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Abstract
This paper is concerned with the estimation problem using maximum likelihood 
method of estimation for the unknown parameters of exponetiated gumbel distribu-
tion based on neoteric ranked set sampling (NRSS) as a new modification of the 
usual ranked set sampling (RSS) technique. Numerical study is conducted to com-
pare NRSS as a dependent ranked set sampling technique, with RSS, and median 
ranked set sampling as independent sampling techniques, and then the performance 
of RSS and its modifications will be compared with simple random sampling based 
on their mean square errors and efficiencies.

Keywords  Neoteric ranked set sampling · Median ranked set sampling · Ranked set 
sampling · Maximum likelihood estimation

1  Introduction

In 1952, McIntyre introduced a new sampling technique which he called RSS. Taka-
hasi and Wakimoto [18] derived a very essential statistical basis for the theory of 
RSS introduced by McIntyre [9]. Dell and Clutter [4] pointed out the role of rank-
ing errors in RSS which cause loss in efficiency for estimating the population mean. 
Stokes and Sager [17] used RSS to estimate distribution functions, they showed that 
the empirical distribution function of a RSS is an unbiased estimator of the distribu-
tion function and has a smaller variance than that from a simple random sampling 
(SRS). For some real applications of RSS, See Patil [12], Yu and Lam [20], Al-
Saleh and Al-Shrafat [3], Al-Saleh and Al-Hadrami [1], Al-Saleh and Al-Omari [2], 
Husby et al. [6], Wang et al. [19], Samawi [15] and references therein.
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Muttlak [10] proposed median ranked set sampling (MRSS) as a modification for 
the RSS technique, he demonstrated that MRSS has the potential to reduce errors in 
ranking and gives efficient estimate than RSS estimate in case of symmetric distribu-
tion. Sinha and Purkayastha [16] used the median ranked set sampling to modify the 
RSS estimators of the population mean if the underling distribution known to be nor-
mal or exponential.

RSS method as suggested by McIntyre [9] may be modified to come up with new 
sampling methods that can be made more efficient than the usual RSS method. A 
recently developed extension of RSS, Zamanzade and Al-Omari [21] was proposed a 
new neoteric ranked set sampling (NRSS).They proved that the NRSS estimators per-
form much better than their counterparts using RSS and SRS techniques whatever the 
ranking perfect or imperfect. Under this setup, Sabry and Shaaban [13] derived the 
likelihood function for NRSS and double neoteric ranked set sampling (DNRSS), they 
compared maximum likelihood estimators (MLEs) based on RSS, NRSS, and DNRSS 
schemes with the MLEs based on the SRS technique for inverse Weibull distribution.

Exponetiated gumbel (EG) distribution was introduced by Nadarajah [11] in the 
same way Gupta et al. [5] generalized the standard exponential distribution. Applica-
tions of gumbel distribution in various areas including accelerated life testing, earth-
quakes, floods, horse racing, rainfall, sea currents, wind speeds and track race records 
can be seen in Kotz and Nadarajah [8]. The probability density function (PDF) and, the 
cumulative distribution function (CDF) of the EG distribution are, respectively, given 
by

and

where 𝛼 > 0,−∞ < x < ∞, 𝜆 > 0 , α and λ are the shape and scale parameters, 
respectively.

In this paper, an attempt has been made to compare the performance of NRSS, 
MRSS, and RSS schemes using maximum likelihood (ML) method of estimation with 
the usual SRS technique for EG distribution parameters. The remaining part of this 
paper is organized as follows: Sect. 2 introduced some sampling techniques. In Sect. 3, 
MLHs are derived for the shape and scale parameters of EG distribution using different 
sampling schemes. Section 4 is devoted to extensive numerical study to compare the 
performance of NRSS, MRSS with unknown estimators based on RSS and SRS tech-
niques. Conclusions are derived in Sect. 5.

2 � Some Ranked Set Sampling Techniques

In this section, various sampling procedures for selection of units in the sample 
will be considered; brief descriptions of RSS, MRSS and NRSS schemes will be 
introduced.

