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Abstract

In this paper, we investigate the estimation problems of unknown parameters of the
Kumaraswamy distribution under type I progressive hybrid censoring. This censor-
ing scheme is a combination of progressive type I and hybrid censoring schemes.
We derive the maximum likelihood estimates of parameters using an expectation-
maximization algorithm. Bayes estimates are obtained under different loss functions
using the Lindley method and importance sampling procedure. The highest poste-
rior density intervals of unknown parameters are constructed as well. We also obtain
prediction estimates and prediction intervals for censored observations. A Monte
Carlo simulation study is performed to compare proposed methods and one real data
set is analyzed for illustrative purposes.

Keywords Bayes estimates - Importance sampling - Lindley approximation -
Maximum likelihood estimates - One-sample prediction

1 Introduction

In many practical studies of interest including survival analysis, clinical trials,
industrial and mechanical applications, often reliability and life testing experi-
ments are performed and based on observed data, different procedures can be used
to obtain various inferences upon relevant unknown quantities such as failure prob-
abilities, quantiles, reliability characteristics and so on. In general, efficiency of dif-
ferent inferences rely upon observed data. There are many situations including life
testing experiments where observed data are censored in nature. In the literature,
different censoring methodologies have been proposed to appropriately analyze vari-
ous physical phenomena. Type I and type II censoring schemes are the two most
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commonly used procedures in this regard. Consider a situation where n items are
put on a life testing experiment. Then, in type I censoring, the experiment continues
up to a pre-specified time duration 7 and no observation is recorded after this time
point. Similarly, in type II censoring, it continues until a pre-fixed number of failures
m (< n) has been observed. The drawback of type I censoring is that one may not
collect enough failure observations before the end of experiment, and the drawback
of type II censoring is that the experimental time may be very long. Epstein [18]
initially discussed the concept type I hybrid censoring as a mixture of these two
basic censoring schemes. In this case, the experiment is terminated at a random time
T, given by min{X,,, T}, where T is a pre-specified time and X,, is the m-th fail-
ure time. Childs et al. [10] proposed a life test, called type II hybrid censoring, that
stops when a pre-specified m number of failure times is observed or the time 7 has
reached, whichever happens later. That is, the termination time of the experiment is
T, = max{X,,, T}. According to the above construction, the number of failure obser-
vations is random. In particular, it is possible to have less than m failure observa-
tions in type I hybrid censoring, while in type II hybrid censoring, we will have at
least m failure observations. If an experimenter desires to remove live units at points
other than the final termination point of a life test, the above censoring schemes will
not be of use to the experimenter. The above censoring schemes do not allow for
units to be removed from the test at points other than the final termination point.
As indicated by Balakrishnan and Aggarwala [4], this allowance will be desirable
when a compromise between reduced time of experimentation and the observation
of at least some extreme lifetimes is sought, or when some of the surviving units in
the experiment that are removed early on can be used for some other tests. As in the
case of accidental breakage of experimental units or loss of contact with individuals
under study, the loss of test units at points other than the termination point may also
be unavoidable. These reasons lead us into the area of progressive censoring. Given
the censoring scheme (R, R,, ..., R,,) and n units put simultaneously on a life test,
the operation of progressive censoring is to remove some surviving units from the
test before the termination time of experiment. Kundu and Joarder [9] and Childs
et al. [25] combined the concepts of type I hybrid censoring and progressive censor-
ing to develop the type I progressive hybrid censoring scheme. The type I progres-
sive hybrid censoring scheme can briefly be described as follows.

Suppose n test units are put on a life test and the progressive censoring scheme
(R, R,,...,R,) are fixed before the start of experiment. The time point T is also
fixed beforehand. At the time of the first failure X|.,.,, R, surviving units are
removed randomly from the test. At the time of the second failure X,.,.,, R, units
are removed from the (n — R; — 2) surviving units, and so on, and the test continues
till its termination point 7% = min{T,X,,.,,.,}. If the m-th failure occurs before 7,
thatis X,,.,.., < T, then the observed failures are given by X,.,...., Xo. 00> -+ s Xinomen
and the test stops at time X,,.,., by removing remaining R, =n—m—Y" "R,
units from the test. On the other hand, if X,,.,,., > T, then we observe the sample
Xy imens Xoimens - s Xjomens (J < m), and the test stops at time 7' by removing remain-
ing Rf =n—j- Y/_, R; units from the test. In this topic, much statistical inference

work has been done by several authors including, for example, [22, 28, 35]. A recent
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account on type I progressive hybrid censoring can be found in the monograph by
Balakrishnan and Cramer [5], or in the review article by Balakrishnan and Kundu
[7]. Among others, we also refer to [20, 29, 36] for some more useful inferential
results on this scheme.

