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Abstract
Because of the COVID-19 pandemic, most of the tasks have shifted to an online plat-
form. Sectors such as e-commerce, sensitivemulti-media transfer, online banking have
skyrocketed. Because of this, there is an urgent need to develop highly secure algo-
rithms which can not be hacked into by unauthorized users. The method which is the
backbone for building encryption algorithms is the pseudo-random number generator
based on chaoticmaps. Chaoticmaps aremathematical functions that generate a highly
arbitrary pattern based on the initial seed value. This manuscript gives a summary of
how the chaotic maps are used to generate pseudo-random numbers and perform mul-
timedia encryption. After carefully analyzing all the recent literature, we found that the
lowest correlation coefficient was 0.00006, which was achieved by Ikeda chaotic map.
The highest entropy was 7.999995 bits per byte using the quantum chaotic map. The
lowest execution time observed was 0.23 seconds with the Zaslavsky chaotic map and
the highest data rate was 15.367 Mbits per second using a hyperchaotic map. Chaotic
map-based pseudo-random number generation can be utilized in multi-media encryp-
tion, video-game animations, digital marketing, chaotic system simulation, chaotic
missile systems, and other applications.

Keywords Chaotic maps · Pseudo-random number generation · Image encryption ·
Audio encryption · Bifurcation diagram

1 Introduction

The COVID-19 pandemic has caused an exponential growth in the dependency on
internet sources. Due to this, a majority of the transactions take place online, which
makes online security for banking and e-commerce highly essential. Currently, there
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are multiple cryptographic algorithms that have been developed and have been effec-
tively deployed. Random number generation is the backbone of every cryptographic
algorithm [1]. Pseudo-random number generators are used in applications, such as
digital signatures, hashing, encryption, seed vector, One-Time Passwords (OTP), etc.
[2]. These pseudo-random number generators are also a type of deterministic gen-
erator where the output is dependent on the initial seed sequence and the design of
a generator [3]. These numbers are not truly random because if the initial value is
known, then the output can be completely predicted. There are two major categories
of random number generators, hardware random number generator, and software seed-
based random number generator [4]. In earlier times, random number generators were
used in electronic video games. Later on, their applications were further expanded
to simulators [5,6]. Now, random number generators are also used for cryptographic
applications [7]. Hardware random number generators generate numbers through a
physical process, such as on the basis of thermal noise or other external factors [8].
These types of generators are useful when non-reversible random numbers have to be
generated.

Figure 1 shows a hierarchical tree diagram of the recent developments in using
chaotic maps in non-linear dynamic systems, such as, a pseudo-random number gen-
erator and an encryptor. Pseudo-random number generators can be found in both
hardware and software. Most hardware implementations are done on FPGA, but there
are some microcontroller-based hardware implementations as well, that use Arduino
and Raspberry Pi. Encryption applications are mostly used for image ciphering [9],
with very few exceptions for audio. The dotted lines represent that there are various
other applications under linear dynamic systems and also under chaotic maps. But
these applications represented by dotted lines are not covered in the scope of this
paper.

Dynamic systems are the functions in mathematics that describe a point in geo-
metrical space with the help of time [10]. The simplest example of a dynamic system
could be a pendulum of a clock. A dynamic system has a state for a given time and can
be represented using a vector mathematical function with an appropriate state-space
model [11]. The evolution rule allows us to determine the next state of a dynamical
system using the current state and its behavior. Most of the dynamic systems are deter-
ministic [11], however, some systems generate stochastically random events, or their
complete description is unavailable to us. A dynamic system can be completely mod-
eled for predicting its future behavior by an analytical solution that is time dependant.
Dynamic systems can be further classified into two types, namely, linear dynamic
systems and non-linear dynamic systems [12]. A non-linear dynamic system is math-
ematically defined as a system whose output is not proportional to the changes made
in the input. Linear dynamic systems are the dynamic systems whose evaluation is a
linear function, i.e. changes in the output are linearly proportional to the changes in the
input [13]. Chaotic systems are a type of non-linear dynamic systems. Chaotic maps
are widely used in building pseudo-random number generators and in multimedia
encryption.

The data science field is growing day by day and hence there is a need to protect the
data. This data can be the personal information of the client or a sensor readout every
second. It is important to use pseudo-random number generators which are chaotic,
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Fig. 1 Hierarchical tree diagram of recent trends in applications of chaotic maps in non-linear dynamic
systems, such as, pseudo-random number generator and encryptor. Pseudo-random number generators are
implemented in hardware and software.Most of the hardware implementation is done on FPGAbut there are
somemicrocontroller-based hardware implementations also namely, Arduino and Raspberry Pi. Encryption
applications are majorly done for image ciphering and very few are done for audio

making it difficult for any pattern recognition algorithm to breakthrough. There are
some reports on the use of random numbers in the data science field, for example,
random projection scheme [14], random forest method [15], random sampling and
random variables [16]. The chaotic function-based pseudo-random number generator
is useful for avoiding data mining for unauthorized personnel [17,18]. Pseudo-random
number generators can also be used for encryption and decryption of IoT networks,
increasing their security. [19].

Soliman et al. [14] has developed a random projection scheme to improve security
in iris detection. The pseudo-random number generator using chaotic maps can be a
seed point to generate random projections.

2 Chaotic Maps

Chaotic maps are a field of study of mathematics, where dynamic systems produce
a random state which is absolutely disordered and appears irregular but is governed
by the initial seed conditions. Chaos theory explains the relationship between totally
appearing random chaotic outputs and underlying patterns that generate these outputs.
These patterns can be analyzed well if the interconnection of a generator is known.
These generators typically rely on a feedback loop, repeatability, self-similarity, and
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Fig. 2 Different chaoticmaps used for the application of pseudo-randomnumber generation andmultimedia
encryption

fractal behavior of the system. Figure 2 shows the different chaotic maps used for the
application of pseudo-random number generation and multimedia encryption.

