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Abstract
In this paper, we investigate the estimation problems of unknown parameters of the 
Kumaraswamy distribution under type I progressive hybrid censoring. This censor-
ing scheme is a combination of progressive type I and hybrid censoring schemes. 
We derive the maximum likelihood estimates of parameters using an expectation-
maximization algorithm. Bayes estimates are obtained under different loss functions 
using the Lindley method and importance sampling procedure. The highest poste-
rior density intervals of unknown parameters are constructed as well. We also obtain 
prediction estimates and prediction intervals for censored observations. A Monte 
Carlo simulation study is performed to compare proposed methods and one real data 
set is analyzed for illustrative purposes.

Keywords  Bayes estimates · Importance sampling · Lindley approximation · 
Maximum likelihood estimates · One-sample prediction

1  Introduction

In many practical studies of interest including survival analysis, clinical trials, 
industrial and mechanical applications, often reliability and life testing experi-
ments are performed and based on observed data, different procedures can be used 
to obtain various inferences upon relevant unknown quantities such as failure prob-
abilities, quantiles, reliability characteristics and so on. In general, efficiency of dif-
ferent inferences rely upon observed data. There are many situations including life 
testing experiments where observed data are censored in nature. In the literature, 
different censoring methodologies have been proposed to appropriately analyze vari-
ous physical phenomena. Type I and type II censoring schemes are the two most 
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commonly used procedures in this regard. Consider a situation where n items are 
put on a life testing experiment. Then, in type I censoring, the experiment continues 
up to a pre-specified time duration T and no observation is recorded after this time 
point. Similarly, in type II censoring, it continues until a pre-fixed number of failures 
m ( ≤ n ) has been observed. The drawback of type I censoring is that one may not 
collect enough failure observations before the end of experiment, and the drawback 
of type II censoring is that the experimental time may be very long. Epstein [18] 
initially discussed the concept type I hybrid censoring as a mixture of these two 
basic censoring schemes. In this case, the experiment is terminated at a random time 
T0 given by min{Xm, T} , where T is a pre-specified time and Xm is the m-th fail-
ure time. Childs et al. [10] proposed a life test, called type II hybrid censoring, that 
stops when a pre-specified m number of failure times is observed or the time T has 
reached, whichever happens later. That is, the termination time of the experiment is 
T0 = max{Xm, T} . According to the above construction, the number of failure obser-
vations is random. In particular, it is possible to have less than m failure observa-
tions in type I hybrid censoring, while in type II hybrid censoring, we will have at 
least m failure observations. If an experimenter desires to remove live units at points 
other than the final termination point of a life test, the above censoring schemes will 
not be of use to the experimenter. The above censoring schemes do not allow for 
units to be removed from the test at points other than the final termination point. 
As indicated by Balakrishnan and Aggarwala [4], this allowance will be desirable 
when a compromise between reduced time of experimentation and the observation 
of at least some extreme lifetimes is sought, or when some of the surviving units in 
the experiment that are removed early on can be used for some other tests. As in the 
case of accidental breakage of experimental units or loss of contact with individuals 
under study, the loss of test units at points other than the termination point may also 
be unavoidable. These reasons lead us into the area of progressive censoring. Given 
the censoring scheme (R1,R2,… ,Rm) and n units put simultaneously on a life test, 
the operation of progressive censoring is to remove some surviving units from the 
test before the termination time of experiment. Kundu and Joarder [9] and Childs 
et al. [25] combined the concepts of type I hybrid censoring and progressive censor-
ing to develop the type I progressive hybrid censoring scheme. The type I progres-
sive hybrid censoring scheme can briefly be described as follows.

Suppose n test units are put on a life test and the progressive censoring scheme 
(R1,R2,… ,Rm) are fixed before the start of experiment. The time point T is also 
fixed beforehand. At the time of the first failure X1∶m∶n , R1 surviving units are 
removed randomly from the test. At the time of the second failure X2∶m∶n , R2 units 
are removed from the (n − R1 − 2) surviving units, and so on, and the test continues 
till its termination point T∗ = min{T ,Xm∶m∶n} . If the m-th failure occurs before T, 
that is Xm∶m∶n < T  , then the observed failures are given by X1∶m∶n,X2∶m∶n,… ,Xm∶m∶n 
and the test stops at time Xm∶m∶n by removing remaining Rm = n − m −

∑m−1

i=1
Ri 

units from the test. On the other hand, if Xm∶m∶n > T  , then we observe the sample 
X1∶m∶n,X2∶m∶n,… ,Xj∶m∶n , ( j < m ), and the test stops at time T by removing remain-
ing R∗

j
= n − j −

∑j

i=1
Ri units from the test. In this topic, much statistical inference 

work has been done by several authors including, for example, [22, 28, 35]. A recent 



1285

1 3

Annals of Data Science (2022) 9(6):1283–1307	

account on type I progressive hybrid censoring can be found in the monograph by 
Balakrishnan and Cramer [5], or in the review article by Balakrishnan and Kundu 
[7]. Among others, we also refer to [20, 29, 36] for some more useful inferential 
results on this scheme.

Kumaraswamy [24] proposed a more general probability density function for 
double bounded random processes, which is known as Kumaraswamy distribution. 
Although the Kumaraswamy distribution was introduced in 1980, this distribution 
seems to have attracted attention comparatively recently. The probability density 
function (PDF) and cumulative distribution function (CDF) of Kumaraswamy distri-
bution are given by, respectively,

and

where 𝛼 > 0 and 𝛽 > 0 are shape parameters. The range of this distribution is the 
same as that of the beta distribution. Both of the distributions share many structural 
properties depending upon their parameter values. Interestingly, the CDF of Kumar-
aswamy distribution has a nice analytical expression. This makes it more useful in 
practice than the beta distribution whose CDF is not easily tractable. Eldin et al. [15] 
indicated that the Kumaraswamy distribution is applicable to many natural phenom-
ena whose outcomes have lower and upper bounds, such as the heights of individu-
als, scores obtained on a test, atmospheric temperatures, hydrological data, etc. They 
also pointed out that the Kumaraswamy distribution could be appropriate in situa-
tions where scientists use probability distributions which have infinite lower and/
or upper bounds to fit data, when in reality the bounds are finite. In recent past few 
years, the Kumaraswamy distribution and its extension have gained some attention 
among researchers and interesting results have been obtained, see for instance, [2, 
11, 12, 21, 31, 32, 38, 40]. One may also refer to [8, 16, 17, 34, 41] for some general 
interesting inference results.

Recently, the Kumaraswamy distribution was applied to the area of reliabil-
ity analysis. It seems that the applications of the Kumaraswamy distribution will 
be criticized because its range is between 0 and 1. We provide two reasons for the 
necessity of the Kumaraswamy distribution as follows. The first reason is that, in 
practice, the lifetime cannot be actually infinite and there is a large enough point 
on the probability tail at the time the products are dropped or replaced, and hence 
it may be appropriate to use a bound distribution to analyze these lifetime data (see, 
e.g., [1, 42]). The second reason is that there are many random variables and random 
processes appeared from practical applications whose element values are bounded 
both at the lower and upper ends. (see, e.g., [19, 37]). Under these two reasons, the 
data from associated ares can be normalized and are fitted by a bound distribution 
with range (0, 1). Therefore, Kumaraswamy distribution could be used as a potential 
model in reliability and lifetime studies as well as other application fields (see, e.g., 
[33]). In the last five years, some researchers applied the Kumaraswamy distribu-
tion and its extension to the reliability analysis. For example, [14] dealt with the 

(1)fX(x; �, �) = ��x�−1(1 − x�)(�−1), 0 ≤ x ≤ 1,

FX(x; �, �) = 1 − (1 − x�)� , 0 ≤ x ≤ 1,
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Bayesian and non-Bayesian estimation of multicomponent stress-strength reliabil-
ity. Sultana et al. [39] considered estimation of unknown parameters � and � under 
hybrid censoring and obtained point and interval estimates by using maximum 
likelihood method and Bayesian approach. Kizilaslan and Nadar [27] discussed the 
uniformly minimum variance unbiased and exact Bayes estimates of reliability in a 
multicomponent stress-strength model based on a bivariate Kumaraswamy distribu-
tion. In this paper, we investigate the problems of estimation and prediction for the 
Kumaraswamy distribution based on type I progressive hybrid censoring.