Kumaraswamy [24] proposed a more general probability density function for
double bounded random processes, which is known as Kumaraswamy distribution.
Although the Kumaraswamy distribution was introduced in 1980, this distribution
seems to have attracted attention comparatively recently. The probability density
function (PDF) and cumulative distribution function (CDF) of Kumaraswamy distri-
bution are given by, respectively,

Sy a, p) = apx* (1 —=x)PD 0<x<1, (1)
and
Fy(oa,p)=1—-(1-x", 0<x<l1,

where @ > 0 and f > 0 are shape parameters. The range of this distribution is the
same as that of the beta distribution. Both of the distributions share many structural
properties depending upon their parameter values. Interestingly, the CDF of Kumar-
aswamy distribution has a nice analytical expression. This makes it more useful in
practice than the beta distribution whose CDF is not easily tractable. Eldin et al. [15]
indicated that the Kumaraswamy distribution is applicable to many natural phenom-
ena whose outcomes have lower and upper bounds, such as the heights of individu-
als, scores obtained on a test, atmospheric temperatures, hydrological data, etc. They
also pointed out that the Kumaraswamy distribution could be appropriate in situa-
tions where scientists use probability distributions which have infinite lower and/
or upper bounds to fit data, when in reality the bounds are finite. In recent past few
years, the Kumaraswamy distribution and its extension have gained some attention
among researchers and interesting results have been obtained, see for instance, [2,
11, 12, 21, 31, 32, 38, 40]. One may also refer to [8, 16, 17, 34, 41] for some general
interesting inference results.

Recently, the Kumaraswamy distribution was applied to the area of reliabil-
ity analysis. It seems that the applications of the Kumaraswamy distribution will
be criticized because its range is between 0 and 1. We provide two reasons for the
necessity of the Kumaraswamy distribution as follows. The first reason is that, in
practice, the lifetime cannot be actually infinite and there is a large enough point
on the probability tail at the time the products are dropped or replaced, and hence
it may be appropriate to use a bound distribution to analyze these lifetime data (see,
e.g., [1, 42]). The second reason is that there are many random variables and random
processes appeared from practical applications whose element values are bounded
both at the lower and upper ends. (see, e.g., [19, 37]). Under these two reasons, the
data from associated ares can be normalized and are fitted by a bound distribution
with range (0, 1). Therefore, Kumaraswamy distribution could be used as a potential
model in reliability and lifetime studies as well as other application fields (see, e.g.,
[33]). In the last five years, some researchers applied the Kumaraswamy distribu-
tion and its extension to the reliability analysis. For example, [14] dealt with the
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Bayesian and non-Bayesian estimation of multicomponent stress-strength reliabil-
ity. Sultana et al. [39] considered estimation of unknown parameters a and § under
hybrid censoring and obtained point and interval estimates by using maximum
likelihood method and Bayesian approach. Kizilaslan and Nadar [27] discussed the
uniformly minimum variance unbiased and exact Bayes estimates of reliability in a
multicomponent stress-strength model based on a bivariate Kumaraswamy distribu-
tion. In this paper, we investigate the problems of estimation and prediction for the
Kumaraswamy distribution based on type I progressive hybrid censoring.

The rest of this paper is organized as follows: In Sect. 2, we compute the maxi-
mum likelihood estimators (MLEs) of unknown parameter a and f of the Kumaras-
wamy distribution based on type I progressively hybrid censored samples. We also
derive the Bayes estimators under three different loss functions. In Sect. 3, we obtain
the prediction estimates and prediction intervals of censored observations in Bayes-
ian framework. A Monte Carlo simulation study is performed in Sect. 4 to compare
the performance of proposed estimator. A real data set is analyzed in Sect. 5 for
illustrative purposes. Finally, some conclusions are made in Sect. 6.

2 Parameter Estimations

In this section, we are going to derive the MLEs of the parameters from a type I pro-
gressively hybrid censored Kumaraswamy samples. We will also obtain the Bayes
estimators under different loss function and for the parameters of Kumaraswamy
distribution.