(1)F(x;�, �) = [G(x, �)]� =
[
exp (− exp (−�x))

]�
,

(2)f (x;�, �) = ��e−�x
[
exp(−exp(−�x))

]�
,
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2.1 � Ranked Set Sampling

In (1952) McIntyre introduced RSS technique as a useful procedure, when quanti-
fication of all sampling units is costly but a small set of units can be easily ranked, 
according to the characteristics under investigation, without actual quantification. This 
ordering criterion may be based, for example, on values of a concomitant variable or 
personal judgment. Several studies have proved the higher efficiency of RSS, relative to 
SRS, for the estimation of a large number of population parameters. The RSS scheme 
can be described as follows:

Step 1 Randomly select m2 sample units from the population.
Step 2 Allocate the m2 selected units as randomly as possible into m sets, each of 
size m.
Step 3 Choose a sample for actual quantification by including the smallest ranked 
unit in the first set, the second smallest ranked unit in the second set, the process is 
continues in this way until the largest ranked unit is selected from the last set.
Step 4 Repeat steps 1 through 4 for r cycles to obtain a sample of size mr (Fig. 1).

Let {X(ii)s, i = 1, 2,… ,m; j = 1, 2,… , r} be a ranked set sample where m is the set 
size and r is the number of cycles. Then the probability density function (PDF) of X(ii)j 
is given by

where C1 =
m!

(i−1)!(m−1)!
 using Eq.  (3) the likelihood function corresponding to RSS 

scheme is given by:

2.2 � Median Ranked Set Sampling

Muttlak [10] proposed median ranked set sampling (MRSS) as a modification 
of the RSS to reduce loss of efficiency in RSS due to errors in ranking and an 

(3)fi
(
x(ii)j

)
= C1

[
F
(
x(ii)j

)]i−1[
1 − F

(
x(ii)j

)]m−i
f
(
x(ii)j

)
, −∞ < x(ii)j < ∞,

(4)LRSS(�|x) =
r∏

j=1

m∏
i=1

C1f
(
x(ii)j;�

)[
F
(
x(ii)j;�

)]i−1[
1 − F

(
x(ii)j;�

)]m−i

Fig. 1   RSS design [14]
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improvement upon the efficiency of the estimator of the population mean. MRSS 
procedure can be summarized as follows:

Step 1 Select m2 random samples of size m units from the target population.
Step 2 Rank the units within each sample with respect to a variable of interest.
Step 3 If the sample size m is odd, from each sample select for measurement the (
m+1

2

)
 th smallest ranked unit, i.e., the median of the sample (see Fig. 2).

From Fig.  2, let the measured MRSS units in case of odd set size is {
x(1 g)j, x(2 g)j,… , x(g g)j,… , x(mg)j

}
 where g = (m + 1)∕2. The PDF of (g) th order 

statistics can be obtained as follows:

Then, using Eq. (5) the likelihood function corresponding to MRSS scheme for 
odd set sizes and with r cycles is given as follows:

Step 4 If the sample size m is even, select for the measurement from the first m
2
 

samples the 
(

m

2

)
 th smallest ranked unit and from the second m

2
 samples the (

m

2
+ 1

)
 th smallest ranked unit (see Fig. 3).

Step 5 The cycle can be repeated r times if needed to get a sample of size n = mr 
units from MRSS data.

(5)

fg
(
x(i g)j

)
=

m![
(g − 1)!

]2
[
F
(
x(i g)j

)]g−1[
1 − F

(
x(i g)j

)]g−1
f
(
x(i g)j

)
, ∞ < x(i g)j < ∞,

(6)

LMRSS(�|x) =
r∏

j=1

m∏
i=1

m!

[(g − 1)!]2
f
(
x(ig)j;�

)[
F
(
x(ig)j;�

)]g−1[
1 − F

(
x(ig)j;�

)]g−1

Fig. 2   MRSS design in case of odd sample size [14]
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From Fig.  3, let the measured MRSS units in case of even set size will be 
as follows: x(1 u)j, x(2 u)j,… , x(u u)j, x(u+1 u)j,… , x(n u)j, then the PDFs of (u) th and 
(u + 1) th order statistics when m . is even are given as follows:

and

where u = m∕2 ., and C2 =
m!