The rest of this paper is organized as follows: In Sect. 2, we compute the maxi-
mum likelihood estimators (MLEs) of unknown parameter � and � of the Kumaras-
wamy distribution based on type I progressively hybrid censored samples. We also 
derive the Bayes estimators under three different loss functions. In Sect. 3, we obtain 
the prediction estimates and prediction intervals of censored observations in Bayes-
ian framework. A Monte Carlo simulation study is performed in Sect. 4 to compare 
the performance of proposed estimator. A real data set is analyzed in Sect.  5 for 
illustrative purposes. Finally, some conclusions are made in Sect. 6.

2 � Parameter Estimations

In this section, we are going to derive the MLEs of the parameters from a type I pro-
gressively hybrid censored Kumaraswamy samples. We will also obtain the Bayes 
estimators under different loss function and for the parameters of Kumaraswamy 
distribution.

2.1 � Maximum Likelihood Estimation

Suppose that n units from a Kumaraswamy distribution are placed on a test with 
type I progressive hybrid censoring. The observed data under considered censoring 
scheme may be one of the following two cases:

Then, the likelihood function with type I progressive hybrid censoring is given by

For the simplicity of notation, we will use xi instead of xi∶m∶n . The likelihood func-
tion of � and � can be written as

Case I: {X1∶m∶n,X2∶m∶n,… ,Xm∶m∶n}, if Xm∶m∶n < T ,

Case II: {X1∶m∶n,X2∶m∶n,… ,Xj∶m∶n}, if Xj∶m∶n < T < Xj+1∶m∶n.

⎧⎪⎪⎨⎪⎪⎩

L(�, �) ∝
∏m

i=1
f (xi∶m∶n)

�
1 − F(xi∶m∶n)

�Ri

, for Case I,

L(�, �) ∝
∏j

i=1
f (xi∶m∶n)

�
1 − F(xi∶m∶n)

�Ri
�
1 − F(T)

�R∗
j

, for Case II.
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where d and U(�, �) are, respectively, given by

and

The log-likelihood function may then be written as

Taking derivatives with respect to � and � of Eq. (3) and equating them to zero, we 
obtain the likelihood equations for � and � to be

and

where

and

(2)L(�, � ∣ x) ∝ �d�deU(�,�)

d∏
i=1

x�−1
i

,

d =

{
m, for Case I,

j, for Case II,

U(�, �) =

⎧
⎪⎪⎨⎪⎪⎩

m�
i=1

{(Ri + 1)� − 1} log (1 − x�
i
), for Case I,

j�
i=1

{(Ri + 1)� − 1} log (1 − x�
i
) + �R∗

j
log (1 − T�), for Case II.

(3)logL(�, � ∣ x) ∝ d log � + d log � + U(�, �) + (� − 1)

d∑
i=1

log xi

(4)
� logL

��
=

d

�
+ u1(�, �) +

m∑
i=1

log xi = 0,

(5)
� log L

��
=

d

�
+ u2(�) = 0,

u1(�, �) =

⎧
⎪⎪⎨⎪⎪⎩

−

m�
i=1

{(Ri + 1) � − 1} x�
i
log (xi)

(1 − x�
i
)

, for Case I,

−

j�
i=1

{(Ri + 1)� − 1} x�
i
log (xi)

(1 − x�
i
)

−
� R∗

j
T� log(T)

(1 − T�)
, for Case II,
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Note that u2(�) does not depend on � . Thus, Eq. (5) yields the MLE of � to be

Substituting Eq. (6) into Eq. (4), the MLE of � can be obtained by solving the non-
linear equation

Because Eq. (7) cannot be solved in an explicit form, a numerical method such as 
Newton–Raphson iteration must be employed to obtain the MLE of � . The New-
ton–Raphson algorithm requires the second derivatives of the log-likelihood func-
tion. Since the computations of the derivatives may be very complicated, [23] used 
the fixed point approach to solve the MLE. They also proved that the graphical 
method proposed by [6] reduces in fact to the fixed point solution. The fixed point 
approach is easy to implement and does not require the derivation of a given func-
tion. Its convergence speed is faster than the Newton–Raphson method.

2.1.1 � EM Algorithm

It is impossible to obtain the MLEs 𝛼̂ and 𝛽  of parameters � and � in closed forms 
because the likelihood equations are nonlinear in nature. One can employ some 
numerical methods mentioned above to solve these equations for MLEs. Instead 
an expectation-maximization (EM) algorithm can be implemented for this pur-
pose. This algorithm which was introduced by [13]. Recall that under type I pro-
gressive hybrid censoring, two different situations may arise. For the Case I, we 
assume that X = (X(1),X(2),… ,X(m)) denote the observed data and 
Y = (Y1,Y2,… ,Ym) denote the progressively censored data, where Yg denotes a 
1 × Rg vector such that Yg = (Yg1, Yg2,… , YgRg

) , g = 1, 2,… ,m . Here the complete 
data set can be written as Z = (X,Y) . Likewise for the Case II, we assume that 
X = (X(1),X(2),… ,X(j)) are observed data, Y = (Y1,Y2,… ,Yj) are the progres-
sively censored data, where Ys is a 1 × Rs vector such that Ys = (Ys1, Ys2,… , YsR) , 
s = 1, 2,… , d , and Y� = (Y �

1
, Y �

2
,… , Y �

R∗
j

) are the censored data when the experi-
ment stops. The complete data set for this case can be written as Z = (X,Y,Y�) . 
Following [3], we write the likelihood function as

u2(�) =

⎧
⎪⎪⎨⎪⎪⎩

m�
i=1

(Ri + 1) log (1 − x�
i
), for Case I,

j�
i=1

(Ri + 1) log (1 − x�
i
) + R∗

j
log (1 − T�), for Case II.

(6)𝛽 = −
d

u2(𝛼̂)
.

(7)𝛼̂ = −
d

u1(𝛼̂, 𝛽) +
∑m

i=1
log xi

.
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where

and

We apply E-step of the algorithm on M and N and then observe that

and

The expectations involved in the above two expressions are computed as

log L(�, � ∣ x) =

{
M, for Case I,

M + N, for Case II,

M = n log � + n log � + (� − 1)

d∑
i=1

log xi + (� − 1)

d∑
i=1

log(1 − x�
i
)

+ (� − 1)

d∑
i=1

Ri∑
k=1

log yik + (� − 1)

d∑
i=1

Ri∑
k=1

log(1 − y�
ik
),

N = (� − 1)

R∗
j∑

l=1

log y�
l
+ (� − 1)

R∗
j∑

l=1

log(1 − y�
l

�
).

M = n log 𝛼 + n log 𝛽 + (𝛼 − 1)

d∑
i=1

log xi + (𝛽 − 1)

d∑
i=1

log(1 − x𝛼
i
)

+ (𝛼 − 1)

d∑
i=1

Ri∑
k=1

E[logYik ∣ Yik > xi]

+ (𝛽 − 1)

d∑
i=1

Ri∑
k=1

E[log(1 − Y𝛼

ik
) ∣ Yik > xi],

N = (𝛼 − 1)

R∗
j∑

l=1

E[logY �
l
∣ Y �

l
> T] + (𝛽 − 1)

R∗
j∑

l=1

E[log(1 − Y �𝛼
l
) ∣ Y �

l
> T].

