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Abstract

Let a progressively type-II (PT-II) censored sample of size m is available. Under
this set-up, we consider the problem of estimating unknown model parameters and
two reliability characteristics of the log-logistic distribution. Maximum likelihood
estimates (MLEs) are obtained. We use expectation—-maximization (EM) algorithm.
The observed Fisher information matrix is computed. We propose Bayes estimates
with respect to various loss functions. In this purpose, we adopt Lindley’s approxi-
mation and importance sampling methods. Asymptotic and bootstrap confidence
intervals are derived. Asymptotic intervals are obtained using two approaches: nor-
mal approximation to MLEs and log-transformed MLEs. The bootstrap intervals
are computed using boot-t and boot-p algorithms. Further, highest posterior den-
sity (HPD) credible intervals are constructed. Two sets of practical data are ana-
lyzed for the illustration purpose. Finally, detailed simulation study is carried out to
observe the performance of the proposed methods.
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1 Introduction

The log-logistic (LL) distribution also known as Fisk distribution can be obtained
from logistic distribution using logarithm transformation. It is usually treated as an
alternative to the log-normal distribution. Let X be a random variable following two-
parameter log-logistic distribution with probability density function given by

aﬂaxa—l
xa,f)=—, x>0, a,p>0. 1.1
felwa,f) = - p (1.1)
Its cumulative distribution function is
xa
Fx(x;a, p) = , x>0, a,p>0.
x(xsa, f) oyl B (1.2)

We denote X ~ LL(a, f) if X has the distribution function given by (1.2). Here, « is
the shape parameter and g is the scale parameter. The shape parameter @ controls
the shape of the distribution. The LL distribution has several importance proper-
ties compared to many other commonly used parametric models in survival analysis.
Below, we present a few.

e The shapes of the log-logistic distribution and the log-normal distribution are
similar. However, the log-logistic distribution has heavier-tails. Due to this prop-
erty, it is able to cope with the outlines. Therefore, if the histogram plot of the
data set provides the information that the data are actually from a right skewed
distribution, then the log-logistic distribution may be used for analyzing the data.
Because of this, it plays a remarkable role in modeling a wide range of bursts
phenomena that occur in finance, insurance, telecommunications, meteorology,
hydrology and survival analysis.

e The log-logistic distribution has a closed-form expression of the cumulative dis-
tribution function. Thus, it is very useful for analyzing survival data with censor-
ing. Apart from this property, the LL distribution has a non-monotone hazard
function. The hazard function is monotonically decreasing when a < 1 and is
unimodal when @ > 1. Because of the non-monotonicity of the hazard rate of the
LL distribution, it could be an appropriate model when the course of the disease
is such that mortality reaches a peak after some finite period, and then slowly
decreases (see [26]).

Further, the log-logistic distribution can be used as a suitable substitute for Weibull
distribution. This distribution is a mixture of Gompertz as well as Gamma distribu-
tions when the mean and variance coincide and equal to one. The LL distribution
can also viewed as a life testing model. It is an increasing failure rate model and also
is viewed as a weighted exponential distribution. Due to several appealing proper-
ties, the LL distribution has been used in various other fields. For example, in eco-
nomics, the log-logistic distribution is used as a simple model of the distribution of
wealth or income (see [18]). The realized sets of precipitation and stream-flow data
can be fitted well by this distribution. In this direction, we refer to Mielke et al. [34].
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The LL distribution can be used in flood frequency analysis (see [3]). Shoukri et al.
[40] and Ashkar and Mahdi [4] discussed goodness of fit test of the LL distribution
with other distributions for fitting flood data from 114 hydrometric stations located
in Canada. Figure 1 shows plots of the probability density function, reliability func-
tion and hazard rate function of the LL distribution.

In this paper, we study various inferencial procedures for the estimation of the
parameters and reliability characteristics of the log-logistic distribution. The study is
based on the PT-II censored sample. Please refer to Aggarwala and Balakrishnan [2]
for an elaborate discussion on the progressive censoring scheme. Below, we briefly
discuss on the PT-II censoring scheme. Consider a test, where at the beginning we
place n units. After first failure occurs, we randomly remove U, surviving units from
the test. Then, after second failure occurs, U, surviving units are withdrawn at ran-
dom. This process continues till mth failure occurs. Once the mth failure takes place,
U,=n-U —U,—++—=U,_| —m surviving units are removed from the experi-
ment. Here, the failure times which have been observed during the experiment are
denoted by T;.,,.,, i=1,...,m. The collection of 7;.,.,’s i=1,...,m is known
as the PT-II censored sample. For convenience, henceforth, we denote T;.,,., as
T,i=1,...,m. Thatis, T\, =T,.,..o---» T,y = T, - - Further, from Balakrishnan
and Aggarwala [6], the joint probability density function of the random failure times
Ty,...,T,is written as

m
- U;
fo =TI Fr@] " <. <, (1.3)
i=1
where {=nn—-U,—-1)--(n— ZZ'LII(Ui +1)). Here, T=(T,....,T,) and
t=(t,...,t,). Note that f;(z;) and F T/_(ti) are the density and survival functions of
T;, respectively, i = 1, ... ,m. For more details on PT-II censored scheme, we refer to

Balakrishnan [5] and Balakrishnan and Cramer [7].

There have been a number of studies on estimation of parameters of the log-logistic
distribution by various authors when observations are complete and censored. Here,
we briefly discuss a few of the existing literature. Zhou et al. [45] studied estimation
problem for log-logistic distribution based on the grouped failure data. Abbas and Tang
[1] derived Bayes estimates of the parameters of LL distribution under reference and
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Fig. 1 Plots of the a probability density function, b reliability function and ¢ hazard rate function of the
LL distribution for some specific values of the parameters
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Jeffreys’ priors. He et al. [21] discussed estimation of the scale and shape parameters of
a log-logistic distribution based on the simple random and rank set samples. Under the
randomly censored sample, Kumar [24] studied classical and Bayes estimates for the
log-logistic distribution. With respect to progressively censored sample, Kus and Kaya
[25] derived maximum likelihood estimates of the unknown parameters of a LL dis-
tribution. They employed EM algorithm. Further, various inferential procedures based
on PT-II censoring scheme have been introduced for some useful lifetime models. For
instance, see Basak and Balakrishnan [10], Singh et al. [42], Valiollahi et al. [44] and
Maiti and Kayal [30, 31] and the references contained therein. Scrolling through the
literature, it is observed that based on progressive type-1I censored sample, the problem
of estimating parameters and reliability functions of two-parameter log-logistic distri-
bution has not been discussed so far except partial contribution by Kus and Kaya [25].
This along with the important applications of the LL distribution motivates us to study
the present problem. The reliability and hazard functions of the log-logistic distribution
with distribution function (1.2) are given by
ﬁa ata—l

d h(r) = ,
ta+ﬂa an () t(x+ﬂa

r(r) = 1.4)
respectively, where t > 0, > O and g > 0.