2.1 Maximum Likelihood Estimation

Suppose that n units from a Kumaraswamy distribution are placed on a test with
type I progressive hybrid censoring. The observed data under considered censoring
scheme may be one of the following two cases:

Case L {X|. .0 Xooimons -+ X, boif X, .. <T,

Case II: {Xltmtn’XZImIn’ ’X' if‘Xj:m:n <T< ‘Xj+1:m:n'

jim:n }’
Then, the likelihood function with type I progressive hybrid censoring is given by
RI
L(a, B) o [T, f i) [1 - F(xi:m:n)] , for Case I,

R; R
L(a, B) o TI_, f Kimen) [1 - F(xi:m:n)] [1 - F(T)] , for Case IL.

For the simplicity of notation, we will use x; instead of x The likelihood func-

tion of @ and f can be written as

iim:n*
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d

L(a, f | x) o a?ple’ @D T, @)

i=1
where d and U(e, f) are, respectively, given by

d= m, for Case I,
1 j, forCasell,

and

D AR+ 1B — 1} log(1 - xf), for Case I,
Ula,py=4 7'

Z{(Ri + Dp -1} log(1 —x{) + ﬂR;‘ log (1 — T%), for Case II.
i=1 '

The log-likelihood function may then be written as

d
logL(a, | x) x dloga+dlogp + Ula,p) +(a — 1) Zlogxi 3)

i=1

Taking derivatives with respect to @ and g of Eq. (3) and equating them to zero, we
obtain the likelihood equations for « and f to be

dlogL 4 -
— =;+u1(a,ﬁ)+;10gxi=0, 4)
and
dlogL 4
== +u(a)=0, 5
o5 5 T (%)
where
Z’”: {(R;+1)p =1} x7 log(x;) for Case 1
w@hH=1 7 (o) | |
R L{R +1Dp—1}x" log(x;) AR T log(T) for Case II
— - , tor Case 11,
P (1—x%) (1-7%
and
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(R, + Dlog (1 - x), for Case I,
uy(a) = ijl
D (R, + Dlog (1 —x) + R log (1 - T, for Case IL.
i=1
Note that u, () does not depend on f. Thus, Eq. (5) yields the MLE of f to be
d

”2(&).

f=-

(6)

Substituting Eq. (6) into Eq. (4), the MLE of « can be obtained by solving the non-
linear equation

d

b =— .
— 7
(@ f) + X logx, )

Because Eq. (7) cannot be solved in an explicit form, a numerical method such as
Newton—Raphson iteration must be employed to obtain the MLE of a. The New-
ton—Raphson algorithm requires the second derivatives of the log-likelihood func-
tion. Since the computations of the derivatives may be very complicated, [23] used
the fixed point approach to solve the MLE. They also proved that the graphical
method proposed by [6] reduces in fact to the fixed point solution. The fixed point
approach is easy to implement and does not require the derivation of a given func-
tion. Its convergence speed is faster than the Newton—Raphson method.

2.1.1 EM Algorithm

It is impossible to obtain the MLEs & and B of parameters a and f in closed forms
because the likelihood equations are nonlinear in nature. One can employ some
numerical methods mentioned above to solve these equations for MLEs. Instead
an expectation-maximization (EM) algorithm can be implemented for this pur-
pose. This algorithm which was introduced by [13]. Recall that under type I pro-
gressive hybrid censoring, two different situations may arise. For the Case I, we
assume that X = (X(l),X(z), ,X(m)) denote the observed data and
Y=(Y,,Y,,....Y,) denote the progressively censored data, where Y, denotes a
1x Rg vector such that Yg = (Ygl, Ygz, e, YgRg), g=1,2,...,m. Here the complete
data set can be written as Z = (X,Y). Likewise for the Case II, we assume that
X = (X(l),X(z), ’X(i)) are observed data, Y =(Y,Y,,...,Y;) are the progres-

sively censored data, where Y is a1 X R, vector such that Y, = (¥}, Y5, ..., Yig),
s=1,2,....d, and Y = (YI, Yé, e YI/Q*) are the censored data when the experi-
j

ment stops. The complete data set for this case can be written as Z = (X, Y, Y).
Following [3], we write the likelihood function as
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M, for Case I,
log L(a, | x) = { M + N, for Case 1I,

where
d d
M =nloga+nlogf+(a—1) ) logx,+(f—1) ) log(l —x)
i=1 i=1
+<a—1)2210gy,k+<ﬂ—1)2210g<1— Yo,
i=1 k=1 i=1 k=
and