E(logYik ∣ Yik > xi) =
𝛼𝛽

1 − FX(xi; 𝛼, 𝛽) ∫
1

xi

t𝛼−1 log t (1 − t𝛼)𝛽−1 dt

= A(xi; 𝛼, 𝛽),

E(log(1 − Y𝛼

ik
) ∣ Yi > xi) =

𝛼𝛽

1 − FX(xi; 𝛼, 𝛽) ∫
1

xi

log(1 − t𝛼) t𝛼−1 (1 − t𝛼)𝛽−1 dt

= B(xi; 𝛼, 𝛽),

E[log Y �
l
|Y �

l
> T] =

𝛼𝛽

1 − FX(T; 𝛼, 𝛽) ∫
1

T

t𝛼−1 log t , (1 − t𝛼)𝛽−1 dt

= C(T; 𝛼, 𝛽),
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and

Thus, we have

and

In M-step, we maximize the above functions with respect to parameters � and � . In 
Case I, given the j-th stage estimate of � , the updated (j + 1)-th estimate can be com-
puted from the following equation:

Subsequently, the estimate of parameter � can be obtained as

Proceeding similarly for the Case II, we obtain the updated estimate of � by solving 
the equation

The updated estimate of � can then be obtained as

This iterative process can be repeated until the desired accuracy is achieved.

2.2 � Bayesian Estimation

In this section, we derive the Bayes estimators of unknown parameters � and � of 
Kumaraswamy distribution based on type I progressive hybrid censoring. These 

E[log(1 − Y �𝛼
l
)|Y �

l
> T] =

𝛼𝛽

1 − FX(T; 𝛼, 𝛽) ∫
1

T

log(1 − t𝛼) t𝛼−1 (1 − t𝛼)𝛽−1 dt

= D(T; 𝛼, 𝛽).

M = n log � + n log � + (� − 1)

d∑
i=1

log xi + (� − 1)

d∑
i=1

log(1 − x�
i
)

+ (� − 1)

d∑
i=1

RiA(xi; �, �) + (� − 1)

d∑
i=1

RiB(xi; �, �),

N = R∗
j

[
(� − 1)C(T; �, �) + (� − 1)D(T; �, �)

]
.

n

𝛼
+

d∑
i=1

log xi − (𝛽(𝛼) − 1)

d∑
i=1

x𝛼
i
log xi

1 − x𝛼
i

+

d∑
i=1

RiA(xi; 𝛼(j), 𝛽(j)) = 0.

𝛽(𝛼) = −
n∑d

i=1

�
RiB(xi; 𝛼(j), 𝛽(j)) + log(1 − x𝛼

i
)
� .

n

𝛼
+

d∑
i=1

log xi − (𝛽(𝛼) − 1)

d∑
i=1

x𝛼
i
log xi

1 − x𝛼
i

+

d∑
i=1

RiA(xi; 𝛼(j), 𝛽(j)) + R∗
j
C(T; 𝛼(j), 𝛽(j)) = 0.

𝛽(𝛼) = −
n∑d

i=1

�
RiB(xi; 𝛼(j), 𝛽(j)) + log(1 − x𝛼

i
)
�
+ R∗

j
D(T; 𝛼(j), 𝛽(j))

.
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estimators are obtained under symmetric and asymetric loss function, such as 
squared error, linex and entropy loss functions. The most useful loss function for 
obtaining Bayes estimators is the squared error loss which is defined as 
LS(𝜇, 𝜇̂) = (𝜇̂ − 𝜇)2 , where � is estimated by 𝜇̂ . We know that the corresponding 
bayes estimator 𝜇̂S of � is the posterior mean of � . However, the linex loss is 
defined as Ll(𝜇, 𝜇̂) = eh (𝜇̂−𝜇) − h (𝜇̂ − 𝜇) − 1 , h ≠ 0, where h is the shape parame-
ter of the loss function. For further details one can see [43]. The corresponding 
Bayes estimator of � under this loss function is obtain as 𝜇̂L = −

1

h
log {E𝜇(e

−h𝜇|x)} . 
Whereas, the entropy loss function is defined as Le(𝜇, 𝜇̂) = (

𝜇̂

𝜇
)w − w log (

𝜇̂

𝜇
) − 1 , 

w ≠ 0 . For this loss function, the Bayes estimator is obtained as 𝜇̂E = E𝜇(𝜇
−w|x) 1

w . 
To make Bayesian inference, we need to assume the prior distributions of 
unknown parameters.

Here we assume that � has a prior gamma distribution with hyper-parameters a 
and b, � has a prior gamma distribution with hyper-parameters p and q, and � and 
� are independent. Thus, the joint prior is of the form

where a, b, p, and q are positive real numbers. We mention that when both the 
model parameters � and � are unknown then there does not exist a natural conjugate 
bivariate prior distribution for unknown parameters. In such situations gamma prior 
distributions may be considered which are highly flexible as well. We refer to [26] 
for further discussion on this topic. It follows that the joint posterior distribution of 
� and � is given by

where

Since the posterior distribution in Eq.  (8) is intractable and hence, the posterior 
means cannot be obtained in closed forms. This indicates that we can apply the 
method proposed by [30] or importance sampling algorithm to obtain the desired 
estimators of � and � , and this is discussed in the next subsection.

2.2.1 � Lindley Method

Here, we use Lindley method to obtain bayes estimators of the unknown param-
eter. It is seen that all the Bayes estimators 𝜇̂S , 𝜇̂L , and 𝜇̂E are posterior expecta-
tion of some parametric function of unknown parameters. Therefore, the Bayes 
estimator of g(�, �) under some loss function with respect to the distribution 
�(�, �|x) , is given by

𝜋(𝛼, 𝛽) ∝ 𝛼a−1e−b𝛼𝛽p−1e−q𝛽 , 𝛼 > 0, 𝛽 > 0,

(8)�(�, ��x) = c−1�d+a−1�d+p−1e−q�eU(�,�)e−�(b−
∑d

i=1
log xi),

c = ∫
∞

0 ∫
∞

0

�d+a−1�d+p−1e−q�eU(�,�)e−�(b−
∑d

i=1
log xi) d� d�.
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where l(�, � ∣ x) is the log-likelihood function of (�, �) and �(�, �) = log�(�, �) . 
Using the Lindley method, the approximation of ĝ(𝛼, 𝛽) can be written as

Here �i,j is the (i, j)-th elements of matrix 
[
−

�2l

����

]−1 , i, j = 1, 2 and g�� is the second 
order partial derivative of g(�, �) with respect to � and similar interpretations hold 
for other expressions as well. All quantities are evaluated at the MLEs (𝛼̂, 𝛽) and 
involved expressions are given below as

where

ĝB(𝛼, 𝛽) =
∫

∞

0 ∫
∞

0

g(𝛼, 𝛽)el(𝛼,𝛽∣x)+𝜌(𝛼,𝛽) d𝛼 d𝛽

∫
∞

0 ∫
∞

0

el(𝛼,𝛽∣x)+𝜌(𝛼,𝛽) d𝛼 d𝛽

,

(9)

ĝ(𝛼, 𝛽) ≈g(𝛼̂, 𝛽) +
1

2

[(
ĝ𝛼𝛼 + 2ĝ𝛼𝜌𝛼

)
𝜎̂𝛼𝛼 +

(
ĝ𝛽𝛼 + 2ĝ𝛽 𝜌̂𝛼

)
𝜎̂𝛽𝛼 +

(
ĝ𝛼𝛽 + 2ĝ𝛼𝜌̂𝛽

)
𝜎̂𝛼𝛽

+

(
ĝ𝛽𝛽 + 2ĝ𝛽 𝜌̂𝛽

)
𝜎̂𝛽𝛽

]
+

1

2

[(
ĝ𝛼𝜎̂𝛼𝛼 + ĝ𝛽 𝜎̂𝛼𝛽

)(
l̂𝛼𝛼𝛼𝜎̂𝛼𝛼 + l̂𝛼𝛽𝛼𝜎̂𝛼𝛽 + l̂𝛽𝛼𝛼𝜎̂𝛽𝛼

+ l̂𝛽𝛽𝛼𝜎̂𝛽𝛽

)
+

(
ĝ𝛼𝜎̂𝛽𝛼 + ĝ𝛽 𝜎̂𝛽𝛽

)(
l̂𝛽𝛼𝛼𝜎̂𝛼𝛼 + l̂𝛼𝛽𝛽 𝜎̂𝛼𝛽 + l̂𝛽𝛼𝛽 𝜎̂𝛽𝛼 + l̂𝛽𝛽𝛽 𝜎̂𝛽𝛽

)]
.