In the present communication, we consider point and interval estimation of &, g, r(f)
and h(7) based on the PT-II censored sample. The MLE are obtained. Since explicit
expressions of the MLEs are difficult to derive, we use EM algorithm. Bayes estimates
are derived under symmetric and asymmetric loss functions. In this direction, Lindley’s
approximation and importance sampling methods are used. The interval estimates are
constructed. Further, we obtain highest posterior density (HPD) intervals.

The paper is organized as follows. In the next section, we derive MLEs of the
unknown model parameters, reliability and hazard functions. The EM algorithm has
been used for the purpose of computation. In Sect. 3, we study Bayesian estimation.
In particular, we consider five loss functions and obtain Bayes estimates under the
assumption that the unknown parameters have independent gamma prior distributions.
The explicit forms of the Bayes estimates are difficult to derive. Thus, we use Lindley’s
approximation method and importance sampling method to compute Bayes estimates
in Sect. 4. Section 5 deals with the computation of interval estimates. Observed Fisher
information matrix is obtained. HPD credible intervals are also constructed. In Sect. 6,
we consider two real data sets for the purpose of illustration of the proposed methods.
In Sect. 7, we conduct a comprehensive simulation study to notice the performance of
the established estimates. Finally, in Sect. 8, some concluding remarks are added.

2 Maximum Likelihood Estimation

In this section, we focus on finding maximum likelihood estimates of the unknown
parameters, reliability and hazard functions for the distribution with density func-
tion given by (1.1). We assume that the random sample is PT-II censored. The log-
likelihood function of « and f is
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o, fplt) x mIna + | m+ Z Ui Jalnf + (a - I)ZInti
i=1 i=1 @1

m
= > (U +2) In(e + ).
i=1
After differentiating (2.1) partially with respect to @ and g, and then equating to

zero, we obtain the likelihood equations of @ and f as

& (U +2)(p*Inp + 1% Int;)

| m m i i Vo
m(;+lnﬂ)+;1nfi+lnﬁ;l]i_z pe +1f -

i=1
and
m m a
(U +2)p
m+ E U, - E — =0, (2.3)
pr+ 1t
i=1 i
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Fig.2 The profile of the log-likelihood function of a and f for guinea pigs data (a, b) and average daily
wind speeds data (c, d)
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respectively. Now, one can get the MLEs of « and f after solving Equations (2.2)
and (2.3) simultaneously. After obtaining the MLEs of a and f, we can easily write
the MLEs of r(¢) and h(f). However, the explicit forms of the solutions of (2.2) and
(2.3) are hard to derive. Therefore, we use EM algorithm. This is presented in the
next subsection. Note that in statistical inference, it is always an important issue to
see the existence and uniqueness of the MLEs. In this direction, one needs to check
the conditions given by Mikeldinen et al. [32]. Due to the complex nature of the ele-
ments of the observed Fisher information matrix, it is hard to verify the conditions.
More work is required to explore this issue. To have some rough idea on it, we have
depicted profile plots of the log-likelihood function of the parameters @ and g for
the real data sets in Fig. 2. These graphs suggest that the desired MLEs may exist
uniquely.

2.1 EM Algorithm

Dempster et al. [14] proposed a general iterative approach to find the MLEs of the
unknown parameters when observed and censored data are available. It is known as
EM algorithm. Some merits of EM algorithm are (i) it can be applied to complex prob-
lems, (if) log-likelihood increases at each iteration, (iif) computations are tedious but
straightforward and (iv) the second and higher order derivatives are not required for
calculation. The main disadvantage of this algorithm is slow convergence rate. EM
algorithm has two steps, one of the E-step (expectation step) and other the M-step
(maximization step). In E-step, we find the conditional expectation of the missing data
given the observed data and current parameter estimates. The E-step of the EM algo-
rithm involves computation of the pseudo-log-likelihood function. Next, M-step maxi-
mizes the likelihood function under the observed and censored data. Let the observed
sample and censored data be T = (T|,...,T,) and Z =(Z,,...,Z,), respectively,
where Z] isal X U] vector (Zj1 yeen ,ZjUj) for j =1, ..., m. Note that the complete sam-
ple is a combination of the observe sample and the censored data. Then the complete
sample is given by W = (T, Z). The likelihood function of complete sample (see, [36])
is given by

m

U/.
LeWsa, ) = [ [ | £r0. B [ [ £ B | 2.4
k=1

J=1

The log-likelihood function of a and f based on complete sample is

m m U

£.(Wsa, ) =nIn(af®) + (a — 1) Zln t+ InZ;
j=1 j=1 k=1

| 2.5)

m U
Z Z In(Z + %) |

j=1 k=1

-2 Z}ln(tj + 5 +
J=
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The E-step is calculated from the conditional expectation of the log-likelihood equa-
tion of complete sample 7. The condition expectation of log-likelihood function is
obtained as

¢,(Wia, p) =nln(ap®) + (a — 1) lz I, + Z UA(t;a, p)]

J=1 J=1

(2.6)
-2 lz In(e + B%) + 2 U;B(t;:a, p)] :
=1 j=1
The conditional distribution of Z for given T’ = ¢ is given by
f2Gpa, B)
Tar@plta, B) = m > b, 2.7)
where
Atz f) = E[InZy|Z; > 1]
B ap” C wllny du (2.8)
1= Fr(tpa, ) J, (u* + po)?
and

B(tya. ) = E[ln(Z“ + 017> 1]
/°° In(u® + f%) 2.9)
ca b))y et poy

In M-step, we maximize the E-step. Let (¢, %) be an estimate of (a, f) at pth
stage. The corresponding updated estimate (", p#*+D) can be obtained by maxi-
mizing the function given by

L., p) = nln(@p®) + (a — 1) lZlnt + 2 UA(t;a?, ﬂ(”))]
- = (2.10)

) lz In(ef + ) + Z U;B(t;a?, ﬂ(”))] .
j=1 J=1

The likelihood equations of a and f are respectively given by
" ﬂ“lnﬂ+t”lnt "
( +1nﬂ>+ZAU 22 e Z =0 @11

=1

and
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z; v (2.12)

J

with A = A(7;;a®), f©). It is easy to see that the explicit forms of the solutions of
(2.11) and (2 12) are hard to obtain. Therefore, we use Newton-Raphson iteration
method which continues until |@?*) — ¢®| 4+ |gP+D — gP)| < ¢, for some p, and a
fixed small number of e. Hereafter, we denote the MLEs of a and g as & and §,
respectively. Further, using invariance property of the MLE, the MLEs of #(#) and
h(t) can be easily obtained. These are respectively

An

o R ~sa—1
= —P and by = X
1+ p*

- 2.1
15 + fi @19

for time ¢ (= £,) > 0.