There are two types of chaotic maps namely, continuous and discrete. These chaotic
maps can be complex or work with real numbers. Some chaotic maps can have up
to four dimensions. Most of the chaotic maps reported in the literature are of three
dimensions. Chaotic maps’ seed points can vary between 0 parameters up to 18 param-
eters. The most complex chaotic map reported in the literature is the polynom type-c
fractal map, which generates continuous real output with three dimensions and 18
seed parameters [36].
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To examine the chaotic parameter, range bifurcation diagrams are plotted. These
diagrams show the relationship between chaotic states and their corresponding control
parameters. Lyapunov exponent is the parameter the plays a heavy role in deciding
whether the chaotic map is useful in cryptography. This exponent shows high sensi-
tivity to a slight change in the seed parameters, such as initial conditions and control
parameters. The correlation coefficient allows us to determine whether the system has
any correlation with the initial parameters or behaves totally chaotic. If the correlation
coefficient is close to one, then the system is fully deterministic. If the correlation
coefficient is close to 0, complete chaotic behavior is ensured. There are four different
test suites that are generally used to evaluate the randomness of the pseudo-random
number generator. They are National Institute of Standards and Technology (NIST)
Special Publication (SP) 800-22, DIEHARD, ENT and TestU-01.

The mathematically simpler chaotic maps are popular e.g. Zig-zag reported by
Nejati [37]. The equation of Zig-zag map is as shown in Eqs. 1 to 3 for values of Xn

Varying between −1 to 1.

xn+1 = −m(xn + 2/|m|) (1)

xn+1 = mxn (2)

xn+1 = −m(xn − 2/|m|) (3)

Also another simpler map is sawtooth. The equation of Sawtooth Map is as shown
in Eq. 4

xn+1 = 2xn(mod1) (4)

Figure 3 shows the X-Y plots of different two-dimensional chaotic maps. Figure 3a
shows the X-Y plot of the Ikeda chaotic map as obtained by Stoyanov et al. [20].When
compared to the Hitzl-Zele and Henon chaotic maps, the Ikeda chaotic map has the
opposite properties. It can be seen that the Ikeda chaotic map has a half semicircular
pattern that is dominant On the left side of the X-Y plot. The map has an X-axis range
of −0.2 to 1.4 and a Y-axis range of −0.8 to 0.8. Figure 3b shows the Hitzl-Zele
chaotic map obtained by Kordov et al. [21]. The equations for Hitzl-Zele chaotic map
are as shown in Eqs. 5 to 7.

x(k + 1) = 1 + y(n) − z(k) − x2(k) (5)

y(k + 1) = a.x(k) (6)

z(k + 1) = b.x2(k) + z(k) − 0.5 (7)

The Hitzl-Zele map is a half semicircular pattern that is dominant on the right side
of the X-Y plot. The map has an X-axis range of −1 to +1.5 and a Y-axis range of
−0.2 to +0.3. Figure 3c shows the Henon chaotic map which was obtained by Suryadi
et al. [22]. This map has an X-axis range of−1.5 to +1.5 and a Y-axis range of−0.4 to
+0.4. The map displays a half semicircular pattern that dominates the right side of the
X-Y plot, similar to the Hitzl-Zele map. The plot shown in Fig. 3d is of the Tinkerbell
chaotic map that was obtained by Stoyanov et al. [23]. The Tinkerbell chaotic map
demonstrates the most chaotic behavior and makes an omnidirectional pattern on the
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Fig. 3 Two-dimensional X-Y plots of different chaotic maps. a It is observed that the Ikeda chaotic map
[20] has opposite characteristics as compared to the Hitzl-Zele and Henon chaotic maps. The Ikeda chaotic
map has a half semicircular pattern that is dominant on the left side of the X-Y plot. The map lies between
0.2 to 1.4 on the X-axis and−0.8 to 0.8 on the Y-axis. b The Hitzl-Zele chaotic map [21] is seen to be a half
semicircular pattern that is dominant on the right side of the X-Y plot. The map lies between −1 to +1.5
on the X-axis and −0.2 to +0.3 on the Y-axis. c The Henon chaotic map [22] lies between −1.5 to +1.5 on
the X-axis and −0.4 to +0.4 on the Y-axis. The map shows a half semicircular pattern that is dominant on
the right side of the X-Y plot, which is similar to that of the Hitzl-Zele map. d The Tinkerbell chaotic map
[23] shows the strongest chaotic behavior with an omnidirectional pattern. It lies between −1.2 to +0.4 on
the X-axis and −1.5 to +0.5 on the Y-axis. All four maps lie between −2 to +3 on the X and Y axes

X-Y plot. It ranges from −1.2 to +0.4 on the X-axis and from −1.5 to +0.5 on the
Y-axis. The Ikeda, Henon, Hitzl-Zele, and Tinkerbell chaotic maps all have values
ranging from −2 to +2.

2.1 Pseudo RandomNumber Generation Using Chaotic Maps

The first known pseudo-random number generator was proposed by John von Neu-
mann [38] back in 1946. The method is known as the middle square method. It
generates a poor-quality pseudo-random sequence but remains one of the important
milestones in the evolution of pseudo-random generators.

Figure 4a shows a generalized scheme for generating pseudo-random numbers
using a chaotic map. The chaotic series is generated using various types of chaotic
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Fig. 4 a Generalized scheme for pseudo-random number generation using a chaotic map. Different chaotic
maps are used to produce the chaotic series. These chaotic maps take the input in the form of control
parameters and initial conditions and produce a chaotic function. A chaotic series adjustment is required
sometimes where a chaotic map becomes periodic or deterministic. A converter to binary sequence is
used to produce final pseudo-random 1-bit output based on decisions such as comparison or subtraction,
minima, maxima, etc. bA sample bifurcation diagram of a logistic map showing different distances between
consecutive bifurcations denoted by L1, L2, L3, etc. It can be observed that the ratio of these distances
Li

Li+1
were found to be constant and represented by a term called Feigenbaum constant

maps. These chaotic maps take control parameters and initial conditions as input and
produce a chaotic function. Sometimes, when a chaotic map becomes periodic or
deterministic, a chaotic series adjustment is required. A binary sequence converter
is used to generate the final pseudo-random 1-bit output based on decisions such
as comparison, subtraction, minima, maxima, and so on. Figure 4b shows a sample
logistic map bifurcation diagram showing different distances between consecutive
bifurcations denoted by L1, L2, L3, and so on. It can be seen that the ratio of these
distances was discovered to be constant and is represented by a term known as the
Feigenbaum constant, which is given by Li

Li+1
.