l̂𝛼𝛼 =
𝜕2l

𝜕𝛼2

|||||𝛼=𝛼̂,𝛽=𝛽
= −

d

𝛼̂2
+ U𝛼𝛼 , l̂𝛽𝛽 =

𝜕2l

𝜕𝛽2

|||||𝛼=𝛼̂,𝛽=𝛽
= −

d

𝛽2
,

l̂𝛼𝛼𝛼 =
𝜕3l

𝜕𝛼3

|||||𝛼=𝛼̂,𝛽=𝛽
=

2d

𝛼̂3
+ U𝛼𝛼𝛼 , l̂𝛽𝛼𝛼 =

𝜕3L

𝜕𝛽𝜕𝛼2

|||||𝛼=𝛼̂,𝛽=𝛽
= U𝛽𝛼𝛼 ,

l̂𝛽𝛼 =
𝜕2l

𝜕𝛽𝜕𝛼

|||||𝛼=𝛼̂,𝛽=𝛽
= l̂𝛼𝛽 =

𝜕2l

𝜕𝛼𝜕𝛽

|||||𝛼=𝛼̂,𝛽=𝛽
= U𝛼𝛽

l̂𝛽𝛽𝛽 =
𝜕3l

𝜕𝛽3

|||||𝛼=𝛼̂,𝛽=𝛽
=

2d

𝛽3
, l̂𝛽𝛽𝛼 =

𝜕3l

𝜕𝛽𝜕𝛼2

|||||𝛼=𝛼̂,𝛽=𝛽
= 0,

𝜌̂𝛼 =
(a − 1)

𝛼̂
− b, and 𝜌̂𝛽 =

(p − 1)

𝛽
− q,
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and

In the above computations, we consider g(�, �) = � and g(�, �) = � to obtain 
the desired Lindley approximations of the Bayes estimates of � and � , respec-
tively. For the squared error loss function Ls , we get g(�, �) = � , g� = 1 , 
g�� = g�� = g�� = g�� = g� = 0 . Similarly, when g(�, �) = � , g� = 1 , 
g�� = g�� = g�� = g�� = g� = 0 . However, for the linex loss function Ll , in this case 
we have

g(�, �) = e−h � , g� = −h e−h � , g�� = h2 e−h � , g�� = g�� = g�� = g� = 0 . Simi-
larly, for g(�, �) = � we can also calculate the required trems in Eq.  (9). Finally, 
for the entropy loss function Le , in this case we notice that g(�, �) = �−w , 
g� = −w�−(w+1) , g�� = w(w + 1)�−(w+2) and g�� = g�� = g�� = g� = 0 . Similarly, 
for g(�, �) = � we can also calculate the required trems in Eq. (9).

2.2.2 � Importance Sampling

The Lindley method cannot be used to construct the Bayes intervals of the unknown 
parameters. In this section, we provide the importance sampling method for comput-
ing the Bayes estimates of parameters and also construct the highest posterior den-
sity (HPD) intervals of parameters. Let G(a, b) be the density function of a gamma 

U�� =

⎧
⎪⎪⎨⎪⎪⎩

−

m�
i=1

(Ri + 1)x�
i
log (xi)

(1 − x�
i
)

, for Case I,

−

j�
i=1

(Ri + 1)x�
i
log (xi)

(1 − x�
i
)

−
R∗
j
T� log(T)

(1 − T�)
, for Case II,

U�� =

⎧
⎪⎪⎨⎪⎪⎩

−

m�
i=1

{(Ri + 1)� − 1}x�
i
(log (xi))

2

(1 − x�
i
)2

, for Case I,

−

j�
i=1

{(Ri + 1)� − 1}x�
i
(log (xi))

2

(1 − x�
i
)2

−
�R∗

j
T�(log(T))2

(1 − T�)2
, for Case II,

U��� =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

−

m�
i=1

{(Ri + 1)� − 1}x�
i
(1 + x�

i
)(log (xi))

3

(1 − x�
i
)3

, for Case I,

−

j�
i=1

{(Ri + 1)� − 1}x�
i
(1 + x�

i
)(log (xi))

3

(1 − x�
i
)3

−
� R∗

j
T�(1 + T�)(log(T))3

(1 − T�)3
, for Case II,

U��� =

⎧
⎪⎪⎨⎪⎪⎩

−

m�
i=1

(Ri + 1)x�
i
(log (xi))

2

(1 − x�
i
)2

, for Case I,

−

j�
i=1

(Ri + 1)x�
i
(log (xi))

2

(1 − x�
i
)2

−
R∗
j
T�(log(T))2

(1 − T�)2
, for Case II.
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distribution with parameter a and b. We can rewrite the joint posterior distribution 
of � and � as

where

and h(�, �) = e−
∑d

i=1
log(1−x�

i
)
�
q − V(�, �)

�−d−p . The following steps are used to obtain 
the Bayes estimators of g(�, �) . 

Step 1. Generate �1 ∼ G�(⋅, ⋅).
Step 2. Generate �1 ∼ G�∣�(⋅, ⋅).
Step 3. Repeat the above two steps s times and generate samples (�1, �1) , 
(�2, �2),… , (�s, �s).
Step 4. Now, the Bayes estimate of g(�, �) under Ls , Ll , Le loss functions are, 
respectively, given by 

 and 

The Bayes estimates of � and � can be obtained by considering g(�, �) = � and 
g(�, �) = � in the above computation, respectively.

3 � Prediction of Censored Observations

Predicting the censored observations on the basis of the known information is an 
important issue in statistics. Bayesian approach is useful in predicting the cen-
sored observations by using the predictive distribution. Here we obtain the pre-
diction estimates and prediction intervals of censored observations based on the 
information that observed data come from a type I progressively hybrid censored 

�(�, � ∣ x) ∝ G�∣�

(
d + p, q − V(�, �)

)
G�

(
d + a, b −

d∑
i=1

log xi

)
h(�, �),

V(�, �) =

⎧
⎪⎪⎨⎪⎪⎩

m�
i=1

(Ri + 1) log (1 − x�
i
), for Case I,

d�
i=1

(Ri + 1) log (1 − x�
i
) + R∗

j
log (1 − T�), for Case II,

g̃BS(𝛼, 𝛽) =

∑s

i=1
g(𝛼i, 𝛽i)h(𝛼i, 𝛽i)∑s

i=1
h(𝛼i, 𝛽i)

,

g̃BL(𝛼, 𝛽) = −
1

h
log

�∑s

i=1
e−h g(𝛼i,𝛽i)h(𝛼i, 𝛽i)∑s

i=1
h(𝛼i, 𝛽i)

�
,

g̃BE(𝛼, 𝛽) =

�∑s

i=1
g(𝛼i, 𝛽i)

−w h(𝛼i, 𝛽i)∑s

i=1
h(𝛼i, 𝛽i)

�−
1

w

.
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sample. Let x = (x1, x2,… , xd) denote a type I progressively hybrid censored sam-
ple with the censoring scheme (R1,R2,… ,Rd) . Further, let yi = (yi1, yi2,… , yiRi

) 
be the lifetimes of units which are censored at the i-th stage. We wish to obtain 
the prediction estimate of y ( = yik , k = 1, 2,… ,Ri , i = 1, 2,… , d ) and also con-
struct the prediction interval. The conditional distribution of y given type I pro-
gressively hybrid censored data is obtained as

for k = 1, 2,… ,Ri and i = 1, 2,… , d . By forming the product of Eqs. (3) and (8), 
and integrating out over the set {(𝛼, 𝛽); 0 < 𝛼 < ∞, 0 < 𝛽 < ∞} , the predictive dis-
tribution is obtained as

Under squared loss function, the Bayes predictor of y is the mean of predictive dis-
tribution. That is,

where

One can use the importance sampling to obtain ŷ . Let {(�l, �l), l = 1, 2,… ,N} 
denote the samples generated from the posterior distribution �(�, �|x) as described 
in Sect. 2.2.2. Then, we have

We mention that the prediction of censored observation that occurs after T can be 
taken care similarly.