3 Bayesian Estimation

In this section, we derive Bayes estimates of the unknown parameters a, f, reliability
function r(¢) and the hazard function () for the log-logistic distribution based on PT-II
censored sample. The estimates are obtained with respect to five loss functions. These
are (i) squared error loss function (SELF), (ii) weighted squared error loss function
(WSELF), (iii) precautionary loss function (PLF), (iv) entropy loss function (ELF) and
(v) LINEX loss function (LLF). Among these, the squared error and weighted squared
error loss functions are symmetric in nature, and the precautionary, LINEX and entropy
loss functions are asymmetric. The symmetric loss functions are not appropriate when
overestimation or underestimation occur. In this case, the asymmetric loss functions
can be taken for estimation. Note that the LINEX loss function is useful when over-
estimation is more serious than underestimation and viceversa. Let y be an estimator
for the unknown parameter ¢». The loss functions under study are presented in Table 1.
Table 1 also provides the form of the Bayes estimates in terms of the mathematical
expectations. The subscript on expectation (E) will refer to parameter values.

Note that the Bayes estimate of the parameter ¢ under ELF reduces to the
Bayes estimates with respect to the WSELF, SELF and PLF, respectively when
c=1,—1 and — 2. To obtain the Bayes estimates, we consider independent gamma
priors for a and . The probability density functions of the gamma priors for & and f are
taken as

gi(a: &,8) xab Texp{—a&,), a>0, £.,& >0 3.1

and

8B 1 &,&) « p5 exp(—pE,}, B> 0, &,8,> 0, (3.2)

respectively. The joint probability density function of a and f is
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Table 1 Loss functions and corresponding Bayes estimates

Name Loss function Bayes estimate
SELF (v — 0)? Ey(011)
WSELF =0y [y (07"12)17!
7 4

w=0) 1

PLF z [E, (6%]1)]2
¥ \e v —=

ELF (3) —Cln(z)— 1 [Eg(B‘”Iz)] b
LLF expld(y — )} —d(w — 0) - 1 —d"'In (E, (exp(-db} 1))

z(a, f) x a8 o exp{—(a&, + &)}, a, >0, &> 0,i=1,2,3,4. (3.3)

The posterior distribution of a, f given T = t is obtained as

(e, A1) =%oc'”+fl—‘ﬁ"“*+~ffl exp{—(a&, + PED} [ Ae. B, Us. 1), @, p > 0,
i=1

(3.4)
where A(a, B, Uy, ;) = (1% pU) /((¢* + p)**Y), i=1,...,mand

C= / ) / " g pretit exp(—(a, + pE)) [ [ Ae. 8. Uy, t)dadp.
a=0J p=0 il
l 3.5)

Now, we are ready to propose the forms of the Bayes estimates of the unknown
parameters, reliability and hazard functions. First, we discuss the Bayes estimates
for the unknown model parameters a and f.

3.1 Bayes Estimates of @ and B

In this subsection, we present Bayes estimates of the unknown parameters « and § with
respect to various loss functions presented in Table 1. Utilizing the posterior probabil-
ity density function given by (3.4), from Table 1, the Bayes estimates of @ with respect
to the ELF and LLF can be obtained. These are respectively given by

c

A 1 © ® m+&,—c—1 pma+&;— -
@tV = [E /a . /,; @ +o—e-l gmats lexp{—(a§2+ﬂ§4)}gA(a, B. Ui,ti)dadﬂ}

and

1 1 © 0
AL 2 In|= / / m+& —1 pma+&;—1
% d C a=0 J p=0 * ﬂ

m 3.6)
xexp{—(a(d + &) + p&,)} H Aa, B, U;, ti)dadﬁ] .
i=1
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Further, the Bayes estimates of the parameter f with respect to the above mentioned
five loss functions can be deduced similarly. These expressions are skipped for the
sake of brevity.

3.2 Bayes Estimates of r(t) and h(t)

In this subsection, we introduce Bayes estimates of the reliability and hazard func-
tions. The expressions of the estimates can be obtained similar to the case as in the
previous subsection. The respective Bayes estimates of 7(f) under ELF and LLE are

obtained as
;;.(t)gN — |:l/ / r(t)—cam+§l—lﬂma+§3—l
C Ja=0Jp=0

x exp{—(a&, + pEp} [ [ Ate. 8. U, tl-)dadﬂ]
i=1

and

;}_(t)gL — _é In [% /_0 A_O am+§1—lﬁma+§3—l

m (3.7
x exp{—(dr(t) + a&, + pE)} [ [ Ae. 8, U,, t,.)dadﬁ] :
i=1

The Bayes estimates of h(f) with respect to these loss functions can be obtained
similarly. It is worth pointing that the Bayes estimates in Sects. 3.1 and 3.2 are dif-
ficult to get in explicit forms. Thus, one needs to adopt some computation tech-
niques. Various approaches have been discussed in the literature (see [13, 27, 43]).
The Lindley’s approximation and importance sampling methods are illustrated in
the next section.

4 Computing Methods

In this section, we use two useful methods to compute the Bayes estimates of the
unknown parameters as well as the reliability characteristics. First, we discuss Lind-
ley’s approximation method.

4.1 Lindley’s Approximation Method

Here, we focus on the Lindley’s method for the evaluation of Bayes estimates
obtained in Sects. 3.1 and 3.2. This method was developed by Lindley [27]. Below,
we provide a brief illustration on this approximation method. Note that using this
approach, one can approximate the ratio of two integrals of the form
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I S(nl,nz)eXp{l(nl,nzlt)+p(111,n2)}dn1d112
Ip (D) = .1
I Jo” explllny, my|0) + p(ny, ) Yy,

In (4.1), I(n;, n,|?) is the log-likelihood function and p(#,,#,) is the logarithm of the
joint prior distribution of the unknown parameters, say #; and #,. For simplicity of
the presentation, we use [ instead of I(n;,#,|t) and p instead of p(n;,#,). Applying
Lindley’s approximation method, (4.1) can be approximated as

1
Ip () = Iy, my) + 5 (D + LoEyy +lgEy + 1 Fip + 1o Fy +2p Dy, + 2p, Dy, )

4.2)

where D= Y7 X7 wpby  wy= i U= 02’;’1, 1 =0,1,2,3;i+/ =3,
U 1

Ej= (6; +wopsy,  Fy=3u:8,6; +u(8,6;+28%,  u;= % ;= ;’j;

ln;r(nl,nz) Dy =u6; + u;6; and §; is the (i, ])th element of the matrix

iYii

[_a '); " 171, where i, / =1,2. Note that the above terms are evaluated at the MLEs of
n

n, and #,. The desired partial derivatives are presented in appendix.