Cang et al. [39] designed a pseudo-random number generator based on the Sprott
system. They have used Finite Precision Period Calculation (FPPC) to calculate the
repetition rate. They also proved how a fix-point notation can avoid the degradation
of chaotic maps because of precision. To show the validation of their pseudo-random
generator, they have used the NIST statistical test suite. They tested their random

123



32 Annals of Data Science (2024) 11(1):25–50

numbers for the randomness of a scrambled sequence, correlation, key-space, entropy,
histogram, linear complexity, and sensitivity of the key.

Lv et al. [40] have given different shortcomings of C-programming in pseudo-
random number generation. They have also proposed a method to enhance the
versatility of the random number.

Krishnamoorthi et al. [33] have used a turbulence-padded chaotic map to gener-
ate the pseudo-random numbers. Their method increased the periodicity and chaotic
behavior. The proposed method was tested with the NIST SP 800-22 statistical test
suite. They found that their proposed pseudo-random number generator increased 3.6
% of the key space and 5 % computing performance over existing chaotic Pseudo-
Random Number Generators (PRNG). Figure 10a shows the operational model of the
turbulent padded chaotic map. Here, a logistic map is used to create the root chaotic
map of the turbulence padded chaotic map arrangement. The equation of LogisticMap
is as shown in Eq. 8

xn+1 = r xn(1 − xn) (8)

It is the first case in which lower-dimensional chaotic maps are more computationally
efficient than higher-order chaotic maps.

As shown in Fig. 3bKordov et al. [21] have usedHitzl-Zele chaoticmap to produce a
pseudo-random number that decides a particular pixel in which a secret message needs
to be hidden. They used Least Significant Bit (LSB) steganography in this application.
The maximum Peak Signal-to-Noise Ratio (PSNR) value obtained by using their
method was 81.22, a mean square error of 0.0005, and an entropy of 7.9999 bits/byte.

Stoyanov et al. [20] have shown an implementation of a chaotic map-based pseudo-
random number generator on an Arduino platform. They called this systemCHAOSA.
As shown in Figure 3a they have used the Ikedamapwithμ = 0.701. Themathematical
equation for the Ikeda map is given by Eq. 9.

zn+1 = A + Bzne
i
(|zn |2+C

)
(9)

They found out that their entropy was 7.999 bits/byte. They tested their system for
a data length of 250 million bytes and found that the χ2 value obtained by them was
288.88, which was 11 % better. Their correlation coefficient was 0.00006. They tested
the randomness of the system on the DIEHARD and NIST SP 800-22 test suite.

Their team has also developed another pseudo-random number generator using two
Tinkerbell maps [23].

The equation of Tinker-bell Map is as shown in Eq. 10

xn+1 = x2n − y2n + axn + byn (10)

They have tested their number generator with NIST, DIEHARD, and ENT test
suite. Figure 3d shows the Tinkerbell map implemented on C++. They found they
could reach a speed of 0.49 Mbits/sec, which was larger than Yang et al. [41]. They
produced a thousand sequences of 1 million bits and their entropy could reach up to
7.999 bits/byte and χ2 could reach up to 240.50, which gets better by 73 % with time.
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Moysis et al. [25] has developed a pseudo-random bit generator usingmultiple digit
comparison. They have used multiple maps to produce the pseudo-random bit after
comparing the results of each bit generated from all the maps. The majorly used maps
were a logistic map, sine map, Renyi map, Chebyshev map, cubic map, logistic may
map, coupled sine map, sine-sinh-sine map, and finally cubic logistic map.

The equation of Cubic map is as shown in Eq. 11

ax3 + bx2 + cx + d = 0 (11)

The equation of Chebyshev Trignometric Map is as shown in Eq. 12

xn(θ) = COS(nX ARCCOSθ) (12)

The equation of Renyi map is x(n+1)=βx(mod1), where we assume that β is greater
than 1.

The bifurcation map is as shown in Fig. 6a. They also used the Lyapunov exponent
of all the mentioned maps. They could reach the entropy of 7.9968 bits/byte. As an
application of their pseudo-random sequence, they have shown QR code generation
and image encryption.

Akhshani et al. [26] has developed a pseudo-random number generator based on
the quantum chaotic map. The mathematical equation of the quantum chaotic map is
given by Eqs. 13 to 15.

xn+1 = r
(
xn − |xn|2

)
− r yn (13)

yn+1 = −yne
−2β + e−βr

[(
2 − xn − x∗

n

)
yn − xnz

∗
n − x∗

n zn
]

(14)

zn+1 = −zne
−2β + e−βr

[
2

(
1 − x∗

n zn − 2xn yn − xn
)]

(15)

They have used different values of the controlling parameter r to produce different
bifurcation diagrams of the quantum map as shown in Fig. 7c–f. they have also shown
a comparison of different non-periodic chaotic maps where they found Henon map
with B = 0.3 and Rossler map with A and B = 0.1. The equation of Rossler Map are
as shown in Eqs. 16, 17 and 18

dx

dt
= −y − z (16)

dy

dt
= x + ay (17)

dz

dt
= b + z(x − c) (18)

Where, the most commonly used values of a, b, and c are 0.1, 0.1, and 14 respectively.
The bifurcation diagrams for the Henonmap are as shown in Fig. 6b and for Rossler

map is as shown in Fig. 6d. They achieved an entropy of 7.999995 with a χ2 value
of 255.19 and a correlation coefficient of 0.0001. To validate the results, they have
shown NIST SP 800-22 test suite, DIEHARD test suite, ENT and TestU-01.
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Fig. 5 a A generalized scheme to obtain image encryption with the help of chaotic maps. An input image
is fed to the channel splitter that converts a 3-dimensional image into 1-dimensional series of numbers.
This is achieved by converting RGB channels as separate color channels and then splitting each row and
appending them in a single sequence. A secret key is also provided to decide the type of chaotic map
and initial conditions. Once the chaotic map is ready, the confusing sequence acts as per the chaotic map
encrypting the image and consecutive confusion and diffusion cycles are repeated for N rounds to produce
the final encrypted image. The number of rounds is also sometimes determined by the secret key. bMedical
chest x-ray gray-scale image fed as an input to the image encrypter. c RGB input image of vegetables fed
to the encrypter. d Histogram of the gray-scale medical input image [24]. e Color histogram of the RGB
vegetables input image [24]. f Encrypted output image of the gray-scale medical image [24]. g Encrypted
output image of the RGB vegetable image [24]. h Histogram of the gray-scale medical image showing that
all pixels have been converted to the same value [24]. i Histogram of RGB vegetables image showing that
all pixels have been converted to the same value [24]