Next, we obtain the prediction intervals of censored observations. The survival 
function given type I progressively hybrid censored data can be obtained as

f (y ∣ x, 𝛼, 𝛽) ∝ k

(
Ri

k

) k−1∑
j=0

(−1)k−1−j
(
k − 1

j

)
(1 − F(xi))

j−Ri (1 − F(y))Ri−1−jf (y), y > xi,

f ∗(y ∣ x) = ∫
∞

0 ∫
∞

0

f (y ∣ x, �, �)�(�, � ∣ x) d� d�.

ŷ = ∫
1

xi

yf ∗(y ∣ x) dy

= ∫
∞

0 ∫
∞

0

I(xi ∣ x, 𝛼, 𝛽)𝜋(𝛼, 𝛽 ∣ x) d𝛼 d𝛽,

I(xi ∣ x, �, �) =∫
1

xi

yf (y ∣ x, �, �) dy

=k

(
Ri

k

) k−1∑
j=0

(−1)k−1−j
(
k − 1

j

)
∫

1

xi

y(1 − F(xi))
j−Ri f (y)(1 − F(y))Ri−j−1 dy

=k

(
Ri

k

) k−1∑
j=0

(−1)k−1−j
(
k − 1

j

)
(1 − x�

i
)�(j−Ri) ∫

(1−x�
i
)�

0

zRi−j−1(1 − z
1

� )
1

� dz.

ŷ =

∑N

l=1
I(𝛼l, 𝛽l)h(𝛼l, 𝛽l)∑N

l=1
I(𝛼l, 𝛽l)

.
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Then, the posterior predictive survival function is

Finally, the two-sided 100(1 − �)% equi-tailed prediction interval (L, U) of censored 
observation y can be computed by solving the following nonlinear equations:

4 � Simulation Study

In this section, we perform a Monte Carlo simulation study to compare the per-
formance of different estimators of unknown parameters of the Kumaraswamy 
distribution. We also assess the behavior of predictors of censored observations 
under the considered censoring scheme. The performance of different estimators 
is compared in terms of corresponding average estimates and mean square error 
(MSE) values. For this purpose, we generate type I progressively hybrid censored 
samples using various sampling schemes by considering different combinations 
of (n, m) and assuming that T is either 0.53 or 0.79. We used the R statistical soft-
ware for all computations. The MLEs of � and � are computed by using the EM 
algorithm. Bayes estimates of parameters are computed with respect to a gamma 
prior distribution under some symmetric and asymmetric loss functions. These 
estimates are computed by using Lindley method and importance sampling tech-
niques. Both MLEs and Bayes estimates of parameters are obtained for arbitrarily 
taken unknown parameters � = 1.5 and � = 2.5 . Accordingly hyperparameters in 
gamma prior are assigned as a = 3 , b = 2 , p = 5 , and q = 2 . The removal pat-
terns of progressive censoring schemes are listed in Table 1. In Table 2, we tabu-
late all the average estimates of � and � along with MSEs. In this table, LI and 
IS represent the Bayes estimates obtained by using Lindley method and impor-
tant sampling, respectively, under squared error loss function. The values in the 

S(t ∣ x, �, �) = k

(
Ri

k

) k−1∑
j=0

(−1)k−1−j
(1 − F(xi))

j−Ri (1 − F(t))k−1−j

Ri − j
.

S(t ∣ x) = ∫
∞

0 ∫
∞

0

S(t ∣ x, �, �)�(�, � ∣ x) d� d�.

S(L ∣ x) = 1 −
�

2
and S(U ∣ x) =

�

2
.

Table 1   Removal patterns 
of units in various censoring 
schemes (Here, (1∗5, 0) , for 
example, means that the 
censoring scheme employed is 
(1, 1, 1, 1, 1, 0).)

(n,m) Censoring Scheme

S1 S2 S3 S4

(30,10) (20, 0∗9) (2∗10) (2∗4, 3∗3, 1∗3) (0∗9, 20)

(30,15) (15, 0∗14) (1∗15) (2∗3, 3∗3, 0∗9) (0∗14, 15)

(40,20) (20, 0∗19) (1∗20) (2∗5, 3∗3, 1, 0∗11) (0∗19, 20)

(40,30) (10, 0∗29) (2∗5, 0∗25) (2∗2, 3∗2, 0∗26) (0∗29, 10)
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Table 2   Average estimates and MSE values of estimates of � and � for different choices of T, where 
Bayes estimates are claculated under squared error loss

(n, m) Method T = 0.53 T = 0.79

S1 S2 S3 S4 S1 S2 S3 S4

(30,10) MLE� 1.0036 0.9685 0.9574 0.9205 1.0737 0.9723 0.9739 0.9202
(0.2463) (0.2894) (0.2012) (0.2430) (0.1913) (0.2865) (0.2840) (0.2418)

MLE� 1.9042 3.1675 2.4908 1.8040 2.3330 1.7982 1.8507 1.6370
(0.2588) (0.2456) (0.2861) (0.2414) (0.2232) (0.2810) (0.2460) (0.2910)

LI� 1.7210 1.8832 1.7839 1.0119 1.6644 1.0488 0.8960 1.0657
(0.0488) (0.1469) (0.0806) (0.2381) (0.0270) (0.2035) (0.3648) (0.1885)

LI� 1.7375 2.6066 2.6503 2.0843 3.1618 2.2053 1.6458 2.1714
(0.1813) (0.0824) (0.0226) (0.1727) (0.1804) (0.0868) (0.1296) (0.1079)

IS� 1.1103 1.1245 1.1568 1.1351 1.3964 1.1196 1.1763 1.0799
(0.2293) (0.1741) (0.1563) (0.1703) (0.0918) (0.1883) (0.1474) (0.2094)

IS� 1.9056 1.8082 1.9677 2.8753 2.1565 2.7105 2.6539 2.8788
(0.1429) (0.2048) (0.0849) (0.1512) (0.1992) (0.0577) (0.0456) (0.1516)

(30,15) MLE� 1.0078 1.0224 0.9714 1.0737 1.1331 1.0864 1.0737 1.0425
(0.2499) (0.2364) (0.2869) (0.1844) (0.1480) (0.1819) (0.1941) (0.2179)

 MLE� 1.6771 1.8816 1.8475 1.8857 2.2651 2.1783 2.0487 1.7298
(0.2786) (0.2679) (0.2457) (0.2642) (0.2156) (0.2047) (0.2524) (0.2469)

 LI� 1.2772 1.9251 1.6074 0.9634 1.6143 1.6304 1.3591 0.9855
(0.0495) (0.1807) (0.0115) (0.2878) (0.0130) (0.0170) (0.0198) (0.1825)

 LI� 1.7800 3.1363 1.7814 1.8547 2.3452 2.0213 1.9716 1.9139
(0.2182) (0.2049) (0.2162) (0.2162) (0.0239) (0.2291) (0.2791) (0.2434)

 IS� 1.2298 1.1684 1.1046 1.4123 1.3131 1.1331 1.2172 1.0884
(0.1514) (0.1537) (0.1943) (0.0801) (0.0840) (0.5423) (0.1133) (0.2054)

 IS� 2.1380 2.3143 1.7791 2.0661 2.0652 2.7119 2.1359 3.0245
(0.2763) (0.1886) (0.2111) (0.0946) (0.2275) (0.0941) (0.2702) (0.2900)