(u−1)!(u)!
 , using Eqs. (7) and (8), the likelihood function 

corresponding to MRSS scheme for even set sizes and with r . cycles given as 
follows:

2.3 � Neoteric Ranked Set Sampling

Zamanzade and Al-Omari [21] have defined a NRSS. NRSS technique differs from the 
original RSS scheme by the composition of a single set of m2 units, instead of m sets of 
size m. this strategy has been shown to be effective, producing more efficient estimators 
for the population mean and variance.

(7)fu
(
x(i u)j

)
= C2

[
F
(
x(i u)j

)]u−1[
1 − F

(
x(i u)j

)]u
f
(
x(i u)j

)
, −∞ < x(i u)j < ∞,

(8)
fu+1

(
x(i u+1)j

)
= C2

[
F
(
x(i u+1)j

)]u[
1 − F

(
x(i u+1)j

)]u−1
f
(
x(i u+1)j

)
, −∞ < x(i u+1)j < ∞,

(9)

LMRSS(�|x) =
[

r∏
j=1

u∏
i=1

C2f
(
x(iu)j;�

)[
F
(
x(iu)j;�

)]u−1[
1 − F

(
x(iu)j;�

)]u
]

⋅

[
r∏

j=1

n∏
i=u+1

C2f
(
x(iu+1)j;�

)[
F
(
x(iu+1)j;�

)]u
⋅

[
1 − F

(
x(iu+1)j;�

)]u−1
]
,

Fig. 3   MRSS design in case of even sample size [14]
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The following steps describe the NRSS sampling design:

Step 1 Select a simple random sample of size m2 units from the target finite popula-
tion.
Step 2 Ranked the m2 selected units in an increasing magnitude based on a visual 
inspection or any other cost free method with respect to a variable of interest.
Step 3 If m is an odd, then select the 

[
g + (i − 1)m

]
 th ranked unit. If m is an even, 

then select the [u + (i − 1)m] th ranked unit, if i is an even and [(u + 1) + (i − 1)m] th 
if i is an odd where 

(
u =

m

2
, g =

m+1

2
, and i = 1, 2, ...,m

)
.

Step 4 Repeat steps 1 through 3 r cycles if needed to obtain a NRSS osize n = rm

The NRSS scheme can be described as follows (Fig. 4): 
Using NRSS method, we have to choose the units with the rank 2, 5, 8 for actual quan-

tification, then the measured NRSS units are 
{

X(2)1 , X(5)1 , X(8)1

}
 for one cycle.

Let {X(i)j, i = 1, 2,… ,m;j = 1, 2,… , r} be a neoteric ranked set sample where m is 
the set size and r is the number of cycles. Then the likelihood function corresponding 
to NRSS scheme that proposed by Sabry and Shaaban [13], is given by

where m is the set size, r is the number of cycles, w = m2! , and k(i) is chosen as

where k(0) = 0, k(m + 1) = w + 1 and x(k(0)) = −∞, x(k(m+1)) = ∞.

3 � Estimation of the Exponentiated Gumbel Distribution Pameters

In this Section MLEs for the unknown parameters of EG distribution based on SRS 
and RSS will be reviewed, moreover we will derive MLHs for EG distribution based 
on MRSS and NRSS.

(10)

L
�
��xk(i)j

�
=

w!∏m+1

i=1
(k(i) − k(i − 1) − 1)!

m�
i=1

f
�
x(k(i))j;�

�

×

m+1�
i=1

�
F
�
x(k(i))j;�

�
− F

�
x(k(i−1))j;�

��k(i)−k(i−1)−1

k(i) =

⎧⎪⎨⎪⎩

g + (i − 1)m, modd

u + (i − 1)m, meven, i even

(u + 1) + (i − 1)m, meven, i odd

Fig. 4   NRSS design in case of odd sample size [13]
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3.1 � Estimation Based on SRS

Jabbari and Ravandeh [7] introduced MLHs for EG distribution parameters based on 
SRS. In this Subsection, MLHs based on SRS will be reviewed. Let x1, x2,… , x

n
 be 

a random sample of size n from EG(�, �) , then the likelihood function can be writ-
ten as follows

The first derivatives of the log-likelihood function denoted by lSRS with respect to 
� and � respectively are as follows

and

From Eq. (13), Jabbari and Ravandeh [7] showed that MLE of � say 𝛼̂(𝜆) can be 
obtained as follows

by substituting 𝛼̂(𝜆) in Eq.  (11), the profile log-likelihood can be obtained of � as 
follows