4.1.1 Bayes Estimates of @ and 8

To obtain Bayes estimates of « and f using Lindley’s approxima-
tion method with respect to various loss functions as in Table 1, we
have to choose d(a,f) accordingly. First, consider the LINEX loss
function. Under this loss function, I(a,p) =exp{—da}, and hence
u, = —dexp{—da}, u;, = d*exp{—da}, uy = u;, = uy; =y, =0. Thus, from
(4.2), the approximate Bayes estimate of « is

&t = —d™' In [exp(—da} + 0.5 [d* exp{~da}éy, — dexp{—da}I(a. )|

(@p=@.p)
“4.3)
where  1(a, ) = Lo82, + loy8y1655 + 3oy 81,815 + L12(8,65, + 262) +2p,6,, + 2p,6,,.  Fur-
ther, For the entropy loss function, we have 9(a, f) = a=¢,u; = —ca™“*V u;, =

cc+ a2 uy = u;, = uy; = uy, = 0. Similar to (4.3), the Bayes estimate of «
with respect to the entropy loss function is obtained as

afY =[a™ +0.5[c(c + Da~ 5, — cl(a, Ba— O (4.4)

(@p=@h)’
As discussed before, the Bayes estimates of @ with respect to the SELF, WSELF and
PLF can be obtained from (4.4) forc = —1,1 and — 2, respectively. The Bayes esti-
mates of the parameter f can be proposed similarly. These are omitted for the sake
of conciseness.
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4.1.2 Bayes Estimates of r(t) and h(t)

In this subsection, we derive Bayes estimates of r(¢) and A(f) under the loss func-
tions mentioned in Table 1. Similar to the previous subsection, the choice of
d(a, f) in (4.1) gets modified for every loss functions. Now, from (4.2), the Bayes
estimate of r(¢) with respect to the LINEX loss function is

MoYp == d” Infexp{=drD} +J (@ 1| . 4.5)

where

J(a, B) =(1/ D) (81 + Unbpy + 2u15815) + 3o 81y + U158 + Loz (56, + 141551)65,
+ Ly Buy8y,61, + (81185, +267)) + 115(B1y65,6,, + (85,81, +263)))
+2p (U611 + uy651) + 2p5(Uy 655 + 1y 615)]-

The Bayes estimate of r(#) with respect to the entropy loss function is obtained as

FOEY =[r(0) + (. )]

@p=@h’ (4.6)
Further, the Bayes estimates under SELF, WSELF and PLF can be obtained from
(4.6) after substituting c = —1,1 and — 2, respectively. The Bayes estimates of h(7)
with respect to the five loss functions can be derived analogously. These are omitted
to avoid repetitions.

4.2 Importance Sampling Method

We consider importance sampling method for the computation of Bayes estimates
of the unknown parameters and the reliability characteristics of the log-logistic
distribution. We recall that the random sample is PT-II censored. To apply this
method, we need to rewrite the posterior density function of a and f given by
(3.4) as

T(a, 1) ocGAa<m tenE Y, lnti> X GA gy (ma+&,.8,+ m) x o(a, B),
i=1

(%))
where

(m + &)~ ") exp{ pm) ﬁ p

owh= (&= X0 Ingym+é (] + foyUe

(4.8)

The following algorithm can be used to compute Bayes estimates of an arbitrary
function of unknown parameters i(a, f).
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Algorithm-1

Step 1 Generate a from GA,(m +&,& — Y, Inz,) (that is, from a Gamma dis-
tribution with shape parameter (m + &,) and scale parameter (&, — Zf”zl Inz)™h.
Step 2 For a given a as generated in Step 1, further, generate f from
GAp o (ma + &, m + &) (that is, from a Gamma distribution with shape parameter
(ma + &) and scale parameter (m + &,)7)).

Step 3 Repeat Steps 1 and 2, M times to obtain (ay, §,), (a3, 5), ..., (@4, Byy)- In
this paper, we take M = 1000.

The Bayes estimates of i(a, ) under the LLF and ELF are obtained as

1 lZZI exp{—dh(a;, ;) }o(a;, /31')]

gy =—=1In (4.9)
Hood > 0@ B)
and
M —c _%
,’/\lgi\] _ lzt:l h(;i’ﬂi) O(ai’ ﬂl>‘| ' (410)
21’:1 O(ai7 ﬁl)

Substituting ¢ = —1,1 and — 2 in (4.10), the respective Bayes estimates of h(a, §)
with respect to SELF, WSELF and PLF can be obtained. We point out that to com-
pute the Bayes estimates of a, f, 7(t) and h(f), one needs to substitute , §, () and
h(?) in place of h(a, §), respectively in (4.9) and (4.10).

Remark 4.1 Here, we discuss how to evaluate the values of the hyper-parameters
(i.e. &;i=1,2,3,4) under informative priors. The values of the hyper-parameters
play very important role to obtain Bayes estimates. The first two hyper-parameter
values &, and &, are obtained from gamma prior g,(a : &;,&,) of a and the other two
values &; and &, from other gamma prior g,(f : &;,&,) of f. We consider m samples
from LL (a, §). Then, obtain the associated MLEs of the parameters @ and f. These
are denoted by & and ﬁ’ for j =1,2,...,mfor each of these samples. Note that these
hyper-parameter values can be evaluated based on the past data set (i.e. MLEs of
parameters and number of samples m). At first, we calculate first two hyper-parame-
ters & and &,. The mean and variance of gamma prior of a i.e. a®~! exp{—&,a} are g—;

and g—;, respectively. The mean and variance of the MLEs of a for m samples are

1 A 1 m A 1 /NN . :
~ 2 & and — 377 (& — ~ 371 &)’ respectively. Therefore, the mean and vari-
ance of these MLEs are equals to the mean and variance of gamma prior of a. Thus,

2
& 1 @ . ¢ 1 “ 1N
== o d == —— & - — o .
& m; . g m—1 mz

j=1 j=1

Solving these above equations, we get
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2
1 m  aj .
<_2j—1aj> Lym &
= — 2
él = " 2 and 52 = ! PR
1 m P 1 mooa 1 m ~d 1 mo oA
ot 2 (“’ = i “’) ot e <“’ T & “’)
4.11)
Similarly, other hyper-parameters &; and &, are obtained from &, and &, replacing f
in place of a in (4.11), respectively. We may refer to Dey et al. [15], Singh et al. [41]
and Dey et al. [16] in this direction.

5 Interval Estimation

In this section, we consider interval estimation of the unknown parameters, reliability
and hazard functions of the log-logistic distribution when the random sample is PT-1I
censored. Five approaches are discussed. First, we develop observed Fisher information
matrix. This is useful to get asymptotic confidence intervals.