(40,20) MLE� 1.0000 1.0200 0.9558 1.0389 1.1361 1.0734 1.0619 1.0395
(0.2553) (0.2369) (0.3021) (0.2196) (0.1421) (0.1895) (0.2023) (0.2190)

MLE� 1.6237 1.7015 1.7820 1.8155 1.7227 1.7504 1.8528 1.9173
(0.2390) (0.2494) (0.2892) (0.2707) (0.2041) (0.2038) (0.2926) (0.2456)

LI� 1.3245 1.5376 1.1829 0.9656 1.3067 1.1983 1.3941 0.9478
(0.0307) (0.0014) (0.1005) (0.2854) (0.0373) (0.0909) (0.0111) (0.3048)

LI� 1.7807 2.2864 1.8501 2.1649 2.0428 2.6186 3.2436 1.7254
(0.1172) (0.0456) (0.1223) (0.1122) (0.1154) (0.0140) (0.1529) (0.1999)

IS� 1.1179 1.0665 1.0869 0.9303 1.2176 1.0897 1.1408 1.1626
(0.1877) (0.2172) (0.2113) (0.3456) (0.1367) (0.1953) (0.1614) (0.1491)

IS� 1.9465 2.3497 1.7790 3.0406 2.0662 2.6925 2.1331 3.0338
(0.1254) (0.1544) (0.1955) (0.1358) (0.1746) (0.0801) (0.1449) (0.1981)
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parentheses denote the MSEs. Bayes estimates and MSES, corresponding to linex 
loss and entropy loss functions with loss parameters h, w are taken the values 
−0.25, 0.5 , are represented in Tables  3 and 4. Small values of h and w provide 
reasonably good estimates. Also, as increase in effective sample size then the cor-
responding MSEs tend to decrease. From all these tables, we can observe that 
Bayes estimates of parameters � and � shows better performance than the corre-
sponding MLEs. It can be further observed that the MLEs of unknown parameters 
compete well with the respective Lindley estimates. The performance of impor-
tance sampling estimates is quite good for almost all the tabulated schemes and 
for both the parameters. We tend to get better estimation results with an increase 
in effective sample size. Since Lindley estimates are computationally less inten-
sive and their performance is also good, we recommend its use in making further 
inference upon unknown parameters of the Kumaraswamy distribution under type 
I progressive hybrid censoring.

5 � Real Data Analysis

In this section, we analyze a real data set which describes the monthly water 
capacity from the Shasta reservoir in California, USA. The data are recorded for 
the month of February from 1991 to 2010 (see for details on the website http://
cdec.water​.ca.gov/reser​voir_map.html). The observed data are: 

Table 2   (continued)

(n, m) Method T = 0.53 T = 0.79

S1 S2 S3 S4 S1 S2 S3 S4

(40,30) MLE� 1.1579 1.1357 1.1395 1.3270 1.2177 1.2074 1.1896 1.3137

(0.1375) (0.1503) (0.1474) (0.0456) (0.1025) (0.1067) (0.1174) (0.0499)

MLE� 1.7809 1.7780 1.7879 3.3329 1.9755 1.9856 1.9574 3.3231

(0.1897) (0.1871) (0.1665) (0.1732) (0.1886) (0.1588) (0.1870) (0.1740)

LI� 1.0296 1.1051 1.1980 1.2395 1.6700 1.6350 1.6529 1.8680

(0.2212) (0.1559) (0.0911) (0.0678) (0.0289) (0.0182) (0.0233) (0.1354)

LI� 1.7358 1.6421 1.7160 2.3059 1.8213 1.8582 1.8138 2.8804

(0.1238) (0.1359) (0.1145) (0.0376) (0.1105) (0.1118) (0.1108) (0.1147)

IS� 1.1056 1.1261 1.1059 1.1147 1.1867 1.2010 1.1125 1.1043

(0.1859) (0.1802) (0.1863) (0.1695) (0.1327) (0.1140) (0.1740) (0.1737)

IS� 1.8855 1.8794 1.8771 1.8374 1.9460 2.0183 1.8316 1.7772

(0.1158) (0.1496) (0.1419) (0.1803) (0.1653) (0.1535) (0.1586) (0.1016)

http://cdec.water.ca.gov/reservoir_map.html
http://cdec.water.ca.gov/reservoir_map.html
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Table 3   Average estimates and MSE values of Bayes estimates, of � and � for different choices of T 
when h = −0.25 and w = −0.25

(n, m) Method T = 0.53 T = 0.79

S1 S2 S3 S4 S1 S2 S3 S4

(30,10) LI�(Ll) 1.460 1.429 1.548 1.603 1.473 1.572 1.561 1.672
(0.026) (0.024) (0.041) (0.043) (0.029) (0.038) (0.024) (0.041)

LI� (Ll) 2.425 2.679 2.780 2.804 2.630 2.672 2.807 2.607
(0.056) (0.049) (0.042) (0.047) (0.039) (0.028) (0.046) (0.029)

LI�(Le) 1.601 1.427 1.458 1.563 1.470 1.621 1.596 1.652
(0.032) (0.037) (0.025) (0.038) (0.049) (0.028) (0.040) (0.062)

LI� (Le) 2.775 2.660 2.639 2.810 2.682 2.753 2.643 2.714
(0.048) (0.039) (0.029) (0.037) (0.044) (0.050) (0.039) (0.037)

IS�(Ll) 1.473 1.491 1.498 1.599 1.598 1.560 1.582 1.479
(0.038) (0.032) (0.028) (0.047) (0.038) (0.042) (0.049) (0.037)

LI� (Ll) 2.601 2.651 2.628 2.730 2.709 2.692 2.683 2.671
(0.049) (0.037) (0.028) (0.035) (0.027) (0.039) (0.037) (0.046)

IS�(Le) 1.620 1.598 1.583 1.591 1.569 1.583 1.601 1.625
(0.038) (0.041) (0.036) (0.031) (0.027) (0.038) (0.038) (0.038)

IS� (Le) 2.710 2.587 2.683 2.619 2.640 2.480 2.596 2.615
(0.051) (0.046) (0.038) (0.038) (0.027) (0.039) (0.044) (0.039)

(30,15) LI�(Ll) 1.498 1.585 1.604 1.429 1.577 1.602 1.611 1.496
(0.023) (0.022) (0.037) (0.043) (0.029) (0.038) (0.034) (0.028)

 LI� (Ll) 2.69 2.685 2.680 2.702 2.630 2.710 2.652 2.617
(0.048) (0.046) (0.038) (0.032) (0.052) (0.039) (0.046) (0.037)

 LI�(Le) 1.572 1.483 1.491 1.593 1.604 1.581 1.623 1.655
(0.032) (0.046) (0.036) (0.048) (0.047) (0.037) (0.048) (0.026)

 LI� (Le) 2.705 2.676 2.651 2.628 2.618 2.605 2.651 2.579
(0.043) (0.028) (0.026) (0.047) (0.049) (0.036) (0.029) (0.039)

 IS�(Ll) 1.453 1.495 1.488 1.591 1.496 1.576 1.636 1.652
(0.037) (0.048) (0.053) (0.029) (0.048) (0.038) (0.027) (0.043)

 IS� (Ll) 2.359 2.608 2.627 2.482 2.469 2.715 2.691 2.278
(0.042) (0.046) (0.052) (0.0514) (0.029) (0.047) (0.052) (0.046)

 IS�(Le) 1.620 1.582 1.489 1.511 1.604 1.588 1.590 1.612
(0.033) (0.046) (0.036) (0.028) (0.029) (0.037) (0.038) (0.045)

 IS� (Le) 2.720 2.482 2.701 2.409 2.644 2.474 2.628 2.651
(0.034) (0.049) (0.050) (0.038) (0.029) (0.038) (0.036) (0.048)
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Table 3   (continued)

