with limited numerical

precision. In: International Conference on Machine Learning. pp 1737–1746
58. Micikevicius P, Narang S, Alben J, Diamos G, Elsen E, Garcia D, Ginsburg B, Houston M, Kuchaiev

O, Venkatesh G, et al. (2017) Mixed precision training. arXiv preprint arXiv:1710.03740
59. Wu S, Li G, Chen F, Shi L (2018) Training and inference with integers in deep neural networks. arXiv

preprint arXiv:1802.04680

123

http://arxiv.org/abs/1405.3866
http://arxiv.org/abs/1511.06744
http://arxiv.org/abs/1602.02660
http://arxiv.org/abs/1710.09282
http://arxiv.org/abs/1503.02531
http://arxiv.org/abs/1412.6550
http://arxiv.org/abs/1511.05641
http://arxiv.org/abs/1612.03928
http://arxiv.org/abs/1707.01219
http://arxiv.org/abs/1412.6115
http://arxiv.org/abs/1612.01543
http://arxiv.org/abs/1710.03740
http://arxiv.org/abs/1802.04680

Annals of Data Science (2022) 9(4):695–722 719

60. Seide F, Fu H, Droppo J, Li G, Yu D (2014) 1-bit stochastic gradient descent and its application to
data-parallel distributed training of speech DNNs

61. Courbariaux M, Bengio Y, David J-P (2015) Binaryconnect: Training deep neural networks with
binary weights during propagations. In: Advances in neural information processing systems, 2015,
pp 3123–3131

62. Courbariaux M, Bengio Y. Binarynet: Training deep neural networks with weights and activations
constrained to +1 or -1

63. Strom N (2015) Scalable distributed dnn training using commodity gpu cloud computing, in
64. Rastegari M, Ordonez V, Redmon J, Farhadi A (2016) Xnor-net: Imagenet classification using binary

convolutional neural networks. In: European Conference on Computer Vision. Springer, pp 525–542
65. Hou L, Yao Q, Kwok JT (2016) Loss-aware binarization of deep networks. arXiv:1611.01600
66. Kim M, Smaragdis P (2016) Bitwise neural networks. arXiv preprint arXiv:1601.06071
67. Hu Q, Wang P, Cheng J (2018) From hashing to cnns: Training binary weight networks via hashing.

In: 32nd AAAI Conference on Artificial Intelligence
68. Lin Z, Courbariaux M, Memisevic R, Bengio Y (2015) Neural networks with few multiplications.

arXiv preprint arXiv:1510.03009
69. Li F, Zhang B, Liu B (2016) Ternary weight networks. arXiv preprint arXiv:1605.04711
70. ZhuC,HanS,MaoH,DallyWJ (2016)Trained ternary quantization. arXiv preprint arXiv:1612.01064
71. Mellempudi N, Kundu A, Mudigere D, Das D, Kaul B, Dubey P (2017) Ternary neural networks with

fine-grained quantization. arXiv preprint arXiv:1705.01462
72. Deng L, Jiao P, Pei J, Wu Z, Li G (2018) Gxnor-net: Training deep neural networks with ternary

weights and activations without full-precision memory under a unified discretization framework.
Neural Netw 100:49–58

73. Wang P, Cheng J (2017) Fixed-point factorized networks. pp 4012–4020
74. Wen W, Xu C, Yan F, Wu C, Wang Y, Chen Y, Li H (2017) Terngrad: ternary gradients to reduce

communication in distributed deep learning. In: Advances in neural information processing systems,
pp 1509–1519

75. Muller LK, Indiveri G (2015) Rounding methods for neural networks with low resolution synaptic
weights. arXiv preprint arXiv:1504.05767

76. Polino A, Pascanu R, Alistarh D (2018) Model compression via distillation and quantization. arXiv
preprint arXiv:1802.05668

77. Koster U, Webb T, Wang X, Nassar M, Bansal AK, Constable W, Elibol O, Gray S, Hall S, Hornof
L, et al (2017) Flexpoint: an adaptive numerical format for efficient training of deep neural networks.
In: Advances in neural information processing systems, pp 1742–1752

78. Cai Z, He X, Sun J, Vasconcelos N (2017) Deep learning with low precision by half-wave gaussian
quantization. pp 5918–5926

79. Mishra A, Nurvitadhi E, Cook JJ, Marr D (2017) Wrpn: wide reduced-precision networks. arXiv
preprint arXiv:1709.01134