Alawida et al. [27] have shown different applications of digital cosine chaotic map.
The bifurcation diagram of a cosine map is as shown in Fig. 6c. The equation of cosine
map is as shown in Eq. 19.

xn+1 = G(F(xn))) (19)

They could achieve a speed of 2.11 Mbits/sec. They generated pseudo-random
numbers to extract 8-Bit integers directly from the chaotic system.

CICEK et al. [32] has developed amicrocontroller-based random number generator
using discrete chaotic map. They implemented Lozi, Tinkerbell, and Barnsley Fern’s
discrete chaotic maps onto an Arduino microcontroller.

The equation of Lozi Map are as shown in Eqs. 20 and 21

xn+1 = 1 − α|xn| + yn (20)

yn+1 = βxn (21)
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Fig. 6 Bifurcation map for a Cubic logistic map [25], b Henon map [26], c Cosine map [27] and d Rossler
map [26]. The control parameter of the chaotic map dictates the chaotic behavior. Here the control parameter
is given by r and the control states are shown by X. As the value of the controlling parameter r increases the
bifurcation diagrams show an expansion in the output values that they take (X) for the cubic logistic map
and Rossler map, whereas, the Henon and Cosine maps remain flat

Fig. 7 aAnalysis of lemniscate chaoticmaps behaviour bifurcation diagram shown between r is 0 to 20 [28].
Complete chaotic behaviour is seen with fractal at around r = 1. b State-space trajectory of X(n) generated
with by PRNGChaotic Sequence (CS) [29]. Bifurcation diagram of different values of the control parameter
r ranging from 3.85 - 3.99 of a quantum map [26]. At r = 3.85 c shows complete bifurcation till β = 4 and
then becomes non random. At r = 3.88 d shows a complete random behaviour with fractal around β = 4.
At r= 3.93 e a flat bifurcation diagram is seen and at r =3.99 (f) another fractal behaviour around β = 5.5 is
seen
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Fig. 8 a Illustration diagram for encryption and decryption of a gray scale image (Lenna) as done by Hamza
et al. [30]. The plain image is fed to Algo1. Here, the Algo 1 is based on 2D Zaslavsky chaotic map and
corresponding encryption keys I1, I2, I3, I4, I5 are used to produce the encrypted image. I2 is produced
from secret key and plain image and I3 to I5 transformation is looped 5 times. The entire decryption process
is a reverse of an encryption process and C2, C3, C4, C5 are the decryption matrices. The transformation
from C2 to C4 is looped 4 times. Hence, the proposed encryption mechanism with the Zaslavsky map is
symmetric and reversible. b The plain image is passed through high-efficiency scrambling, image rotation,
and random order substitution four times. The decision on random order is as per the secure key and LSC
map. Finally, the cipher image is produced as per the LSC chaotic sequence [31]

The equation of Barnsley-fern Map are as shown in Eq. 22

f (x, y) = [ab; cd][xy] + [e f ] (22)

where, a, b, c, d, e, and f are coefficients of the equations.
Figure 9a generalized flow chart of microcontrollers software implementation. The

first step was to load the initial settings and chaotic map initial seeds into the micro-
controller. The chaotic map parameters are then determined, and the data is transferred
to a computer via a serial to USB port. The chaotic map is used to calculate the next
values based on the current value. The current values are then updated, and the pro-
cess is repeated. Figure 9b is the measurement setup for a random number generator
based on a microcontroller. Here, a computer-based oscilloscope is used to perform
the measurement (analog discovery). The Barnsley Fern discrete chaotic map in X-Y
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Fig. 9 a Flow diagram ofmicrocontroller software implementation by Cicek et al. [32]. Themicrocontroller
is initialized with initial settings and chaotic map initial seeds. The chaotic map parameters are then found
out, and the data is transferred via serial to USB port onto a computer. Based on the current, the next values
are calculated as per the chaotic map. Further, the current values are updated, and the process continues. b
Measurement setup for microcontroller-based random number generator. The measurement is done via a
computer-based oscilloscope (analog discovery). c Barnsley Fern discrete chaotic map represented in X-Y
dimension and implemented on Matlab. d Signal generated at the output of the random number generator
with logic 0s and 1s. e Microcontroller output results for Barnsley Fern discrete chaotic map implemented
on Arduino

dimension, implemented inMatLab is as shown in Fig. 9c. Figure 9d shows the output
signal made up of logic 0s and 1s generated at the output of the random number gen-
erator. Results of microcontroller output for the Barnsley Fern discrete chaotic map
implemented on Arduino are as shown in Fig. 9e.

Avarouglu et al. [35] has designed a pseudo-randomnumber generator usingArnold
Cat map. The representation of an Arnold Cat map is as shown in Eq. 23.

� : (x, y) → (2x + y, x + y)mod1 (23)

They have shown the implementation of bothArnoldCatmap 1 andArnoldCatmap
2. Their correlation coefficient was as low as 0.06. Figure 10d shows the Arnold Cat
map. The map that resembles a cat’s face is transformed into a completely chaotic map
using translation, rotation, and scaling operations, as well as the modulo 1 operator.