(n, m) Method T = 0.53 T = 0.79

S1 S2 S3 S4 S1 S2 S3 S4

40,20) LI�(Ll) 1.467 1.598 1.594 1.620 1.477 1.942 1.596 1.490

(0.046) (0.028) (0.043) (0.039) (0.051) (0.032) (0.048) (0.041)

 LI� (Ll) 2.428 2.675 2.490 2.680 2.631 2.672 2.652 2.609

(0.038) (0.026) (0.048) (0.041) (0.038) (0.029) (0.046) (0.042)

 LI�(Le) 1.591 1.632 1.589 1.490 1.464 1.487 1.617 1.625

(0.044) (0.049) (0.036) (0.038) (0.027) (0.035) (0.038) (0.048)

 LI� (Le) 2.603 2.609 2.431 2.643 2.618 2.595 2.615 2.574

(0.028) (0.034) (0.053) (0.047) (0.043) (0.029) (0.026) (0.049)

 IS�(Ll) 1.590 1.453 1.568 1.519 1.490 1.596 1.603 1.579

(0.036) (0.041) (0.033) (0.039) (0.052) (0.048) (0.054) (0.039)

 IS� (Ll) 2.6044 2.702 2.677 2.683 2.565 2.609 2.639 2.878

(0.042) (0.046) (0.054) (0.051) (0.033) (0.037) (0.048) (0.036)

 IS�(Le) 1.421 1.483 1.583 1.612 1.449 1.480 1.409 1.605

(0.028) (0.049) (0.053) (0.038) (0.027) (0.035) (0.038) (0.038)

 IS� (Le) 2.701 2.682 2.689 2.619 2.644 2.628 2.609 2.670

(0.056) (0.041) (0.031) (0.038) (0.026) (0.035) (0.048) (0.052)
(40,30) LI�(Ll) 1.462 1.485 1.574 1.590 1.477 1.483 1.449 1.432

(0.046) (0.029) (0.052) (0.048) (0.051) (0.038) (0.045) (0.038)
 LI� (Ll) 2.704 2.730 2.408 2.684 2.633 2.672 2.657 2.630

(0.038) (0.036) (0.041) (0.054) (0.032) (0.047) (0.040) (0.052)
 LI�(Le) 1.427 1.482 1.583 1.419 1.594 1.448 1.590 1.573

(0.049) (0.046) (0.056) (0.038) (0.047) (0.035) (0.048) (0.045)
 LI� (Le) 2.637 2.661 2.620 2.589 2.589 2.625 2.618 2.671

(0.058) (0.038) (0.056) (0.042) (0.049) (0.036) (0.051) (0.045)
 IS�(Ll) 1.419 1.456 1.438 1.605 1.464 1.596 1.699 1.579

(0.029) (0.034) (0.033) (0.027) (0.039) (0.049) (0.037) (0.029)
 IS� (Ll) 2.640 2.702 2.667 2.753 2.657 2.710 2.653 2.628

(0.049) (0.044) (0.034) (0.051) (0.029) (0.037) (0.046) (0.036)
 IS�(Le) 1.429 1.482 1.490 1.601 1.604 1.488 1.469 1.487

(0.028) (0.049) (0.036) (0.048) (0.073) (0.031) (0.036) (0.048)
 IS� (Le) 2.630 2.658 2.483 2.619 2.644 2.473 2.469 2.579

(0.038) (0.049) (0.026) (0.038) (0.037) (0.039) (0.043) (0.045)



1301

1 3

Annals of Data Science (2022) 9(6):1283–1307	

Table 4   Average estimates and MSE values of Bayes estimates, of � and � for different choices of T 
when h = 0.5 and w = 0.5

(n, m) Method T = 0.53 T = 0.79

S1 S2 S3 S4 S1 S2 S3 S4

(30,10) LI�(Ll) 1.437 1.582 1.489 1.609 1.492 1.578 1.580 1.684
(0.032) (0.029) (0.047) (0.039) (0.035) (0.042) (0.028) (0.037)

 LI� (Ll) 2.602 2.691 2.423 2.402 2.638 2.664 2.699 2.623
(0.062) (0.055) (0.039) (0.051) (0.050) (0.044) (0.049) (0.046)

 LI�(Le) 1.607 1.622 1.606 1.581 1.586 1.609 1.446 1.428
(0.039) (0.047) (0.051) (0.039) (0.054) (0.043) (0.052) (0.056)

 LI� (Le) 2.781 2.669 2.643 2.769 2.724 2.773 2.660 2.719
(0.056) (0.044) (0.047) (0.039) (0.047) (0.049) (0.043) (0.041)

 IS�(Ll) 1.430 1.443 1.480 1.459 1.605 1.577 1.602 1.609
(0.044) (0.039) (0.046) (0.039) (0.044) (0.050) (0.052) (0.039)

 LI� (Ll) 2.635 2.687 2.655 2.709 2.723 2.740 2.703 2.711
(0.053) (0.038) (0.052) (0.041) (0.045) (0.052) (0.049) (0.048)

 IS�(Le) 1.627 1.622 1.603 1.609 1.612 1.607 1.609 1.611
(0.047) (0.044) (0.040) (0.037) (0.033) (0.039) (0.041) (0.043)

IS� (Le) 2.453 2.430 2.427 2.470 2.466 2.457 2.612 2.619
(0.042) (0.048) (0.039) (0.041) (0.039) (0.044) (0.048) (0.042)

(30,15) LI�(Ll) 1.475 1.487 1.598 1.623 1.606 1.609 1.622 1.599
(0.033) (0.035) (0.039) (0.038) (0.041) (0.047) (0.039) (0.035)

 LI� (Ll) 2.723 2.710 2.718 2.7152 2.655 2.697 2.660 2.622
(0.052) (0.048) (0.044) (0.052) (0.057) (0.053) (0.049) (0.041)

 LI�(Le) 1.579 1.449 1.477 1.483 1.473 1.611 1.619 1.627
(0.037) (0.050) (0.042) (0.049) (0.053) (0.050) (0.059) (0.038)

 LI� (Le) 2.711 2.719 2.663 2.632 2.624 2.622 2.640 2.602
(0.048) (0.033) (0.037) (0.034) (0.053) (0.049) (0.041) (0.047)

 IS�(Ll) 1.589 1.600 1.583 1.612 1.445 1.487 1.638 1.420
(0.046) (0.049) (0.048) (0.037) (0.056) (0.057) (0.054) (0.059)

 IS� (Ll) 2.621 2.627 2.634 2.638 2.429 2.433 2.418 2.476
(0.058) (0.054) (0.059) (0.066) (0.042) (0.063) (0.061) (0.057)

 IS�(Le) 1.627 1.623 1.611 1.615 1.445 1.487 1.479 1.466
(0.049) (0.048) (0.056) (0.037) (0.044) (0.041) (0.051) (0.054)

IS� (Le) 2.701 2.467 2.716 2.424 2.449 2.623 2.700 2.689
(0.039) (0.055) (0.057) (0.059) (0.036) (0.053) (0.051) (0.057)
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Table 4   (continued)

(n, m) Method T = 0.53 T = 0.79

S1 S2 S3 S4 S1 S2 S3 S4

(40,20) LI�(Ll) 1.432 1.455 1.471 1.459 1.617 1.622 1.627 1.609

(0.048) (0.033) (0.047) (0.052) (0.057) (0.044) (0.058) (0.046)

 LI� (Ll) 2.601 2.623 2.628 2.609 2.700 2.692 2.704 2.687

(0.041) (0.033) (0.055) (0.049) (0.051) (0.040) (0.052) (0.057)

 LI�(Le) 1.602 1.643 1.640 1.665 1.687 1.675 1.679 1.650

(0.049) (0.056) (0.043) (0.052) (0.051) (0.058) (0.043) (0.057)

 LI� (Le) 2.682 2.679 2.684 2.691 2.703 2.685 2.682 2.664

(0.047) (0.045) (0.049) (0.052) (0.053) (0.048) (0.055) (0.058)