Therefore the MLEs of �, say 𝜆̂MLE , can be obtained by maximizing Eq.  (15) 
with respect to � . It can be shown that the maximum likelihood of Eq. (15) can be 
obtained as a fixed point solution

3.2 � Estimation Based on RSS

In this subsection, MLHs of EG distribution obtained by Jabbari and Ravandeh 
[7] will be considered, Suppose 

{
X(11)j,X(22)j,…,X(mm)j

;j = 1, 2,… , r
}

 . denotes the 
ranked set sample of size n = mr from EG (�, �), where m is the set size and r is 

(11)LSRS(�, ��x) = �n�ne
−�

n∑
i=1

xi
n�
i=1

�
exp

�
−exp

�
−�xi

����
,

(12)
�lSRS

��
=

n

�
−

n∑
i=1

xi + �

n∑
i=1

xiexp
(
−�xi

)
= 0.

(13)
�lSRS

��
=

n

�
−

n∑
i=1

exp
(
−�xi

)
= 0,

(14)𝛼̂(𝜆) =

�∑n

i=1
exp

�
−𝜆xi

�
n

�−1

,

(15)L(𝛼̂(𝜆), 𝜆) = c − nln

(
n∑
i=1

e−𝜆xi

)
+ nln𝜆 − 𝜆

n∑
i=1

xi = 0.

v(�) = � =

�∑n

i=1
xi(1 − n�)

n

�−1

.
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the number of cycles. By substituting Eqs. (1) and (2) into Eq. (4), then the like-
lihood function based on RSS data is given by:

The log likelihood function denoted by lRSS can be derived directly as follows

and the first derivatives of lRSS with respect to � and � respectively are given by

and

It is clear, it is not easy to obtain a closed form of the non linear Eqs. (16) and 
(17), so an iterative technique can be used to obtain MLEs of � and �.

3.3 � Estimation Based on MRSS

In the following subsection MLEs based on MRSS for unknown parameters of EG 
distribution will be obtained. Let {X(1g)j,X(2g)j,…,X(mg)j

; j = 1, 2,… , r, g =
m+1

2
} is a 

MRSS in case of odd set size from EG (�, �) with sample size n = mr , where m is 
the set size, r is the number of cycles. By substituting Eqs. (1) and (2) into Eq. (6), 
then the likelihood function of the MRSS in case of odd set size is given by:

LRSS(�, �|x) ∝
r∏

j=1

m∏
i=1

(
��e−�x(ii)j

)(
exp(−exp

(
−�x(ii)j

))�i

×
(
1 −

[
exp

(
−exp

(
−�x(ii)j

))]�)m−i

lRSS ∝ nlog� + nlog� − �

r∑
j=1

m∑
i=1

x(ii)j −

r∑
j=1

m∑
i=1

(�i)exp
(
−�x(ii)j

)

+

r∑
j=1

m∑
i=1

(m − i)log
(
1 −

[
exp

(
−exp

(
−�x(ii)j

))]�)

(16)

�lRSS

��
=

n

�
−

r∑
j=1

m∑
i=1

x(ii)j +

r∑
j=1

m∑
i=1

(�i)x(ii)j exp
(
−�x(ii)j

)

− �

r∑
j=1

m∑
i=1

(m − i)x(ii)j

[
exp

(
−exp

(
−�x(ii)j

))]�
exp

(
−�x(ii)j

)

1 −
[
exp

(
−exp

(
−�x(ii)j

))]� ,

(17)

�lRSS

��
=

n

�
−

r∑
j=1

m∑
i=1

(i) exp
(
−�x(ii)j

)

+

r∑
j=1

m∑
i=1

(m − i)

[
exp

(
−exp

(
−�x(ii)j

))]�
exp

(
−�x(ii)j

)

1 −
[
exp

(
−exp

(
−�x(ii)j

))]� ,
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The log likelihood function denoted by lOMRSS is given as:

The first derivatives of lMRSS with respect to � and � respectively, are given by

and

MLEs of � and � in case of odd set size cannot be obtained in a closed form, so an itera-
tive technique will be used to solve Eqs. (18) and (19) numerically.