Yu et al. [42] developed a five-dimensional hyperchaotic four-wing memristive
system for the generation of pseudo-random numbers. They have used Field Pro-
grammable Gate Array (FPGA) to implement their PRNG. The initial simulations
of FPGA were done on VIVADO-2018.3 and then synthesized on ZYNQ-XC7Z020.
They used 16 shift registers and 15 levels XOR chains in their post-processing. Their
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Fig. 10 a Operational model of the turbulent padded chaotic map as shown by Krishnamoorthi et al. [33].
Here a logistic map is used to form the root chaotic map of the arrangement of turbulence padded chaotic
map. It’s the first case showing how the lower dimensional chaotic maps can be proved computationally
efficient than higher-order chaotic maps. bDouble chaotic image encryption process used by Pan et al. [34].
Here the chaotic sequence generator 1 and chaotic sequence generator 2 are compared to produce a double
chaotic random sequence generator. The output of the generator is fed to the encryption block where the
clear image gets encrypted into a ciphered image, which is then used for information transfer. A similar
double chaotic map is used for decryption, ensuring the system to be symmetric at both ends. The chaotic
numbers from both the generators are XORed and one previous state is further XORed and finally, modulo
N operation was carried to produce a confusing output. c True random number generator using Henon and
logistic map as shown by Suryadi et al. [22]. The process employs a Sample and Hold (S and H) block,
which receives the sampling clock. The output of the S and H block is fed to a 2D non-linear functional
block, which was the first chaotic system implemented with the Henon map. The Henon map output is
then fed into a 1D non-linear functional block that is a logistic map, and the final output is compared to
a threshold. If the value exceeds the threshold, logic 1 is produced at the comparator’s output, otherwise
logic 0 is produced. d Arnold Cat map used by Avarouglu et al. [35]. Here the map that looks similar to the
face of a cat is transformed into a completely chaotic map using translation rotation and scaling operations
along with modulo 1 operator

PRNG could reach a maximum operating frequency of 138.33 MHz with 15.367
Mb/sec. To test their results, they have also used NIST 800.22 statistical standards.

Dridi et al. [29] have recently published an FPGA-based design that implemented
PRNG using a chaotic sequence they have used the Spartan-6 board. They have Side-
channel AttacK User Reference Architecture - G (SAKURA-G) to implement the
pseudo-random numbers on FPGA hardware using VHDL. Their produced state space
trajectory for X(n) is as shown in Fig. 7b. They achieved a correlation coefficient of
0.0064.

Saber et al. [28] have used a low-power PNRG based on the Lemniscate Chaotic
Map (LCM). The equation of Lemniscate Map is as shown in Eq. 24

√
(x − a)2 + y2

√
(x + a)2 + y2 = a2. (24)
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The bifurcation diagram is as shown in Fig. 7a. Fractal behaviour is seen up to r = 1.
They have used a Spartan-6 FPGA board to implement their PRNG. They achieved
an almost 48 % reduction in resource consumption and 34.6 % reduction in power.

2.2 True RandomNumber Generator Using Chaotic Map

Suryadi et al. [22] has developed a true random number generator based on Henon
and logistic map. The Henon map is represented by Eq. 25 and the logistic map is
represented by Eq. 26.

xn+1 = 1 − axn
2 + yn

yn+1 = bxn (25)

xn+1 = r xn (1 − xn) (26)

The Henon map used by them is shown in Fig. 3c plotted in X-Y dimension with
10000 iterations. They designed a totally random number generator and simulated
using LabView. Their proposed design is as shown in Fig. 10c. That uses sample and
hold block that receives the sampling clock and feeds that information to 2D non-
linear functional block which is the first chaotic system implemented with Henon
map. The output of the Henon map is fed to 1D non-linear functional block, which is
a logistic map and the final output is compared with a threshold. If the value exceeds
the threshold, logic 1 is produced at the output of the comparator and 0 otherwise.
Their entropy was 0.9998.

Recently, Nannipieri et al. [43] developed a true random number generator based
on Fibonacci-Galois Ring Oscillators. They implemented the proposed methodology
on FPGA. They could achieve a throughput of 400Mbps and achieved entropy of
0.995 bytes per byte. They used 190 registers to implement the proposed true random
number generator. Similar work was reported in 2019 by Demir et al. [44] but, they
required 1115 gates and 4.811 mWatt of power consumption.

Wu and his team designed true random number generators based on semiconductor
super-lattice chaos and further implemented it [45]. They could achieve a maximum
bit rate of 300 Mbps for generating random bits. Wu and his team implemented the
proposed mechanism using FPGA.

The traditional method of TRNG can it be oscillator-based or thermal noise based is
limited to a few hundreds of bits per second wheres as the proposed methods like Wu
takes advantage of high-speed semiconductor super-lattice chaos which is upcoming
technology. Researchers may explore the way to generate RNGs at a faster rate, which
is the current research gap.
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2.3 Multimedia Encryption

Image Encryption Using Chaotic Maps

Figure 5a shows a generalized scheme for obtaining image encryption using chaotic
maps. A 3-dimensional image is fed into the channel splitter, which converts it into a
1-dimensional series of numbers. This is accomplished by converting RGB channels
to separate color channels, then splitting and appending each row in a single sequence.
In addition, a secret key is provided to determine the type of chaotic map and initial
conditions. Once the chaotic map is complete, the confusing sequence encrypts the
image in accordance with the chaotic map, and successive confusion and diffusion
cycles are repeated for N rounds to produce the final encrypted image. In certain cases,
the secret key can also influence the number of rounds. Koppu et al. [24] has developed
a fast chaotic cryptography-based image encryption system. They have used a Hybrid
ChaoticMagicTransform (HCMT) to produce the encrypted image from the secret key.
They achieved a correlation of 0.0012 using their HCMT, which is a combination of
Lanczos algorithm with Chaotic Magic Transform (CMT). Their result outperformed
the existing CMT method used by Hua et al. [46] having a correlation coefficient of
0.042 and 3D chaotic method used by Chen et al. [47] having a correlation coefficient
of 0.014. The images depicted in Fig. 5b and c, show the images of a gray-scalemedical
chest x-ray and RGB vegetables. These images were used by Koppu et al. [24] and
were given as input to an image encryption system. Figure 5d shows the histogram
obtained from the input gray-scale medical image depicting the different pixel values.
Figure 5e shows the color histogram obtained from the input RGB vegetable image
depicting the different R,G,B pixel values. From Fig. 5f we can observe the encrypted
output image of the gray-scale medical image and Fig. 5g is the encrypted output
image of the RGB image obtained from the chaotic system. Figure 5h and (i) depict
the histograms obtained from the output encrypted images, demonstrating that all the
pixels of the input images have been converted to the same value, thus encrypting it
entirely.