 IS�(Ll) 1.622 1.438 1.426 1.426 1.449 1.621 1.609 1.626

(0.056) (0.048) (0.052) (0.059) (0.058) (0.054) (0.062) (0.050)

 IS� (Ll) 2.672 2.723 2.728 2.733 2.667 2.659 2.670 2.674

(0.048) (0.052) (0.058) (0.054) (0.047) (0.049) (0.051) (0.057)

 IS�(Le) 1.602 1.613 1.636 1.623 1.422 1.432 1.415 1.422

(0.055) (0.053) (0.059) (0.044) (0.056) (0.051) (0.049) (0.047)

IS� (Le) 2.709 2.712 2.719 2.723 2.687 2.689 2.664 2.710

(0.059) (0.056) (0.048) (0.044) (0.050) (0.054) (0.046) (0.049)
(40,30) LI�(Ll) 1.620 1.585 1.604 1.627 1.604 1.621 1.609 1.596

(0.034) (0.048) (0.056) (0.055) (0.053) (0.042) (0.049) (0.050)
 LI� (Ll) 2.721 2.729 2.684 2.690 2.431 2.432 2.447 2.463

(0.043) (0.050) (0.047) (0.056) (0.045) (0.059) (0.047) (0.055)
 LI�(Le) 1.603 1.612 1.609 1.607 1.644 1.669 1.645 1.650

(0.055) (0.057) (0.059) (0.047) (0.048) (0.052) (0.058) (0.057)
 LI� (Le) 2.671 2.710 2.730 2.693 2.655 2.660 2.659 2.691

(0.059) (0.044) (0.047) (0.048) (0.057) (0.042) (0.057) (0.059)
 IS�(Ll) 1.424 1.429 1.431 1.443 1.427 1.460 1.459 1.457

(0.033) (0.037) (0.039) (0.031) (0.038) (0.047) (0.043) (0.036)
 IS� (Ll) 2.688 2.675 2.682 2.655 2.670 2.695 2.660 2.681

(0.054) (0.057) (0.042) (0.058) (0.036) (0.041) (0.053) (0.044)
 IS�(Le) 1.601 1.609 1.614 1.618 1.624 1.633 1.629 1.640

(0.035) (0.037) (0.041) (0.053) (0.057) (0.043) (0.048) (0.052)
 IS� (Le) 2.677 2.683 2.687 2.701 2.429 2.433 2.429 2.446

(0.042) (0.053) (0.051) (0.047) (0.046) (0.053) (0.048) (0.056)
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0.338936 0.430681 0.431915 0.580194 0.695970 0.724626

0.742563 0.757583 0.759932 0.768007 0.783660 0.785339

0.787408 0.811556 0.815627 0.828689 0.842316 0.843485

0.847413 0.849868

We first fit the Kumaraswamy distribution to this data set. For comparison pur-
poses, three more distributions such as generalized exponential, Poisson-expo-
nential, and Burr XII distributions are also fitted. We judge the goodness of fit 
using various criteria, for example, negative log-likelihood criterion (NLC), 
Akaike information criterion (AIC), corrected AIC (AICc), and Bayesian infor-
mation criterion (BIC). Smaller values of these criteria indicate that a model bet-
ter fits the data. From the values reported in Table 5, we conclude that the Kumar-
aswamy distribution fits the data set good compared to the other models. Thus, 
the considered model can be used to make inference from the given data set. We 
consider different censoring schemes S1 = (10, 0∗9) and S2 = (2, 0∗4, 5, 3, 0∗3) by 
taking (n,m) = (20, 10) (here (1∗5, 0) , for example, means that the censoring 
scheme employed is (1, 1, 1, 1, 1, 0)). The generated data under these schemes 
are listed in Table 6. The MLEs and Bayes estimates under all the considered loss 
functions, of both the unknown parameters are presented in Table 7. In this table, 

Table 5   Goodness of fit tests for different distributions

𝛼̂ 𝛽 NLC AIC AICc BIC

Kumaraswamy 9.99956 0.0268196 11.6331 27.2662 27.5995 30.5933
Generalized Exponential 9.99988 3.48229 12.9608 29.9216 30.2549 33.2487
Poisson-exponential 4.93358 29.9967 11.8426 27.6852 28.0185 31.0123
Burr XII 17.150 18.000 12.878 29.756 30.0894 33.0832

Table 6   Censoring schemes and generated data

(n, m) T Scheme Data

(20,10) 0.74 S1 = (10, 0∗9) 0.338936 0.431915 0.580194 0.742563 0.759932
0.785339 0.787408 0.815627 0.828689 0.847413

(20,10) 0.81 S2 = (2, 0∗4, 5, 3, 0∗3) 0.338936 0.431915 0.580194 0.695970 0.742563
0.783660 0.787408 0.811556 0.842316 0.849868
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the Bayes estimates are obtained with respect to a noninformative prior distribu-
tion where hyper-parameters are assigned as zero value. In general, the Bayes 
estimates are smaller than the MLEs. In Tables  8 and 9, we present prediction 
estimates and prediction intervals of observations censored before and after T at 
different stages i and R∗

j
 of the experiment.

Table 7   Estimates of � and � for different choices of T 

Method Scheme T = 0.74 T = 0.81

� � � �

MLE S1 1.688 1.817 2.142 1.731
S2 1.824 2.330 2.124 2.244

Lindley S1 L
s

1.457 1.975 1.574 1.948
L
l
, (h = −0.25) 1.617 2.376 1.765 2.470

L
l
, (h = 0.5) 1.670 2.189 1.795 2.271

L
e
, (w = −0.25) 1.692 2.271 1.728 2.307

L
e
, (w = 0.5) 1.607 2.360 1.664 2.590

 S2 L
s

1.793 2.449 1.780 2.230
L
l
, (h = −0.25) 1.689 2.251 1.640 2.480

L
l
, (h = 0.5) 1.652 2.652 1.674 2.753

L
e
, (w = −0.25) 1.640 2.764 1.763 2.415

L
e
, (w = 0.5) 1.654 2.251 1.702 2.289

Importance 
sampling

S1 L
s

1.660 1.854 2.919 2.414
L
l
, (h = −0.25) 1.652 2.758 1.642 2.840

L
l
, (h = 0.5) 1.607 2.756 1.644 2.237

L
e
, (w = −0.25) 1.197 2.329 1.240 2.398

L
e
, (w = 0.5) 1.245 2.391 1.294 2.357

 S2 L
s

1.384 1.593 1.570 2.975
L
l
, (h = −0.25) 1.425 2.758 1.470 2.783

L
l
, (h = 0.5) 1.419 2.790 1.570 2.681

L
e
, (w = −0.25) 1.442 2.775 1.399 2.738

L
e
, (w = 0.5) 1.429 2.735 1.427 2.687

Table 8   Prediction estimates and prediction intervals for the observations censored before T 

The support of Kumaraswamy random variable is [0, 1]
When the upper bound of prediction interval is beyond 1, one can use 1 to be the upper bound

Scheme i k T = 0.74 i k T = 0.81

Prediction Interval Prediction Interval

S1 1 1 0.4206 (0.0769, 1.9104) 1 1 0.4314 (0.0987, 2.0346)
2 0.4611 (0.0978, 2.2109) 2 0.4661 (0.1174, 2.4022)

S2 3 1 0.6892 (0.0961, 2.0895) 3 1 0.7021 (0.1257, 2.2133)
2 0.7229 (0.0988, 2.4716) 2 0.7403 (0.1166, 2.5449)
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6 � Conclusions

In this paper, we consider the estimation and prediction problems for Kumaraswamy 
distribution when data come from a type I progressive hybrid censoring. The MLEs 
and Bayes estimates are derived. We use the EM algorithm to obtain the MLEs, 
and also use the Lindley method and importance sampling approach to obtain the 
Bayes estimates under various loss functions. The simulation results show that the 
proposed methods perform well. A numerical example are also analyzed using the 
proposed methods of estimation and prediction.
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