R* R*

N=(a=1)) logy,+(f—1) ) log(l —y").
=1 =1

We apply E-step of the algorithm on M and N and then observe that

d d

M =nloga +nlogp + (a — I)Zlogx +(B— 1)210g(1 —x%)
=1 i=1

=

+(a—1) EllogYy | Yy > x;]

=

+(f - 1) Ellog(1 =Y3) | Yy > x],

iM& EM&

=~
I

and
R R

=(a— 1)215 [log Y/ | Y| > T1+(f - I)ZE[log(l —-Y Y] > Tl
=1 =1

The expectations involved in the above two expressions are computed as

aﬂ P 1 a\f—1
E(log Yy | Yy > x;) = —/ logt (1 — )P~ gt
el T 1= Fy(x;: a. p) &
ZA('xi’ a, ﬁ)9
ap 1
Ellog(1 = Y{) 17> x) =t / log(1 — 4 (1 — Y1 s
— Ix\W, & X;
= B('xl; a’ ﬂ)9
af 1
Ello Y'|Y'>T]=—/ " logr,(1 — 1)~ dt
=C(T; a, p),
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and

Emw~WWW>”=TS%%FB
X E) b

= D(T; a, p).

1
/ log(1 — ) ' (1 = )P~ ar
T

Thus, we have

d d

M =nloga +nlogf + (a — 1)Zlogxi+(ﬁ— I)Zlog(l —x7)
i=1 i=1

d d
+(@—1) ) RAG: . f)+ (B —1) ) RB(; a, ),
i=1 i=1

and
N =R [(@ = DC(T; a, B) + (B = DD(T; a, B)].

In M-step, we maximize the above functions with respect to parameters a and . In
Case I, given the j-th stage estimate of «, the updated (j + 1)-th estimate can be com-
puted from the following equation:

d d a d
n N x! logx;
—+ D logx; — (Bl@y-1) Y ; —xwl + Y RAG;: gy, fy) = 0.
i=1 i=1 =1

l =

Subsequently, the estimate of parameter § can be obtained as

n
L, [RiBG; g, b)) + log(1 — x)]

fla) = —

Proceeding similarly for the Case II, we obtain the updated estimate of & by solving
the equation

N - . Lo xvlogx, & .
—+ D logx; — (@)= 1) ) — t D RAG: ag), By) + R C(T; ag, ) = 0.
i=1 i=1 i i=1

The updated estimate of § can then be obtained as

n
Z?:l [RiB(xi; agys b)) +1og(1 — xf‘)] + R;‘D(T; @) Bj)

fla) = —

This iterative process can be repeated until the desired accuracy is achieved.

2.2 Bayesian Estimation

In this section, we derive the Bayes estimators of unknown parameters « and g of
Kumaraswamy distribution based on type I progressive hybrid censoring. These
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estimators are obtained under symmetric and asymetric loss function, such as
squared error, linex and entropy loss functions. The most useful loss function for
obtaining Bayes estimators is the squared error loss which is defined as
Ly(u, i) = (i — pu)?, where u is estimated by 2. We know that the corresponding
bayes estimator fig of u is the posterior mean of u. However, the linex loss is
defined as L,(u, i) = """ — h (i — u) — 1, h # 0, where h is the shape parame-
ter of the loss function. For further details one can see [43]. The corresponding
Bayes estimator of i under this loss function is obtain as ji; = ;l log {E, (e"“‘ [x)}.
Whereas, the entropy loss function is defined as L,(u, fi) = ( Y —w log( ) — 1

w # 0. For this loss function, the Bayes estimator is obtained as bp=E, (u~ W|x) w
To make Bayesian inference, we need to assume the prior dlstrlbutlons of
unknown parameters.