To obtain MLEs in case of even set size based on MRSS scheme, maximum likeli-
hood function can be obtained by substituting Eqs. (1) and (2) into Eq. (9), as follows:

LOMRSS(�, �|x) =
r∏

j=1

m∏
i=1

m![
(g − 1)!

]2 ⋅

(
��e−�x(ig)j

)(
exp(−exp

(
−�x(ig)j

))�g

×
(
1 −

[
exp

(
−exp

(
−�x(ig)j

))]�)g−1
,

lOMRSS ∝ n log � + n log � −

r∑
j=1

m∑
i=1

�x(ig)j − (�g)

r∑
j=1

m∑
i=1

exp
(
−�x(ig)j

)

+ (g − 1)

r∑
j=1

m∑
i=1

1 −
[
exp

(
− exp

(
−�x(ig)j

))]�
.

(18)

�lOMRSS

��
=

n

�
−

r∑
j=1

m∑
i=1

x(ig)j + (�g)

r∑
j=1

m∑
i=1

x(ig)j exp
(
−�x(ig)j

)

+ (g − 1)

r∑
j=1

m∑
i=1

x(ig)j

[
exp

(
− exp

(
−�x(ig)j

))]�
exp

(
−�x(ig)j

)

1 −
[
exp

(
− exp

(
−�x(ig)j

))]� ,

(19)

�lOMRSS

��
=

n

�
−

r∑
j=1

m∑
i=1

(g) exp
(
−�x(ig)j

)

+

r∑
j=1

m∑
i=1

(g − 1)

[
exp

(
− exp

(
−�x(ig)j

))]�
exp

(
−�x(ig)j

)

1 −
[
exp

(
− exp

(
−�x(ig)j

))]� ,

LEMRSS(�, �|x) ∝
[

r∏
j=1

u∏
i=1

��e−�x(iu)j
[
exp

(
−exp

(
−�x(iu)j

))]�[[
exp

(
−exp

(
−�x(iu)j

))]�]u−1
⋅

[
1 −

[
exp

(
−exp

(
−�x(iu)j

))]�]u]

×

[
r∏

j=1

m∏
i=u+1

��e−�x(iu+1)j
[
exp

(
−exp

(
−�x(iu+1)j

))]�

[[
exp

(
−exp

(
−�x(iu+1)j

))]�]u
×
[
1 −

[
exp

(
−exp

(
−�x(iu+1)j

))]�]u−1]



176	 Annals of Data Science (2023) 10(1):167–182

1 3

The log likelihood function denoted by lEMRSS is given as:

The first derivatives of lEMRSS with respect to � and � respectively, are given by

and

LEMRSS(�, �|x)

∝

[
r∏

j=1

u∏
i=1

��e−�x(iu)j
[[
exp

(
−exp

(
−�x(iu)j

))]�]u
⋅

[
1 −

[
exp

(
−exp

(
−�x(iu)j

))]�]u
]

×

[
r∏

j=1

m∏
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��e−�x(iu+1)j
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exp

(
−exp

(
−�x(iu+1)j

))]�]u+1
×
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1 −

[
exp

(
−exp

(
−�x(iu+1)j

))]�]u−1
]

lEMRSS ∝ rm log � + rm log � −

r∑
j=1

u∑
i=1

�x(iu)j − (�u)

r∑
j=1

u∑
i=1

exp
(
−�x(iu)j

)

+ (u)

r∑
j=1

u∑
i=1

log
(
1 −

[
exp

(
− exp

(
−�x(iu)j

))]�)
+

r∑
j=1

m∑
i=u+1

�x(iu+1)j − (�(u + 1))

×

r∑
j=1

m∑
i=u+1

exp
(
−�x(iu+1)j

)
+ (u − 1)

r∑
j=1
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log
(
1 −

[
exp

(
− exp

(
−�x(iu+1)j

))]�)

(20)

�lEMRSS
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=
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�
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(
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MLEs of � and � in case of even set size cannot be obtained in a closed form, so an 
iterative technique will be used to solve Eqs. (20) and (21) numerically.

3.4 � Estimation Based on NRSS

In this subsection, we will derive MLEs for EG ( �, �) based on NRSS technique by 
substituting Eqs. (1) and (2) in Eq. (10). Let 

{
X(i)j, i = 1, 2,… ,m;j = 1, 2,… , r

}
 be a 

neoteric ranked set sample where m is the set size and r is the number of cycles, then 
the likelihood function corresponding to NRSS scheme is given by

where h =
w!∏m+1

i=1
(k(i)−k(i−1)−1)!