80. Denil M, Shakibi B, Dinh L, De Freitas N et al (2013) Predicting parameters in deep learning. In:
Advances in neural information processing systems, pp 2148–2156

81. Hanson SJ, Pratt LY (1989) Comparing biases for minimal network construction with back-
propagation. In: Advances in neural information processing systems, pp 177–185

82. LeCun Y, Denker JS, Solla SA (1990) Optimal brain damage. In: Advances in neural information
processing systems pp 598–605

83. Hassibi B, Stork DG (1993) Second order derivatives for network pruning: Optimal brain surgeon.
In: Advances in neural information processing systems, pp 164–171

84. Hassibi B, Stork DG, Wolff GJ (1993) Optimal brain surgeon and general network pruning. In: IEEE
international conference on neural networks. IEEE, pp 293–299

85. Srinivas S, Babu RV, Data-free parameter pruning for deep neural networks. arXiv preprint
arXiv:1507.06149

86. Han S, Pool J, Tran J, Dally W (2015) Learning both weights and connections for efficient neural
network. In: Advances in neural information processing systems. pp 1135–1143

87. Han S,MaoH, DallyWJ (2015) Deep compression: Compressing deep neural networks with pruning,
trained quantization and huffman coding. arXiv preprint arXiv:1510.00149

88. Molchanov P, Tyree S, Karras T, Aila T, Kautz J (2016) Pruning convolutional neural networks for
resource efficient inference. arXiv preprint arXiv:1611.06440

123

http://arxiv.org/abs/1611.01600
http://arxiv.org/abs/1601.06071
http://arxiv.org/abs/1510.03009
http://arxiv.org/abs/1605.04711
http://arxiv.org/abs/1612.01064
http://arxiv.org/abs/1705.01462
http://arxiv.org/abs/1504.05767
http://arxiv.org/abs/1802.05668
http://arxiv.org/abs/1709.01134
http://arxiv.org/abs/1507.06149
http://arxiv.org/abs/1510.00149
http://arxiv.org/abs/1611.06440

720 Annals of Data Science (2022) 9(4):695–722

89. Anwar S, Hwang K, SungW (2017) Structured pruning of deep convolutional neural networks. ACM
J Emerg Technol Comput Syst (JETC) 13(3):32

90. Narang S, Elsen E, Diamos G, Sengupta S (2017) Exploring sparsity in recurrent neural networks.
arXiv preprint arXiv:1704.05119

91. Lin S, Ji R, Li Y, Wu Y, Huang F, Zhang B (2018) Accelerating convolutional networks via global &
dynamic filter pruning. In: IJCAI, pp 2425–2432

92. Molchanov P, Mallya A, Tyree S, Frosio I, Kautz J (2019) Importance estimation for neural network
pruning. pp 11264–11272

93. Hinton GE, Srivastava N, Krizhevsky A, Sutskever I, Salakhutdinov RR (2012) Improving neural
networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580

94. Wan L, Zeiler M, Zhang S, Le Cun Y, Fergus R (2013) Regularization of neural networks using
dropconnect. pp 1058–1066

95. Ba J, Frey B (2013) Adaptive dropout for training deep neural networks. In: Advances in Neural
Information Processing Systems, pp 3084–3092

96. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R (2014) Dropout: a simple way
to prevent neural networks from overfitting. J Mach Learn Res 15(1):1929–1958

97. Poernomo A, Kang D-K (2018) Biased dropout and crossmap dropout: learning towards effective
dropout regularization in convolutional neural network. Neural Netw 104:60–67

98. Collins MD, Kohli P (2014) Memory bounded deep convolutional networks. arXiv:1412.1442
99. Zhou H, Alvarez JM, Porikli F (2016) Less is more: towards compact cnns. In: European Conference

on Computer Vision. Springer, pp 662–677
100. Liu J, Musialski P, Wonka P, Ye J (2013) Tensor completion for estimating missing values in visual

data. IEEE Trans Pattern Anal Mach Intell 35(1):208–220
101. Ma R, Miao J, Niu L, Zhang P (2019) Transformed �1 regularization for learning sparse deep neural

networks. Neural Netw 119:286–298
102. Alvarez JM, Salzmann M (2016) Learning the number of neurons in deep networks. In: Advances in

neural information processing systems, pp 2270–2278
103. Lebedev V, Lempitsky V (2016) Fast convnets using group-wise brain damage, pp 2554–2564
104. Yoon J, Hwang SJ (2017) Combined group and exclusive sparsity for deep neural networks. In:

Proceedings of the 34th international conference on machine learning-volume 70, JMLR. org, pp
3958–3966

105. Li X, Grandvalet Y, Davoine F (2019) A baseline regularization scheme for transfer learning with
convolutional neural networks. Pattern Recogn 98:107049

106. Aslan Ö, Zhang X, Schuurmans D (2014) Convex deep learning via normalized kernels. In: Advances
in neural information processing systems, pp 3275–3283

107. BengioY, RouxNL,Vincent P, DelalleauO,Marcotte P (2006) Convex neural networks. In: Advances
in neural information processing systems, pp 123–130

108. Aghasi A, Abdi A, Nguyen N, Romberg J (2017) Net-trim: convex pruning of deep neural networks
with performance guarantee. In: Advances in neural information processing systems, pp. 3177–3186

109. Gu J, Wang Z, Kuen J, Ma L, Shahroudy A, Shuai B, Liu T, Wang X, Wang G, Cai J et al (2018)
Recent advances in convolutional neural networks. Pattern Recogn 77:354–377

110. Yu J, Rui Y, Tao D (2014) Click prediction for web image reranking using multimodal sparse coding.
IEEE Trans Image Process 23(5):2019–2032

111. Glorot X, Bordes A, Bengio Y (2011) Deep sparse rectifier neural networks, pp 315–323
112. Fan J, Li R (2001) Variable selection via nonconcave penalized likelihood and its oracle properties.

J Am Stat Assoc 96(456):1348–1360
113. Zhang C-H et al (2010) Nearly unbiased variable selection under minimax concave penalty. Ann Stat

38(2):894–942
114. Zhang T (2009) Multi-stage convex relaxation for learning with sparse regularization. In: Advances

in Neural Information Processing Systems, pp 1929–1936
115. Zou H, Hastie T (2005) Regularization and variable selection via the elastic net. J R Stat Soc: Ser B

(Stat Methodol) 67(2):301–320
116. Mazumder R, Friedman JH, Hastie T (2011) Sparsenet: Coordinate descent with nonconvex penalties.

J Am Stat Assoc 106(495):1125–1138
117. Hoyer PO, Non-negative matrix factorization with sparseness constraints. J Mach Learn Res 5(9):1
118. Repetti A, Pham MQ, Duval L, Chouzenoux E, Pesquet J-C (2014) Euclid in a taxicab: Sparse blind

deconvolution with smoothed �1/�2 regularization. IEEE Signal Process Lett 22(5):539–543

123

http://arxiv.org/abs/1704.05119
http://arxiv.org/abs/1207.0580
http://arxiv.org/abs/1412.1442

Annals of Data Science (2022) 9(4):695–722 721

119. Krishnan D, Tay T, Fergus R (2011) Blind deconvolution using a normalized sparsity measure. In:
CVPR 2011. IEEE, pp 233–240

120. Hurley N, Rickard S (2009) Comparing measures of sparsity. IEEE Trans Inf Theory 55(10):4723–
4741

121. Yang H, Wen W, Li H (2019) Deephoyer: Learning sparser neural network with differentiable scale-
invariant sparsity measures. arXiv preprint arXiv:1908.09979

122. Esser E, Lou Y, Xin J (2013) A method for finding structured sparse solutions to nonnegative least
squares problems with applications. SIAM J Imag Sci 6(4):2010–2046

123. Yin P, Lou Y, He Q, Xin J (2015) Minimization of �1−2 for compressed sensing. SIAM J Sci Comput
37(1):A536–A563

124. Lou Y, Yin P, He Q, Xin J (2015) Computing sparse representation in a highly coherent dictionary
based on difference of �1 and �2. J Sci Comput 64(1):178–196

125. Nikolova M (2000) Local strong homogeneity of a regularized estimator. SIAM J Appl Math
61(2):633–658

126. Zhang S, Xin J (2018) Minimization of transformed �1 penalty: closed form representation and
iterative thresholding algorithms. arXiv preprint arXiv:1412.5240

127. Zhang S, Xin J (2017) Minimization of transformed l1 penalty: Closed form representation and
iterative thresholding algorithms. Commun Math Sci 15(2):511–537