Here we assume that « has a prior gamma distribution with hyper-parameters a
and b, f has a prior gamma distribution with hyper-parameters p and ¢, and @ and
p are independent. Thus, the joint prior is of the form

(o, ) x a® e beprle=d 4> 0,4 >0,

where a, b, p, and g are positive real numbers. We mention that when both the
model parameters « and § are unknown then there does not exist a natural conjugate
bivariate prior distribution for unknown parameters. In such situations gamma prior
distributions may be considered which are highly flexible as well. We refer to [26]
for further discussion on this topic. It follows that the joint posterior distribution of
a and f is given by

d
ﬂ'(a ﬂ|X)_C_1(Xd+a lﬂd+p 1 —qﬁ U(a,p) —a(b i logx) (8)

where
(S o0 J
c= / / (xd+“_lﬂd"'p_le_‘/ﬁeU(a*ﬁ)g_“(b_Z;:l logx)) Jo dp.
0 0

Since the posterior distribution in Eq. (8) is intractable and hence, the posterior
means cannot be obtained in closed forms. This indicates that we can apply the
method proposed by [30] or importance sampling algorithm to obtain the desired
estimators of « and f, and this is discussed in the next subsection.

2.2.1 Lindley Method

Here, we use Lindley method to obtain bayes estimators of the unknown param-
eter. It is seen that all the Bayes estimators fig, fi;, and fi; are posterior expecta-
tion of some parametric function of unknown parameters. Therefore, the Bayes
estimator of g(a, f) under some loss function with respect to the distribution
z(a, f|x), is given by
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/ / g(a, ﬂ)el(a,ﬂlx)ﬂ)(a,ﬁ) da dp
0 0

(s oo}
/ / @B @D) gy ap
0 0

where [(a, f | x) is the log-likelihood function of (a, f) and p(a, f) = log z(a, ).
Using the Lindley method, the approximation of g(a, f) can be written as

)

gpla.p) =

" P U NN " noa YA N a4
8(a, p) ~g(a, p) + 5 [(gaa + Zgapa)daa + (g,;a + Zgﬂpa) 6po t+ <ga,; + 2gap,;)6a,;
A ”oa s (/. 4 A A A I A A
+ gﬁﬁ + Zgﬂpﬂ O-ﬂﬂ + E 8a0aa + gﬂo-aﬂ lamxaua + laﬂno-aﬂ + lﬂaaaﬂa
+ lﬂﬂa‘%ﬂ) + <§a6’ﬁa + 91)‘%) <lﬂaa6aa +lappGup + lpapOpa + lﬁﬂﬂ&ﬁﬂ)]'
9
. .. . 2p 1-1 .. .
Here o, is the (i, j)-th elements of matrix [—%] ,i,j=1,2and g,, is the second
order partial derivative of g(a, /) with respect to a« and similar interpretations hold

for other expressions as well. All quantities are evaluated at the MLEs (&, ﬁ) and
involved expressions are given below as

04 __d_ g o _d
ax T 55 =T aa> = 32 = -7
00| p=p B \omips P
3 . 3
a=ap=f =a.p=p
A 0%l A 0%l
e opoal s dadp|
;0 _2d 5 _ & _o
BB~ 33 = Bpa = 35575 ’
op wmi pmf f3 dpoa wmi p=f
-1 -1
a=(aA )—b, and ﬁﬂ=(p,\)_q7
@ p

where
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2 (R, + Dx% log (x;)

- Z ti T % 08t , for Case I,
— 1 —-x%

Ugp=y (R +1) all (x) R:T*log(T)

: p x? log (x; :

_ 2 i 08 T , for Case II,
= (I =x7) (1-1%)
AR+ D — 11 x*(log (x;))>

~ {(R; + 1)f — 1}x{(log (x,)) ’ for Case .

, 1 & =y
=) LR+ DA — (log (x)? AR T*(log(T))

— 2 d — , for Case II,
P a _x;x)z (1 =T2)?
Z AR+ DB — 1}x%(1 + x)(log ()cl»))3

_ 2 ! L , for Case I,
i=1 (1 =x7)

U = J {R,+1Dp - l}x;."(l +x;.”)(10g ()ci))3
aoar - ; (1 _ x?)—j
BRIT*(1 + T*)(log(T))?
7 , for Casell,
(1—17%)3
and
™ (R, + Dx(log (x,))?
- Z i 708 , for Case I,
S - et
paa = L (R + Daf(log (x))>  RiT*(log(T))?
- ! — , for Case II.
=BT (1-T1%7