5.1 Observed Fisher Information Matrix

In this subsection we evaluate observed Fisher information matrix. Louis [28] derived
the Fisher information matrix using the missing information based on EM algorithm.
According to Louis method, the observed information equals to the complete informa-
tion minus the missing information. We have

Ir(a, p) = Iy(a, ) = Ly r(a, ), (5.1

where I (a, §), Iy,(a, f) and IWlT(a, p) are the observed, complete and missing infor-
mation, respectively and 7 and W are the observed and complete data, respectively.
The complete information matrix Iy, (e, ) is given as

Rer e

2 a;; a

Iy(a, p) = —E( Ay > = (a“ a”) K (5.2)
0poa  9p> 21 722 [(@.p)=(a.p)

Here, ¢* = ¢ (W;a, f) and a;; = —E[%] fork,l=1,2, where , = @,6, = f. The

missing information Iy, 7(a, B) is given as

m
i b, b
Iyyr(a,p)= ) @I (a,ﬁ):< ! ”) , (5.3)
,Z‘ S bar by (. B)=(&.p)

where by, = — ¥ R.E, [0, £* = £, +(z|t, @, f)and P, _(a, B) is the missin
i =T 2= Nz g5 b T = 21 (&1 4 wir' %> g

information at jth failure time x;.,,,., as
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Inf* O lInf*
Jiomin — da? 9adps
IW|T (a’ ﬂ) — EZJ|T,< 02{;]‘.* 02‘Tnf* ) . (54)
opoa o/ |(a,p)=(a.p)

From the 2 X2 order matrices given by (5.2) and (5.3), we compute the
observed Fisher information matrix of « and f. The variance-covariance matrix
can be obtained after inverting I,(&, ) given by (5.1). This is given by

=< var (&) cov (&,ﬁ))

e A
Iy (@ p) cov (a,f) var (B) (-5

Further, by virtue of asymptotic normality of the maximum likelihood estimates, the
asymptotic joint distribution of @ and f§ can be approximated with bivariate normal

distribution as
@y _ a var (@) cov (&, f)
<l§> N[(ﬁ)’( cov (&, f) var () >] (5.6)

Below, we obtain the distributions of 7(¢) and fz(t) given by (1.4). In this purpose,
delta method is useful (see [19]). Denote

g _ [or@® or@d) 48 - oh(t) oh(r)
w0 "\ 000 ) jpap 0T\ a0 ) gy
[(a.p)=(a.5) [(a.p)=(a.5)

Then, using Delta method, the respective variances of 7(¢) and /(r) can be approxi-
mated by

VarG(e) = |81 @ Dy | and Varho) = |8, 17" @ Dy |

From large sample theory, the respective asymptotic distributions of 7(¢) and A(r) can
be obtained as

(0 — r(t) h(t) — h(t)

— 2 ~NO,1) and ——=~
\/ Var(i@) \/ Var(h())

~ N, 1).

5.2 Asymptotic Confidence Intervals

Here, we obtain confidence intervals using two techniques. These are discussed
below. Exact distributions of the MLEs are difficult to derive. Thus, observed
Fisher information matrix is useful in constructing the asymptotic confidence
interval estimates.
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5.2.1 Normal Approximation to the MLE

To obtain the confidence intervals based on this method, we compute the
observed Fisher information matrix. It is given by (5.1). For simplicity of the

presentation, we denote 1, = Z, ,\/var(@), ny = Z, var(f), e =Z,,\var(i(?))

and r/Z =Z,n \7a\r(fz(t)), where Z, 2 is the percentile of the standard normal dis-

tribution with right-tail probability y /2. The 100(1 — y)% asymptotic confidence
intervals for the unknown parameters « and § are obtained as

(& =1, a+n,) and (B —ny B+np),

respectively. The 100(1 — y)% asymptotic confidence intervals of the reliability and
hazard functions are respectively given by

(P@0) =, #0) + ) and (h(t) =}, h(t) + 1)),

We point out that this method has a drawback. Its performance is poor when the
sample size is small. Sometimes, it produces negative lower bound. Meeker and
Escobar [33] proposed another method which is based on the log-transformed MLE.
This is presented below.

5.2.2 Normal Approximation to the Log-Transformed MLE

Denote £, = Z,/,/6,,(In&) and ¢, = Z, ,1/8,,(In f). Here, §,,(In&) and 65,(In /)

are the estimated variances of In& and In §, respectively. The 100(1 — y)% asymp-
totic confidence intervals of the log-transformed MLEs of a and f are obtained as

(Inad—¢,, Ina+¢,) and (Inf—¢p Inf+¢p).

Thus, based on this approach, 100(1 — y)% confidence intervals for @ and § are given
by

(a/¢;. ax &) and (B/g;, Bx &),

respectively, where {7 =exp{Z,,,4/d;,/a} and C; = exp {Z},/Z\/ézz/ﬁ}. Using
similar approach, the respective 100(1 — )% confidence intervals for r(f) and h(z)
are

(F(0)/ A F)X A,) and ()] Ay, (t) X Ay),

respectively, where 4, = exp {Z, Var(i(t))/#() } and 4, = exp (z,, Var(h(t))/h(0)}
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5.3 Parametric Bootstrap Confidence Intervals

For statistical inference, bootstrap is a resampling method. It is commonly used
to estimate confidence intervals. However, it can also be used for estimating bias
and variance of an estimator. The parametric bootstrap method is one of the latest
development techniques for certain kind of statistical inference. In this subsec-
tion, we construct two bootstrap procedures such as the percentile bootstrap (see
[17]) and bootstrap-z (see [20]) to propose confidence intervals of the unknown
model parameters and the reliability and hazard functions.

5.3.1 Percentile Bootstrap

We compute interval estimates using percentile bootstrap method. Note that the

confidence intervals based on the asymptotic normality property of the MLEs do

not perform up to the desired level for small sample sizes. Below, we present

algorithm to obtain percentile bootstrap (boot-p) confidence intervals.
Algorithm-2

Step-1 Based on the original dataset ¢;,i =1, ...,m, we obtain & and ﬁ from
Equations (2.2) and (2.3) using the algorithm described in Balakrishnan and
Sandhu [8].

Step-2 Basedon (U, ..., U,,), we generate a bqotstrap sample t* = (tl*, ,t;) from
log-logistic distribution. Further, obtain &*, f*, 7(¢)* and (f)* based on the gener-
ated bootstrap sample. Denote ji* = (&*, B*, #(0)*, h(1)*) and pu = (a, B, r(2), h()).

Step-3 Repeflt Step:2 for M =1000 times to obtain /2’1", ,;2;'\‘4, where
o=, B h@)),i=1, ... M.

Step-4  Arrange 4i}’s in ascending order. We denote ,ﬁz‘l) <...< ;254).