,w = m2.

The associated log-likelihood function denoted by lNRSS is as follows

and the first derivatives of the lNRSS are given by

MLHs of EG distribution parameters based on NRSS can be obtained by solving 
Eqs. (22) and (23) using iterative technique.

`
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��e−�x(k(i))j

[
exp

(
−exp

(
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×
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[
[
exp

(
−exp

(
−�x(k(i))j

))]�
−
[
exp

(
−exp

(
−�x(k(i−1))j

))]�
]k(i)−k(i−1)−1

)

lNRSS = r log h + mrlog� + mrlog� − �

r∑
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m∑
i=1

x(k(i))j − �

r∑
j=1

m∑
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)

+
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(22)
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4 � Simulation Study

In this section, a simulation study is conducted to compare the maximum likelihood 
estimators of the shape and scale parameters of EG distribution based on different 
sampling schemes. The simulation is applied for 10,000 replications and different 
sample sizes, m = {3, 5, 9} . The simulation is made for different parameters val-
ues EG(�, �) = {EG(0.25, 0.5), EG(0.5, 1.5), EG(2, 1)} . Comparison between the 
proposed estimators for �and� using SRS, RSS, MRSS, and NRSS are carried out 
using mean square errors (MSEs) and efficiencies criteria. The efficiency between 
all estimators with respect to the MLE based on SRS are calculated. The efficiency 
of the estimator is defined as

if eff
(
𝜃̂1, 𝜃̂2

)
> 1 , then 𝜃̂2 is better than 𝜃̂1.

The results of Biases and MSEs for the different estimators are listed in Tables 1 
and 2, and the results of the efficiencies are reported in Table 3, Figs. 5, 6, 7, 8 and 
9 are represented to clarify the simulation results. The following conclusions can be 
observed From Tables 1 and 2:         

1.	 In almost all cases, the biases are small.
2.	 In all cases, MSEs of the estimators for (�, �) based on SRS data are greater than 

MSEs of the estimators based on RSS, MRSS, and NRSS data (see Fig. 5).
3.	 In almost all cases, MSEs of all estimators based on SRS, RSS, MRSS, and NRSS 

decrease as the set sizes increase (see Fig. 6).
4.	 In almost all cases, MSEs of all estimators based on SRS, RSS, MRSS, and NRSS 

increase as the value of λ increases.
5.	 In almost all cases, MSEs of all estimators based on SRS, RSS, MRSS, and NRSS 

decrease as the value of α increases.
6.	 MSEs of the estimators for (�) based on NRSS have the smallest MSEs in all cases 

comparing with the other estimators and MSEs of the estimators for (�) based on 
NRSS have the smallest MSEs in all cases comparing with the other estimators 
except in the case of EG (2, 1) when {m = 3, 5} , (see Fig. 7).

7.	 In almost all cases, MSEs of the estimators for (�and ∝) based on MRSS are 
smaller than MSEs of the estimators based on RSS (see Fig. 7).

From Table 3, it can be observed that:

	 8.	 In almost all cases, efficiencies of all estimators based on RSS, MRSS, and 
NRSS increase as the set size increase (see Fig. 8).

	 9.	 Efficiencies of the estimators for � based on NRSS have the largest efficiencies 
in all cases, except when � = 2andm = 3. (see Fig. 8).

eff
(
𝜃̂1, 𝜃̂2

)
=

MSE
(
𝜃̂1
)

MSE
(
𝜃̂2
) ,
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	10.	 Efficiencies of the estimators for ∝ based on NRSS have the largest efficiencies 
in all cases except in the case of EG (2,1) when {m = 3, 5}  (see Fig. 9).

	11.	 In almost all cases, efficiencies of the estimators for (�and ∝) on MRSS are 
greater than the efficiencies based on RSS.