Gupta et al. [48] have designed an image encryption scheme using a reconfigurable
pseudo-randomnumber generator. Their PRNGwas dependent on the 4Dhyperchaotic
system. They implemented the PRNG on Zynq (XC7Z045) FPGA board sing Vertix5
and Verilog-HDL. For analysis, they used the Matlab tool and NIST test suite. Their
hardware can operate at 79.1 MHz with a data rate of 1898.4 Mb/sec. The memory
utilization of the Zynq board was up to 1.77 % max using S-box encryption.

Hua et al. [31] have designed a cosine-transform-based chaotic system for image
encryption.Theyhaveused an encryption schemebasedonhigh-efficiency scrambling.
They could achieve a correlation coefficient of 0.000181. Figure 8b shows the Logistic
Sine Cosine-Image Encryption Scheme (LCS-IES) that they have used. The plain
image is processed four times using high-efficiency scrambling, image rotation, and
random order substitution. The random order is determined by the secure key and the
LSC map. Finally, the LSC chaotic sequence is used to generate the cipher image.

Tang et al. [49] used double spiral scans and chaotic maps for encrypting the image.
They have divided the image into an overlapping box of pixels and then used a double
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spiral scan to scramble it. The start point of a double spiral scan was selected using
Henon chaotic map. They could execute the entire encryption in 2.79 seconds.

Deng et al. [50] used chaotic mapping for digital image encryption using a scram-
bling algorithm called XZQ. They have used chaos-Add Image Feature (AIF) to
perform encryption. They could achieve encryption in 1.2157 seconds.

Hamza et al. [30] have designed an image encryption algorithm based on Zaslavsky
chaotic map. The Zaslavsky chaotic map is represented by Eqs. 27 and 28.

xn+1 = [xn + v (1 + μyn) + εvμ cos (2Πx n)] (mod1) (27)

yn+1 = e−γ (yn + εcos (2Πx n)) (28)

Their entropy could reach up to 7.9998 and correlation coefficient of 0.0002. To
verify the quality of the encryption, they performed theNumber ofChangingPixelRate
(NPCR) test and the Unified Averaged Changed Intensity (UACI) test. The encryption
time of their method was about 0.23 seconds. Figure 8a shows the diagram for the
encryption and decryption of a gray scale Lenna image. The plain Lenna image is
fed to the Algo 1, which is based on a 2D Zaslavsky chaotic map. The encrypted
image is produced using the corresponding encryption keys I1, I2, I3, I4, and I5. I2 is
created by combining a secret key and the plain image, and the I3 to I5 transformation
is repeated five times. The entire decryption process is the inverse of the encryption
process, and the decryption matrices are C2, C3, C4, C5. The transformation from C2
to C4 is repeated four times. As a result, the proposed encryption mechanism based
on the Zaslavsky map is symmetric and reversible.

Pan et al. [34] designed a double logistic chaoticmap for the production of encrypted
image. They have used both color and gray scale images and shown that the histograms
are flat for the encrypted image. Their correlation coefficient was 0.0013 and entropy
was in the range of 7.98. Figure 10b shows the image encryption process using a
double chaotic map. Here, the chaotic sequence generators 1 and 2 are compared to
create a double chaotic random sequence generator. The generator’s output is fed into
the encryption block, where the clear image is encrypted into a ciphered image, which
is then used for data transfer. For decryption, a similar double chaotic map is used,
ensuring that the system is symmetric at both ends. The chaotic numbers from both
generators are XORed, and one previous state is further XORed followed by a modulo
N operation to produce a confusing output.

Recently, Kari et al. [51] have developed a hybrid chaotic map to encrypt gray
scale image files. They have Arnold’s cat maps perform confusion and diffusion done
by combining sine, logistic, and tent. These operations were then XORed to provide
extra security. Their proposed method achieved an entropy as high as 7.999978 and
a correlation coefficient as low as 0.0031, with the lowest execution time being 351
ms. Although they had good security, the combination of multiple maps results in a
higher execution time.

Audio Encryption Using Chaotic Maps

Adhikari et al. [52] have developed an audio encryption method based on Henon-Tent
chaotic pseudo-random number generator. They used 1D 16 bit uncompressed audio
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file as the input. The output of the chaotic Henon map and Tent map was XORed to
generate a secret key. The equation of Tent Map is as shown in Eq. 29

fμ = μmin(x, 1 − x) (29)

This secret was then XORed with the original input file to generate the ciphered audio
file.

Alemami et al. [53] have used the logistic chaotic map and sine chaotic map to
encrypt speech signals. Initially, they processed the input speech signal using Fast
Fourier Transform (FFT). A logistic function was then developed to create confusion
and a diffusion key was developed using the sine map. The equation of sine map is as
shown in Eq. 30.

xn+1 = A. sin(Π.(xn)) (30)

Lastly, the XOR operation was done on the outputs of the logistic map and sine
map to get the encrypted output. They tested the quality of encryption by finding out
the correlation coefficient, which was as low as 0.0047094.

Shah et al. [54] have developed a novel three-dimensional chaotic map and have
tested its use by applying it to encrypt audio. They have used the map to shuffle
around the data points of the input audio file to encrypt the original file. The input
audio of 15-bits is split into two sequences which are either 7-bit or 8-bit long. These
sequences are further substituted with 7 x 7 S-boxes generated by applying Mobius
transformation and then the chaos system is applied to it to scramble the media. XOR
operation is applied to the scrambled 7-bit and 8-bit to create the final encrypted file.
The correlation coefficient using their proposed method was as low as 0.0010 and the
entropy was as high as 15.9981. The execution time varied for files of different lengths
ranging from 6.341 seconds for a file of size 32,000 kb to 0.015 seconds for a file of
size 32 Kb. They achieved a Signal Noise Ratio as low as 8.4426 and a Mean Squared
Error as high as 3.5231×104. Although their system shows good security, it takes up
a lot of time when applied to large audio files. In an earlier study by Shah and his
team [55] they have applied the same technique of substituting the audio files with 8
X 8 S-boxes but, here they had applied the Henon chaotic map to create confusion.
A permutation network that uses the Henon chaotic map was developed to shuffle the
files in a piecewise manner. Their correlation coefficient was as low as 0.0014 and
entropy was as high as 7.9995.