Thus, the 100(1 — y)% approximate bootstrap-p confidence intervals for u are
given by (i, \, fi ; 1_1)))- Then, the percentile bootstrap confidence intervals of
2 2

u at 95% level of confidence are (Aas)> Aors))-

5.3.2 Parametric Bootstrap-t

Another method known as parametric bootstrap-t was developed based on a
studentized pivot. It requires an estimator of the variance of the MLEs of the
unknown parameters a, f, reliability function r(f) and hazard function A(?).
Though the percentile bootstrap method is simple, the boot-t method is more
accurate when sample size is small. To compute boot-f confidence intervals, the
following algorithm can be adopted.
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Algorithm-3

Step-1 Compute the MLEs & and f from (2.2) and (2.3) using PT-II censored sam-
ples.

Step-2  Generate a bootstrap sample * = (7], ... , 77 ) based on a predefined censoring
scheme from log-logistic distribution. We compute a*, f*, #(¢)* and h(#)* based on
the bootstrap sample. Denote g* = (a*, p*, #(¢)*, h(¢)*).

Step-3 Compute the variance-covariance matrix I;‘l (a*, p*). Denote a statistic for
i=1,....M,

Hi ~ Ay ’
£/ var(fiy)

Step-4 Repeat Step—1 and Step—2, M times to obtain T;], ey T;‘M. We assume
M = 1000.

Step-5 Arrange the numbers T; ,i=1,...,M in ascending order, which is denoted
byT* <...<T* .
Hay Han

Now, the 100(1 — y)% approximate bootstrap-z confidence interval for the vector

u is given by (Tﬂ o ?ﬂ((l ))). When M = 1000, the approximate bootstrap-¢ confi-

€3] i(1-§ R R

dence interval of u at 95% level of confidence is @, 1T, )
25)” "~ H975)

5.4 HPD Credible Intervals

In this subsection, we obtain HPD credible intervals for the unknown parameters,
reliability and hazard functions of the log-logistic distribution. The sample is gen-
erated using importance sampling method. It is proposed by Chen and Shao [13].
First, we obtain HPD credible intervals for the unknown parameters @ and §. Define

@ pH
w; = —5(“ Do
iy o(a®, )
where a® and g fori =1,...,M are the posterior samples generated from Step-1

and Step-2 of Algorithm 1 for @ and f, respectively. Then, the pth quantile of @ can
be estimated by

a® = { Y P ,=_10 i
A DjmyWy <P S Xy Wy

We obtain 100(1 — y)% confidence intervals for the parameter « of the form

j JHMA-p)]
<&(H)’&( M )>’j=1,...,M—[M(1_}/)]’

where [.] denotes the greatest integer function. We take the one interval with small-
est width. Finally, the HPD credible interval of « is that interval which has the
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shortest length. Similar to the above procedure, we can construct the HPD credible
interval for . Note that the reliability and hazard functions are nonlinear. Thus, we
can not obtain HPD credible intervals of r(¢) and h(f) from HPD credible intervals
of @ and f. Next, we compute the HPD credible interval of r(¢) from the importance
sampling method. The same procedure is applicable of A(?). Define r; = r(;a?, f?),
where a® and @ fori = 1,..., M are posterior samples generated from Step-1 and
Step-2 of Algorithm 1, respectively. Let T be the ordered values of r;, i =1,..., M.
Then, the pth quantile of »(#;a, ) can be estimated by

P = { Tay P l=_10 i
Tayp 2jm V) <P S 2o W

We obtain different 100(1 — y)% intervals for r(¢;a, ) of the form
j (.fﬂM(l—m)

PO P ) j=1 . M~ M1 =)
We choose the interval with smallest width, which is the HPD credible interval of
the reliability function r(¢).
6 Real Data Analysis
Here, we consider and analyze two real data sets. First data set represents survival
times of 72 guinea pigs injected with different amount of tubercle. This data set was

provided by Bjerkedal [12]. Recently, it has been used by Khorram and Meshkani
Farahani [23] and Kharazmi et al. [22]. The first data set is given below.

Data set-1

12 15 22 24 24 32 32 33 34 38 38 43
44 48 52 53 54 54 55 56 57 58 58 59
60 60 60 60 61 62 63 65 65 67 68 70
70 72 73 75 76 76 81 83 84 85 87 91
95 96 98 99 109 110 121 127 129 131 143 146

146 175 175 211 233 258 258 263 297 341 341 376

The second data set represents average daily wind speeds (in meter/second) in
November 2007 at Elanora Heights, a northeastern suburb of Sydney, Australia.
This data set was provided by Best et al. [11]. Recently, it is used by Barot and
Patel [9]. Below, we present the second data set.

Data set-2
0.5833 0.6667 0.6944 0.7222 0.7500 0.7778 0.8056 0.8056 0.8611
0.8889 0.9167 1.0000 1.0278 1.0278 1.1111 1.1111 1.1111 1.1667

1.1667 1.1944 1.2778 1.2778 1.3056 1.3333 1.3333 1.3611 1.4444
2.1111 2.1389 2.7778
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Table 2 The MLEs, BIC, AICc, AIC, — In L and KS for the real data sets
Dist ~ Shape Scale BIC AlCc AIC —InL KS

Dataset-1 LL 2.5396 752745  788.4817  784.1023  783.9284  389.9642  0.0866
WE 1.6232  0.0138 795.6915  791.3121  791.1382  393.5691  0.1466
HL 0.0144 804.3679  802.1483  802.0912  400.0456  0.1629
EXP 0.0100 811.1611  808.9415  808.8844  403.4422 0.2113
Dataset-2 LL 5.1594  1.0648 33.2285 30.8705 30.4261 13.2131 0.0881
WE 2.5393  1.3048 43.9341 41.5762 41.1317 18.5659 0.1951
HL 1.3039 63.1443 61.8860 61.7431 29.8716 0.3759
EXP 0.8633 72.2203 70.9620 70.8191 34.4096 0.4043

For the purpose of goodness of fit test, four statistical models are considered:
weighted exponential (WE), exponential (EXP), half-logistic (HL) and log-logistic
(LL) distributions. Bayesian information criterion (BIC = klnn —21nL), second-
order Akaike’s-information criterion (AICc =2k —2InL + 2k(k+1)/(n — k — 1)),
Akaike’s information criterion (AIC =2k —2InL), negative log-likelihood cri-
terion and Kolmogorov-Smirnov (KS) statistic are used. Here, n, k and L are the
number of observations, parameters and the maximum value of the log-likelihood
function, respectively. Table 2 presents MLEs and the values of four test statistics.
From Table 2, we observe that the log-logistic distribution fits well among all other
distributions. Figure 3a, b show the histogram and the fitted probability density
plots of four models for Data set-1 and Data set-2, respectively. The density plots
are depicted using maximum likelihood method. From the graphs, we visualize that
the LL distribution covers the maximum area of the data sets comparing to other
distributions. Hence, this model can be used to make desired inference on unknown
quantities of interest. Note that the scaled total time on test (TTT) plot is useful to
detect the shape of the hazard rate function, see, for instance, Mudholkar et al. [35]
and Mahmoudi et al. [29]. Let Ty, i= 1,...,nbe the ith order statistic of the sample
(Ty,...,T,). Then, the scaled TTT transform is