In the above computations, we consider g(a,f) =a and g(a,f) = f to obtain
the desired Lindley approximations of the Bayes estimates of a and f, respec-
tively. For the squared error loss function L, we get g(a,.f)=a, g, =1,
8aa = 8ap = 8pa = 8pp = &5 = 0. Similarly, when  g(a,p)=p, gz=1,
8pp = 8ap = 8pa = 8aa = 8« = 0. However, for the linex loss function L,, in this case
we have

gla,p)=e"" g, =~he"" gy =M e gp5=8,5=8py =8 =0. Simi-
larly, for g(a, f) = p we can also calculate the required trems in Eq. (9). Finally,
for the entropy loss function L,, in this case we notice that g(a,f)=a™",
go=—wa O, g =ww+ Da~"*? and gy, = g,p = g4, = gp = 0. Similarly,
for g(a, f) = B we can also calculate the required trems in Eq. (9).

2.2.2 Importance Sampling

The Lindley method cannot be used to construct the Bayes intervals of the unknown
parameters. In this section, we provide the importance sampling method for comput-
ing the Bayes estimates of parameters and also construct the highest posterior den-
sity (HPD) intervals of parameters. Let G(a, b) be the density function of a gamma
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distribution with parameter a and b. We can rewrite the joint posterior distribution
of o and f as
d
(@, B | ) x Gy, (d +p.q—V(a, ﬁ))Ga<d +ab— logx[>h(a, f),

i=1

where

m
DR, + Dlog (1 — x5, for Case I,
Via,p) =1

Z(Ri + Dlog (1 —x{) + R;k log (1 — T%), for Case II,
i=1 '

and h(a, f) = e~ XL log=x) [q - V(a, ﬂ)] P The following steps are used to obtain
the Bayes estimators of g(a, f).

Step 1. Generate p; ~ G(-, -).

Step 2. Generate ay ~ G 5(-, *).

Step 3. Repeat the above two steps s times and generate samples (a;, f,),
(ay, By), ... (ay, By).

Step 4. Now, the Bayes estimate of g(a, f) under L, L;, L, loss functions are,
respectively, given by

Z;l g(ay, Bh(a;, ;)

8ps(a@. p) = 2oy e, B)

N | ZL] e g(apﬂi)h(ai, ﬁ,)
__1

8pi(a, p) h 8 ( ijl h(a;. B;) |

and

>, glay, )™ hay, B) >

8pe(a, p) = 5
zi:l h(a[’ ﬁl)

The Bayes estimates of a and f can be obtained by considering g(a, f) = a and

g(a, p) = p in the above computation, respectively.

3 Prediction of Censored Observations

Predicting the censored observations on the basis of the known information is an
important issue in statistics. Bayesian approach is useful in predicting the cen-
sored observations by using the predictive distribution. Here we obtain the pre-
diction estimates and prediction intervals of censored observations based on the
information that observed data come from a type I progressively hybrid censored
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sample. Let x = (x;, x,, ..., x;) denote a type I progressively hybrid censored sam-
ple with the censoring scheme (R}, R,, ..., R,). Further, let y; = (y;, Y, .-+ Vig )
be the lifetimes of units which are censored at the i-th stage. We wish to obtain
the prediction estimate of y (=y;, k=1,2,....R;,i=1,2,...,d) and also con-
struct the prediction interval. The conditional distribution of y given type I pro-
gressively hybrid censored data is obtained as

k-1
f(y|x,a,ﬂ)o<k(',i")2< Dl “’(" i )(1—F<x))'R<1 FON*'7f@). v > x,

=0

fork=1,2,...,R;and i = 1,2, ...,d. By forming the product of Egs. (3) and (8),
and integrating out over the set {(a, f); 0 < @ < 00,0 < f < o}, the predictive dis-
tribution is obtained as

f*(ylx)=/ /f(ylx,a,ﬁ)ﬁ(a,ﬁlx)dadﬂ
0 0

Under squared loss function, the Bayes predictor of y is the mean of predictive dis-
tribution. That is,

1
A=/ W 10 dy

=/oo /wl(xi | x,a, P)r(a, B | x) da dp,
o Jo
where

1
I | 5. f) = / VO | %@ B) dy

k-1

1
( )Z( D 1"( ~1> / (A = F)Y Rf o)1 = Fa)R" dy

(1-x2)? -
( )Z( D ‘-f< )(1 X0k / N1 - 20 de
0

One can use the importance sampling to obtain . Let {(a;, f),[=1,2,...,N}
denote the samples generated from the posterior distribution z(a, f|x) as described
in Sect. 2.2.2. Then, we have

~

y=

Zl— 1((11, ﬁ,)h(al, ﬂ[)
zl 1 I(al’ ﬂl

We mention that the prediction of censored observation that occurs after 7' can be
taken care similarly.