3 Discussions

Table 1 shows encryption can be achieved in Mbits/second. The highest data-rate was
achieved by Alawida et al. [27] with 2.12 Mbits/second. On the other hand, the lowest
rate was by Liu et al. that could reach only up to 41.5 bits/second. Though this data
rate is completely dependent on the machine on which the computations are done,
typically 11th generation i9 processors with 32 GB RAM should be able to produce
at least a few Mbits/second. It can be seen from the table that the recent papers have
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Table 1 Different data rates at
which the random bits are
generated or the encryption was
carried at

Method Data-rate (Mb/sec)

Yu et al. [42] 15.367

Stoyanov et al. [23] 0.49

Hua et al. [56] 1.7119

Hu et al. [57] 0.0014

Huang et al. [58] 1.7558

Alawida et al. [27] 2.12

Liu et al. [59] 0.0000415

Fig. 11 Comparison of different hardware resources utilized while implementing different chaotic maps on
FPGA. a The number of registers and FPGA resources utilized in different methods. bOperating frequency
in MHz for different FPGA boards used for implementing chaotic maps. c Execution time in seconds for
differentmethods that implemented the pseudo-randomnumber generators using chaoticmaps.dParametric
analysis of chaotic maps used for image encryption applications. The ideal change in pixel rate should be
around 100% andmost of the methods in literature have already achieved 99%. The overall average change
in intensity was about 33

exponential growth in the number of data bits handled per second b the machine.
Whereas the earlier decade computations could handle only Kbits/second speed.

Table 2 shows the comparison of multiple methods reported in the literature that
use chaotic maps for the generation of pseudo-random numbers and/or using them
for encryption. The comparison was done on the basis of the correlation coefficient
and entropy. For a random number generator, the correlation coefficient between its
subsections ideally should be zero but for all practical reasons, it should be as low
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Table 2 Comparison of different methods of generating pseudo-random numbers using chaotic maps in
terms of their correlation coefficient and entropy. The correlation coefficient was found out to be less than
0.09 and the entropy was always found to be in the range of 7.9 and above

Method Correlation coefficient Entropy (bits/byte)

Dridi et al. [29] 0.0064 –

Saber et al. [28] 0.0014 7.9980

Hau et al. [31] 0.000181 7.9956

Tang et al. [49] 0.0857 7.990

Deng et al. [50] 0.0032 7.9931

Kordov et al. [21] – 7.9999

Koppu et al. [24] 0.0012 –

Hua et al. [46] 0.042 –

Chen et al. [47] 0.014 –

Suryadi et al. [22] – 7.9984

Stoyanov et al. [20] 0.00006 7.9999

Stoyanov et al. [23] – 7.999

Moysis et al. [25] – 7.9968

Belazi et al. [60] – 7.9963

Wang et al. [61] – 7.9971

Akhshani et al. [26] 0.0001 7.999995

Hamza et al. [30] 0.0002 7.9998

Norouzi et al. [62] 0.0001 –

Akhshani et al. [63] 0.0058 –

Akhavan et al. [64] 0.0031 –

Huang et al. [65] 0.0027 –

Wu et al. [66] 0.002 –

Wang et al. [67] 0.0013 7.997

Xu et al. [68] 0.0094 –

Norouzi et al. [69] 0.0078 –

Pan et al. [34] 0.0013 7.98

Avarouglu et al. [35] 0.06 –

as possible. There was a wide range of correlation coefficients reported in literature
highest being 0.0857 by Tang et al. [49] and the lowest being 0.00006 by Stoyanov et
al. [20]. Though there is a difference of three orders of magnitude between the highest
reported correlation coefficient and the lowest one. It is impressive that none of the
methods has even crossed 0.1 as a correlation coefficient (not even a 10 % matching).
This proves that chaotic maps are highly random. Thus making any chaotic map-based
pseudo-random number generator highly random in nature and extremely difficult to
break through the security provided by them. The ideal value of entropy should be
8 bits per byte. Most of the works in literature have reported an entropy value very
close to this ideal value. The highest value of entropy was reported was 7.999995 by
Akhshani et al. [26] and the lowest was reported was 7.98 by Pan et al. [34]. This
proves that chaotic maps result in systems that can generate an output with a lot of
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information packed into one byte. This makes chaotic map-based systems extremely
difficult to predict, hence making them suitable to be used for applications like OTP
generation and encryption. The Ikeda map (shown in Fig. 3a) used by Stoyanov et al.
[20] to develop a pseudo-random number generator has proven to be able to have a
decent entropy with a very low value of correlation coefficient simultaneously.

Figure 11 shows the comparison of various hardware resources used while imple-
menting various chaotic-map-based applications on an FPGA. Figure 11a depicts the
total number of registers and FPGA resources used in various methods. The operat-
ing frequency in MHz for various FPGA boards and the multipliers used in them for
chaotic map implementation are shown in Fig. 11b. Figure 11c shows the execution
time in seconds for various methods that used chaotic maps to implement pseudo-
random number generators. Karakaya et al. [70] have achieved the highest operating
frequency of 59.492MHzwith 165 registers, 311 FPGA resources, and 22multipliers,
which was the lowest number of hardware resources used in the reported literature.
Hamza et al. [30] achieved the lowest execution time of 0.23 seconds while using a
2D Zaslavsky chaotic map for image encryption. Figure 11d depicts the parametric
analysis of chaotic maps, which are used in image encryption applications. The ideal
change in pixel rate should be around 100 %, and most methods in the literature have
already succeeded in achieving around 99 %. Saber et al. [28] achieved the highest
change in pixel rate of 99.661 % and highest average intensity change of 33.448 using
the Lemniscate chaotic map for image encryption.