128. Xue F, Xin J (2019) Learning sparse neural networks via ell0 and transformed ell1 by a relaxed
variable splitting method with application to multi-scale curve classification. In: World congress on
global optimization. Springer, pp 800–809

129. Xu Z, Zhang H, Wang Y, Chang X, Liang Y (2010) l1/2 regularization, Science China. Inf Sci
53(6):1159–1169

130. Chartrand R, Staneva V (2008) Restricted isometry properties and nonconvex compressive sensing.
Inverse Problems 24(3):035020

131. Krishnan D, Fergus R (2009) Fast image deconvolution using hyper-laplacian priors. In: Advances
in neural information processing systems 1033–1041

132. Xu Z, Chang X, Xu F, Zhang H (2012) l1/2 regularization: a thresholding representation theory and
a fast solver. IEEE Trans Neural Netw Learn Syst 23(7):1013–1027

133. Xu ZX, Guo H-L,Wang Y, Zhang L (2012) Representative of l1/2 regularization among lq (0<q ≤ 1)
regularizations: an experimental study based on phase diagram. Acta Automatica Sinica 38(7):1225–
1228

134. Xu Z (2010) Data modeling: Visual psychology approach and l1/2 regularization theory, in: Proceed-
ings of the International Congress ofMathematicians 2010 (ICM 2010) (In 4 Volumes) Vol. I: Plenary
Lectures and Ceremonies Vols. II–IV: Invited Lectures. World Scientific, pp 3151–3184

135. Chartrand R, YinW (2008) Iteratively reweighted algorithms for compressive sensing. pp 3869–3872
136. Scardapane S, Comminiello D, Hussain A, Uncini A (2017) Group sparse regularization for deep

neural networks. Neurocomputing 241:81–89
137. Zhuang T, Zhang Z, Huang Y, Zeng X, Shuang K, Li X (2020) Neuron-level structured pruning using

polarization regularizer. Adv Neural Inf Process Syst 33:1
138. Toh K-C, Yun S (2010) An accelerated proximal gradient algorithm for nuclear norm regularized

linear least squares problems. Pac J Optim 6(615–640):15
139. Scheinberg K, Ma S, Goldfarb D (2010)Sparse inverse covariance selection via alternating lineariza-

tion methods. In: Advances in neural information processing systems, pp 2101–2109
140. Ravikumar P, Agarwal A, Wainwright MJ (2010) Message-passing for graph-structured linear pro-

grams: Proximal methods and rounding schemes. J Mach Learn Res 11:1043–1080
141. Boyd S, Parikh N, Chu E, Peleato B, Eckstein J et al (2011) Distributed optimization and statistical

learning via the alternating direction method of multipliers, Foundations and Trends®. Mach Learn
3(1):1–122

142. Do CB, Le QV, Foo C-S (2009) Proximal regularization for online and batch learning. pp 257–264
143. Jenatton R, Mairal J, Obozinski G, Bach FR (2010) Proximal methods for sparse hierarchical dictio-

nary learning
144. Combettes PL, Pesquet J-C (2011) Proximal splitting methods in signal processing. Fixed-point

algorithms for inverse problems in science and engineering. Springer, pp 185–212
145. Bui K, Park F, Zhang S, Qi Y, Xin J (2020) Nonconvex regularization for network slim-

ming:compressing cnns even more. Adv Vis Comput

123

http://arxiv.org/abs/1908.09979
http://arxiv.org/abs/1412.5240

722 Annals of Data Science (2022) 9(4):695–722

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

	A Survey for Sparse Regularization Based Compression Methods
	Abstract
	1 Introduction
	2 Compression for DNNs
	2.1 Low-Rank Decomposition
	2.2 Compact Filter Design
	2.3 Knowledge Distillation
	2.4 Quantization
	2.5 Sparse-Inducing Methods
	2.5.1 Pruning
	2.5.2 Dropout Methods
	2.5.3 Sparse Optimization

	3 Sparse Regularizers
	4 Optimization
	4.1 Proximal Algorithm
	4.1.1 Proximal Operator
	4.1.2 Proximal Gradient Algorithm
	4.1.3 Applied in Compression for DNNs

	4.2 Subgradient Based Method
	4.2.1 Subgradient
	4.2.2 Subgradient Descent

	4.3 Discussion

	5 Avenues for Future Research
	Acknowledgements
	References