Next, we obtain the prediction intervals of censored observations. The survival
function given type I progressively hybrid censored data can be obtained as
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k-1 ; .
(R 1 (L= Fa)y=Ri(1 — F(o))=1~
S(t | x.a,p) = k( h ) IZ;(‘” / R :

Then, the posterior predictive survival function is
S| x)= / / S| x,a,f)x(a, f | x)dadp.
o Jo

Finally, the two-sided 100(1 — 7)% equi-tailed prediction interval (L, U) of censored
observation y can be computed by solving the following nonlinear equations:

S(L|x)=l—% and S(U|x)=§.

4 Simulation Study

In this section, we perform a Monte Carlo simulation study to compare the per-
formance of different estimators of unknown parameters of the Kumaraswamy
distribution. We also assess the behavior of predictors of censored observations
under the considered censoring scheme. The performance of different estimators
is compared in terms of corresponding average estimates and mean square error
(MSE) values. For this purpose, we generate type I progressively hybrid censored
samples using various sampling schemes by considering different combinations
of (n, m) and assuming that 7 is either 0.53 or 0.79. We used the R statistical soft-
ware for all computations. The MLEs of @ and # are computed by using the EM
algorithm. Bayes estimates of parameters are computed with respect to a gamma
prior distribution under some symmetric and asymmetric loss functions. These
estimates are computed by using Lindley method and importance sampling tech-
niques. Both MLEs and Bayes estimates of parameters are obtained for arbitrarily
taken unknown parameters a = 1.5 and f§ = 2.5. Accordingly hyperparameters in
gamma prior are assigned as a =3, b=2, p=15, and ¢ = 2. The removal pat-
terns of progressive censoring schemes are listed in Table 1. In Table 2, we tabu-
late all the average estimates of @ and f along with MSEs. In this table, L/ and
IS represent the Bayes estimates obtained by using Lindley method and impor-
tant sampling, respectively, under squared error loss function. The values in the

Table 1 Removal patterns

- . . (n,m) Censoring Scheme
of units in various censoring
schemes (Here, (1*°,0), for s, s, S, S,
example, means that the
censoring scheme employed is (30,10) (20,0%%) (2+10) (2*4,3%3,1%3) (0*,20)
(1, 1, 1» 1’ 1, 0)) (30’15) (15’0*14) (1*15) (2*3’3*3’0*9) (0*14’15)
(40’20) (20, 0*19) (1*20) (2*5’3*3, 1’0*11) (0*19720)

(40730) (10’ 0*29) (2*5 , 04125) (2*2’ 3*2’ 0*26) (0*29’ 10)
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Table 2 Average estimates and MSE values of estimates of a and g for different choices of 7, where
Bayes estimates are claculated under squared error loss

(n,m) Method T =0.53 T =0.79
s, s, S, s, s, s, S, S,

(30,10) MLE, 10036 09685 09574 09205 10737 09723 09739  0.9202

(0.2463) (0.2894) (0.2012) (0.2430) (0.1913) (0.2865) (0.2840) (0.2418)

MLE, 19042 3.1675 24908 18040 23330 17982 18507 1.6370

(0.2588) (0.2456) (0.2861) (0.2414) (0.2232) (0.2810) (0.2460) (0.2910)

LI, 17210 1.8832 17839 10119 1.6644 1.0488 0.8960 1.0657

(0.0488) (0.1469) (0.0806) (0.2381) (0.0270) (0.2035) (0.3648) (0.1885)

L, 17375  2.6066 2.6503 2.0843  3.1618 22053 1.6458 2.1714

(0.1813) (0.0824) (0.0226) (0.1727) (0.1804) (0.0868) (0.1296) (0.1079)

IS, 11103  1.1245 1.1568 11351 13964 1.1196 1.1763  1.0799

(0.2293) (0.1741) (0.1563) (0.1703) (0.0918) (0.1883) (0.1474) (0.2094)

IS, 1.9056  1.8082 19677 2.8753 2.1565 27105 2.6539  2.8788

(0.1429) (0.2048) (0.0849) (0.1512) (0.1992) (0.0577) (0.0456) (0.1516)