4 Applications of Chaotic Maps In Data Science

Chaotic maps are dynamic systems that are applied to different applications to further
create confusion in the original data or to encrypt it. But chaotic maps on their own
also generate very large amounts of random data due to their chaotic behaviors. The
large periodicity of these maps leads to the generation of millions and millions of bits
before the pattern could repeat. When a chaotic equation is plotted, it is evident that it
creates a lot of data along its random trajectory that makes it impossible for a hacker
to perform pattern analysis attacks.

Another very important application of chaotic maps in the data science field is
their ability to encrypt data. In today’s tech-savvy world, a vast majority of the data
is generated online, which has increased the need for this data to be encrypted to
provide security and prevent hacking. PRNGs developed using chaotic maps can also
be applied for the protection of big data. Because of the social networking sites,
millions of multimedia files are being generated every second, making chaotic map-
based PRNG a crucial tool for encrypting this data which is floating online. Thismakes
the study of chaotic maps and PRNG very important in the field of data science.

5 Summary

There are multiple ways of implementing pseudo-random number generators. Chaotic
map for this specific application seems the perfect choice as it has chaos in it by default.
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This paper briefly covers many ways of generating pseudo-random numbers using
different chaotic maps. Many of the reported literature work was not only limited
to a software implementation but further was implemented on traditional hardware
like FPGA or modern controllers like Arduino, Raspberry Pi. Few of the manuscripts
covered in this summary use the chaotic behavior of these mathematical chaotic maps
to encrypt the multimedia sources such as audio and image. Image encryption is a very
popular application of chaotic maps and people have gone on to implement it using
FPGA hardware as well. We found very few papers working on audio encryption or
even, for that matter, true random number generators using chaotic maps. There are
other linear and non-linear dynamic systems, but we did not cover all of them as they
were out of the scope of this manuscript. We tried to present a detailed review of how
to use a chaotic map for a pseudo-random number generator and a comparison of
different types of chaotic maps already being used.

There were different chaotic maps used to generate pseudo-random numbers. The
most commonly used chaotic map is the logistic type in which cubic, 2D,May logistic,
and B-exponential are some subtypes of logistic maps. Most of the maps were ranging
between−1 to+1 in all three dimensions and forms an arbitrary shape per iteration. The
Tinkerbell chaotic map is considered to be the most widespread in the X-Y dimension.
Whereas the Ikeda map has smooth curvatures and therefore can be implemented on
computationally low power systems such as Arduino. There were many trigonometry-
based maps, mainly sine and cosine. The biggest advantage of a cosine map is its
dependency on the initial value of the control parameter (r). Most of the chaotic maps
have subtypes in the real space and complex space domain, e.g. exponential map
belongs to the complex space domain and Tinkerbell map belongs to the real domain.
There are newly introduced hyperchaotic maps such as hyper-attractor, hyper-Rossler,
and hyper-Lorenz, which are the extension of their 3D equivalent in 4-dimension.

Typically reported literature shows the X-Y map that shows a pattern of the chaotic
map. The overlapping lines seen in these patterns are generally not from the previous
curve but a different curve and hence, even with slight overlapping, these chaotic
maps are truly non-predictable. Also, there are chances that lines looking completely
overlapped in 2D are far apart when seen in the 3D equivalent. It can be seen from
the literature that the range from which the chaotic map varies can be from -2 to +2
and hence truncating it at 1 by modulo operation helps determine the output bit of the
sequence. Typically, if the map value lies above 0.5, then logic bit ‘1’ is created and if
map value is below 0.5 logic bit ‘0’ is created. The best way to see the fractal pattern
of a chaotic map a bifurcation diagram is drawn. Where the ratio between consecutive
lengths for the point of bifurcation is the same for the fractals. In the case of an image
encryption application, many times, a key is used to set up the initial conditions. These
key-based initial conditional encryptors are sensitive to the knowledge of key. Hence,
a time-based seed along with the key is a better choice for initial condition selectors.
W found that there were very few algorithms that allowed the user to select the chaotic
map for their encryption. For the ease of the decryption process, typically a symmetric
encryption scheme is chosen so that the algorithm that encrypts the image can be
able to decrypt it. Because of the availability of the key and the correct algorithm, the
person having encrypted output can easily decrypt the original image again. During
the survey, it was observed that most of the images were RGB-based, and very few had
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done encryption of gray scale images. The histogram of the encrypted image should
be a flat line around 0.5, if normalized. Whereas the histogram of the non-encrypted
image looks like it has valleys and peaks.

There were different bifurcation maps, but mainly seen as a map that explodes or
a map that remains flat. The exploding maps typically take larger fluctuating jumps
at higher values of r. Whereas flat-type bifurcation diagrams can be used at very low
values of r as well. Ideally, r should be chosen greater than 1.5 and within the range of
40, but this choice can be further user-defined as per the application. The hardware-
based implementation of random-number generators totally depends on the number
of bits the Arithmetic Logic Unit (ALU) of the microcontroller can handle. The speed
of the random-number generator is controlled by the clock frequency of the controller.
We found that at least 100 registers are used when the chaotic maps are implemented
on the FPGA. The maximum operating frequency of an FPGA could reach 100 MHz
and there is a well-defined research gap to reach at least a few GigaHertz frequencies
of random number generation. Due to the complex mathematical calculation that a
typical chaotic map has, the execution time of the entire sequence could not cross
0.2 seconds and we need pseudo-random number generators that can produce its
entire file in a few milliseconds. Hence, chaotic map-based pseudo-random number
generators are not suited for real-time applications but still can be used in applications
like OTP generation and image encryption. Throughout the survey, we found that
all the researchers achieved a correlation coefficient that was very close to the ideal
value of zero and the entropy reported by maximum researchers crossed 7.99, whose
ideal value is 8 bits per byte. We hope that people will keep on implementing the
chaotic maps for different schemes in random generation and may find extremely
secure systems built on it. This will help in the complete prohibition of electronic
fraud.

Security is not the only aspect of chaotic map-based pseudo-random number gen-
eration but it can also be used in multi-media encryption, video-game animations,
digital advertisements, simulation of chaotic systems, chaotic missile systems, etc.
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