Table 1   Biases of the estimators for (λ,α) based on SRS, RSS, MRSS, and NRSS

m SRS RSS MRSS NRSS

λ α λ α λ α λ α

EG (0.25, 0.5)
3 − 0.329 − 0.961 − 0.134 − 1.419 − 0.316 − 0.137 − 0.022 − 0.200
5 − 0.108 − 0.171 − 0.255 − 1.051 − 0.106 − 0.532 0.031 0.178
9 − 0.044 − 0.128 − 0.009 − 1.020 − 0.041 − 0.209 0.056 0.346
EG (0.5, 1.5)
3 − 0.642 − 0.167 − 0.036 0.251 − 0.603 − 21.63 − 0.282 0.214
5 − 0.215 0.701 0.004 0.066 − 0.206 0.727 − 0.153 0.134
9 − 0.088 0.787 0.143 0.014 − 0.094 0.824 − 0.091 0.041
EG (2, 1)
3 − 0.603 − 0.471 − 0.744 0.520 − 0.441 − 256 − 0.966 0.557
5 − 0.863 − 0.523 − 0.349 0.724 − 0.827 − 0.197 − 0.472 0.773
9 − 0.353 − 0.13 − 0.952 0.716 − 0.359 − 0.075 − 0.222 0.886

Table 2   MSEs of the estimators for (λ,α) based on SRS, RSS, MRSS, and NRSS

m SRS RSS MRSS NRSS

λ α λ α λ α λ α

EG (0.25, 0.5)
3 0.1525 1.8878 0.0387 0.9013 0.1285 0.8007 0.0242 0.2999
5 0.1072 1.1552 0.0276 0.8263 0.0343 0.4194 0.0139 0.1033
9 0.0737 0.8367 0.0017 0.5880 0.0135 0.2686 0.0081 0.0512
EG (0.5, 1.5)
3 0.6109 1.2929 0.1301 0.5655 0.1328 0.5769 0.0560 0.1683
5 0.4286 0.9026 0.0102 0.4137 0.0809 0.2574 0.0582 0.0924
9 0.2935 0.7068 0.0949 0.3190 0.0522 0.1713 0.0145 0.0283
EG (2, 1)
3 0.9774 0.9120 0.5539 0.2710 0.1658 0.3048 0.1935 0.4340
5 0.6862 0.8058 0.1219 0.1524 0.1020 0.2014 0.0493 0.1662
9 0.4708 0.7385 0.09077 0.0913 0.0662 0.1334 0.0259 0.0798
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Table 3   Efficiencies of the 
estimators for (λ,α) based on 
RSS, MRSS, and NRSS

m RSS MRSS NRSS

λ α λ α λ α

EG (0.25,0.5)
3 3.935 2.094 1.186 2.357 6.303 6.293
5 3.877 1.398 3.124 2.754 7.669 11.174
9 4.317 1.422 5.457 3.114 9.049 16.341
EG (0.5,1.5)
3 4.695 2.285 4.598 2.240 10.892 7.680
5 4.193 2.181 5.295 3.506 7.356 9.765
9 3.090 2.215 5.620 4.126 20.165 24.908
EG (2,1)
3 1.764 3.365 5.895 2.991 5.050 2.101
5 5.625 5.286 6.725 3.999 13.916 4.847
9 5.186 8.080 7.112 5.533 18.169 9.249

Fig. 5   MSEs of the estimators 
for ( �) at m = 9
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Fig. 6   MSEs of the estimators 
based on SRS, RSS, MRSS, and 
NRSS at (� = 0.25)
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5 � Conclusions

On the basis of numerical results, it can be concluded that, MSEs based SRS data 
has the largest MSEs comparing to RSS and its modifications schemes. It can be 
noted that, in almost all cases, MSEs decrease as the set sizes increase and the 
efficiencies increase as the set sizes increase. This study revealed that MRSS is 
better than RSS. Also, NRSS technique has the superior over the rest of other 
sampling schemes. In almost all cases, NRSS has the smallest MSEs and larg-
est efficiencies. Generally the estimators based NRSS, MRSS, and RSS based on 
RSS techniques are more efficient than the estimators based on SRS technique.

Fig. 7   MSEs of the estimators 
based on SRS, RSS, MRSS, and 
NRSS at � = 1.5
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Fig. 8   Efficiencies of the esti-
mators based on RSS, MRSS, 
and NRSS at � = 2.
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Fig. 9   Efficiencies of the esti-
mators based on RSS, MRSS, 
and NRSS at � = 0.5
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