¢<3) _ X To+ (=0T,
- _ ,
2[:1 T(i)

where v = 1, ..., n. It is known that the hazard rate function is increasing, decreas-
ing, bathtub and unimodal when the graph of (v/n, ¢(v/n)) is concave, convex, con-
vex followed by concave and concave followed by convex, respectively. The scaled
TTT plots of the real data sets are presented in Fig. 4. This suggests that the hazard
rate shapes of the real data sets are unimodal. We refer to Olson et al. [37], Shi
et al. [39] optimization and Shi [38] for more details on data analysis.

To obtain the desired estimates, we consider PT-II censored sample from two real
data sets with failure sample sizes m = 45 and m = 22. This is presented in Table 3.

n
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Table 3 PT-II censored data for the real data sets

Dataset- 1 12 15 22 24 33 34 38 44 48
52 53 54 54 58 58 59 60 60
62 63 65 65 70 70 72 73 75
76 85 87 91 95 96 98 99 127
129 146 146 175 175 211 263 341 376
Dataset-2 05833  0.6667 0.7500 0.7778 0.8056 0.8056 0.8889 0.9167  1.0000
1.0278 1.1111  1.1111  1.1667 1.1667 1.1944 12778 12778 1.3333
1.3611  2.1111  2.1389  2.7778
e e o e SN m GU)
Data set- 1 1)) 72 45 (13,0%43,14)
amn (9,0¥21,3%3,0%19,9)
(IIT) 72 (0%72)
Data set- 2 1) 30 22 (4,0%20,4)
an (2,0%15,2%2,0%3,2)
(II1) 30 (0%30)

Probability density function

200
Real data set-1

(@)

250

[ Histogram of Real Data
w

WE
HL

Probability density function

15

[ Histogram of Real Data
p—y

Real data set-2

(b)

Fig.3 The histograms and the plots of the probability density functions of the fitted LL, WE, EXP, HL
models for of the real data sets. Figure a represents for the real data set-1 and Figure b for the real data

set-2

For the purpose of computation of the estimates based on the real dataset, we adopt
three different censoring schemes. These are given in Table 4.

Figure 5 presents the plots of the density, reliability and hazard functions of
the best fitted model (here Log-logistic) for different censoring schemes. The den-
sity functions of the LL distribution based on the estimated values of the model
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1 r r r r r r r r r 1
09F 1 09F
08 F 1 08F
07F 1 07F
06 1 06
< <
Z 05F 2 05f
< <
04F 1 04f
03F 1 03F
02f 1 02f
0.1 F 1 0.1F
0 0
0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
(v/n) (v/n)
(@) (b)

Fig.4 The scaled TTT plot for the guinea pigs data and average daily wind speeds data sets. Figure a is
for the guinea pigs data set and Figure b for the average daily wind speeds data set
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15 2 25 3 o 05 1 15 2 25 3
Real data set-2 Real data set-2

15
Real data set-2

(@ (e) ®

Fig.5 The plots of the density, reliability and hazard functions based on different censoring schemes (a,
b, ¢ Real data set-1, d, e, f) Real data set-2)

parameters are depicted in Fig. 5. Figure 6 represents the plots of the histogram
and probability density functions of the LL distributions based on the real life data
sets when parameters are estimated using MLE, Bayesian approach (via Lindley’e
approximation and importance sampling methods). Here we consider the Bayes
estimates with respect to the squared error loss function. The proper as well as the
improper priors are considered. Figure 6a, b are for the real data set-1 and Fig. 6c, d
for the real data set-2. All the figures are drawn in MATLAB software.
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Fig.6 The histogram of the real data sets and density plots based on proper and noninformative priors
(a, b Real data set-1, ¢, d Real data set-2]

Tables 5 and 6 present the estimated values of the model parameters and the reli-
ability characteristics for two real data sets considered above. Table 5 represents
for the guinea pigs data and Table 6 is for the wind speed data. In tables, Prior-I
and Prior-II denote the proper and improper priors, respectively. The value of 7 is
taken as 0.5, which is required for the estimation of r(f) and A(f). The values of the
MLEs are presented in third column. Other columns are for the Bayes estimates.
Corresponding to each estimand, we have two rows. For Bayes estimates, first row is
for the estimates obtained using Lindley’s approximation and second row is for the
importance sampling method. In Table 7, we provide 95% confidence intervals of
a, f, r(t) and h(¢). Third column is for censoring schemes. The confidence intervals
based on five different approaches are provided in 4th-8th columns.
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7 Simulation Results

In this section, we carry out a detailed simulation study to observe the performance
of the estimates for the unknown parameters, reliability and hazard functions. For
specific total sample sizes (n), failure sample sizes (m) and censoring schemes, we
generate PT-II censored samples from the LL distribution. To generate PT-II cen-
sored sample, we use the algorithm proposed by Balakrishnan and Sandhu [8]. Note
that the simulation is performed in R-3.5.1 software for 1000 sets of random obser-
vations. We consider the values of n as 15, 25 and that of m as 10, 15 and 25. The
true values of a and g are taken to be 0.75 and 0.25, respectively. For the study of
approximate Bayes estimates, we consider proper (prior-I) as well as noninforma-
tive (prior-II) priors. In case of the proper priors, for m = 10, 15 and 25, we get the
values of hyper-parameters as (&, &,, &3, &) = (0.11098,0.01267,0.11003, 0.03262),
(0.19343, 0.03465, 0.19156, 0.09580) and (0.42555, 0.13541, 0.41248, 0.37348),
respectively. For the noninformative priors, we take &, = &, = §; = §, = 0. The bias
and mean squared errors (MSEs) of the estimates are computed using the following
formula:

M M
| A0) _ 1 AG) 2
bias = A—/I;(Ql —61> and MSE = ]\_/Ig <61 —9,) s

where / = 1,2,3 and 4. Here, 0, = @, 6, = f§,0; = r(t) and §, = h(t). For the reliabil-
ity and hazard functions, r = 0.5 is taken. Further, for computing the Bayes estimates
with respect to the LINEX and entropy loss functions, we assume p = 0.0005 and
g = 0.5, respectively. For computation purpose, seven schemes with various values
of n and m are taken (see Table 8). We present the bias and MSEs of the proposed
estimates of the unknown parameters, reliability and hazard functions in Tables 9,
10 and 11.

Tables 12 and 13 provide the average length of 95% confidence interval estimates.
In Tables 9, 10 and 11, we have thirteen columns. Second and third columns are
respectively for the censoring schemes and MLEs. Fourth to eighth and ninth to thir-
teen columns are for the Bayes estimates with respect to the proper and noninforma-
tive priors, respectively. Further, each scheme has four rows. The absolute bias of
the estimates are allocated to the first and third rows. Second and fourth rows are

Table 8 PT-II censoring scheme CS No

©S) n m ..., U,

I 15 10 (5,0%9)

D) (1#5,0%5)
(1) (3,0%8,2)
Iv) 15 (0*15)

) 25 15 (5%2,0%13)
(VD (10,0*14)
(VID) 25 (0%25)
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for the MSEs. For the case of Bayes estimates, first and second rows are due to the
Lindley’s approximation technique. The third and fourth rows are for the importance
sampling method. In Tables 12 and 13, each scheme has a single row. The following
observations are pointed out from the simulation study.

(i) We provide the estimates for a and § in Tables 9 and 10. Here, we observe
that the Bayes estimates with respect to the proper as well as noninformative
priors perform better than the MLEs in terms of the absolute bias and MSE.
Among the five Bayes estimates, the one corresponding to the precautionary
loss function has superior performance than others in terms of both absolute
bias and MSE. The Bayes estimates with respect to the noninformative priors
outperforms that with respect to the proper priors. It is observed that Lindley’e
approximation technique gives better result than that of the importance sam-
pling technique. The absolute bias and MSE decrease when m increases for
fixed n. As expected, the absolute bias and MSE of the Bayes estimates under
SELF and LLF are very close when p is small.

(ii)) Tables 10 and 11 represent the estimates for the reliability and hazard func-
tions. The value of #, say 0.5 is taken. For # = 0.5, the true value of r(¢) is
0.37288. The respective true value of A(f) is 0.94067 when ¢ = 0.5. Similar
pattern to the estimates of the parameters a and f as in (i) is observed for r(¢)
and h(?). These are skipped for the sake of brevity.

(iii) Table 12 provides the average lengths of the 95% confidence intervals of the
unknown model parameters « and f. Among the asymptotic intervals, esti-
mates obtained via normal approximation to the MLE (NA) performs better
than the normal approximation to the log-transformed MLE (NL). From boot
type intervals, Boot-7 provides better confidence interval estimates than Boot-p
method. Considering all the five methods together, it is observed that the HPD
method outperforms others. Further, the average lengths of the confidence
intervals decrease when effective sample size increases.

(iv) In Table 13, we present the average lengths of the 95% confidence intervals
for #(#) and A(¢). Similar behaviour to the interval estimates of a and f is also
observed for that of r(¢) and h(z).

8 Concluding Remarks

In this paper, we studied estimation of the unknown parameters, reliability and haz-
ard functions of a log-logistic distribution. The inference is proposed based on the pro-
gressive type-1I censored sample. We derived various point estimates. In particular,
the maximum likelihood estimates, Bayes estimates are obtained. To compute MLEs,
EM algorithm has been used. For Bayesian estimation, we considered five loss func-
tions. Few of them are symmetric and others are asymmetric in nature, which fits some
real life situations well. Bayes estimates are difficult to produce in closed form. So,
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we used two approximation techniques: Lindley’s approximation and importance sam-
pling methods. One advantage of the importance sampling method is that it can be
used to derive credible interval estimates of the unknown quantities. Further, we intro-
duced various interval estimates. In this purpose, five techniques such as two asymp-
totic methods, two boot type methods and highest posterior density method are used.
Two real life data sets are taken and analysed. Based on the data sets, we proposed the
estimates of the parameters, reliability and hazard functions. For the purpose of visual
analysis, we have also plotted various graphs for the real data sets. A massive simula-
tion study is performed to compute the proposed point and interval estimates. The esti-
mates are presented in various tables for different censoring schemes. From the tables,
various useful observations are made.
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Appendix A

(% In p+% In 1))
pett?
. We obtain the following expressions, which are required to com-

For the present problem we have (n,,7,) = (a, p). Denote w(t;;a, f) =

and g(ti;a’ ﬂ) ﬂ”’+fa
pute the desired Bayes estimates.

3w(tza, [)(B*(In f)* + 17 (In1,)?)
p* +1t!

Z (U; +2) <2w3(ti;a,ﬁ)—

(ﬁ“(ln Ay +ti(Int)’)
p* +1f >

(A1)

Lo =% 2a<z U, +m> > (U +2)c(t;a ﬂ)<(a—2)(a— D +2¢3(t:a, )

i=1

=3(a — D¢(t;;, ﬁ))],
(A2)

- - U +2 g(tl,a /)]
Iy =— z% Y Ui+m Z —_ <2ag<r,.;a, pyw(isa. )
i=1 i=1

=2¢(t;0, )1 +alnf) — (a — Daw(t;a, f) + (@ — Daln f + 2a — 1>] s
(A3)
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o (Ui +2)c(t;a, p)
L, =— 2 #

5 [2In g+ a(n p)* = 2(1 + aIn p)w (1,52, B)
44

i=1

e, py - 0P ) + 17 (ng)” ] .
o pe+1

(A4)

The following derivatives are useful for the computation of the Bayes estimates of

r(t) and h(r) as discussed in Sect. 4.1.2. Under the LINEX loss function,

I(a, ) = exp{—dr(t)}. Denote i(t;a, f) = LLRI=ArO) g,

(B*+1)°
uy =1In (é)z(t;a, B, (A5)
uy = - —“’(t;;’ﬂ 3 (A6)
(In(£)* (B + dp*t® — 2*)u(t;a, p)
uy, =—2 . : (A7)
(p* +17)
a((a + D* + p%ad + 2)t* — (a — l)tz")t(t;a, B
Uy = , (A.8)
(B + 19))?
<a(—ﬁ2"’ — dpu* + %) In(L) — (B + t")2>1(r;a, )
4 . (A9)

Uy =Upp =

BB + 1)

When the loss function is taken to be the entropy loss function, then 9(a, ) = ().
Denote Q(#;a, f) = t*r(t)~¢. We compute the following derivatives:

uy =cf*In (é)r(t)ﬁ(t;a, p), (A.10)

uy = — acfp~VrO)Qta, p), (A.11)

C(ln(é))z(ﬂ“ + c1)Q(ta, f)

(A.12)
(5 + 12)?

Uy =

s

ac((a + 1)* + (ac + Dt*)Q(t;a, f)
P+ 1)

Uy = > (A.13)
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c<—ﬂ“ — aln(£)(p" + 1) - t")Q(t;a, )
BB + 12)? '

(A.14)

Uy =Upp =
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