(30,15) MLE, 10078 10224 09714 1.0737 11331 1.0864 1.0737 1.0425

(0.2499) (0.2364) (0.2869) (0.1844) (0.1480) (0.1819) (0.1941) (0.2179)

MLE, 16771 18816 18475 18857 22651 2.1783 20487  1.7298

(0.2786) (0.2679) (0.2457) (0.2642) (0.2156) (0.2047) (0.2524) (0.2469)

LI, 12772 19251 1.6074 09634 1.6143 16304 13591 0.9855

(0.0495) (0.1807) (0.0115) (0.2878) (0.0130) (0.0170) (0.0198) (0.1825)

L, 17800 3.1363  1.7814  1.8547 23452 20213 19716 1.9139

(0.2182) (0.2049) (0.2162) (0.2162) (0.0239) (0.2291) (0.2791) (0.2434)

IS, 12208 1.1684 1.1046 14123 13131 11331 12172  1.0884

(0.1514) (0.1537) (0.1943) (0.0801) (0.0840) (0.5423) (0.1133) (0.2054)

IS, 21380 23143 17791 20661 20652 27119  2.1359  3.0245

(0.2763) (0.1886) (0.2111) (0.0946) (0.2275) (0.0941) (0.2702) (0.2900)

(4020) MLE,  1.0000 1.0200 09558 1.0389 1.1361 1.0734 1.0619 1.0395

(0.2553) (0.2369) (0.3021) (0.2196) (0.1421) (0.1895) (0.2023) (0.2190)

MLE, 16237 17015 17820 18155 17227 17504 18528 19173

(0.2390) (0.2494) (0.2892) (0.2707) (0.2041) (0.2038) (0.2926) (0.2456)

LI, 13245 15376 11829 09656 13067 1.1983 13941  0.9478

(0.0307) (0.0014) (0.1005) (0.2854) (0.0373) (0.0909) (0.0111) (0.3048)

L, 1.7807 22864 1.8501 2.1649 2.0428 2.6186 32436 1.7254

(0.1172) (0.0456) (0.1223) (0.1122) (0.1154) (0.0140) (0.1529) (0.1999)

IS, 11179  1.0665 1.0869 09303 12176 1.0897 1.1408 1.1626

(0.1877) (0.2172) (0.2113) (0.3456) (0.1367) (0.1953) (0.1614) (0.1491)

IS, 1.9465 23497 17790  3.0406 2.0662 2.6925 2.1331  3.0338

(0.1254) (0.1544) (0.1955) (0.1358) (0.1746) (0.0801) (0.1449) (0.1981)
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Table 2 (continued)

(n,m) Method T =0.53 T=0.79

s, S, S, S, s, S, S, S,

(40,30) MLE, 1.1579  1.1357  1.1395 1.3270  1.2177 1.2074 1.1896  1.3137
(0.1375) (0.1503) (0.1474) (0.0456) (0.1025) (0.1067) (0.1174) (0.0499)

MLE, 1.7809  1.7780  1.7879 33329 19755 19856 19574  3.3231
(0.1897) (0.1871) (0.1665) (0.1732) (0.1886) (0.1588) (0.1870) (0.1740)

LI, 1.0296  1.1051  1.1980 1.2395 1.6700 1.6350  1.6529  1.8680
(0.2212) (0.1559) (0.0911) (0.0678) (0.0289) (0.0182) (0.0233) (0.1354)

LI, 1.7358  1.6421 1.7160 23059  1.8213  1.8582  1.8138  2.8804
(0.1238) (0.1359) (0.1145) (0.0376) (0.1105) (0.1118) (0.1108) (0.1147)

IS, 1.1056  1.1261  1.1059  1.1147 1.1867 1.2010 1.1125 1.1043
(0.1859) (0.1802) (0.1863) (0.1695) (0.1327) (0.1140) (0.1740) (0.1737)
IAY 1.8855 1.8794  1.8771 1.8374 19460 2.0183 1.8316 1.7772

(0.1158) (0.1496) (0.1419) (0.1803) (0.1653) (0.1535) (0.1586) (0.1016)

parentheses denote the MSEs. Bayes estimates and MSES, corresponding to linex
loss and entropy loss functions with loss parameters /#, w are taken the values
—0.25,0.5, are represented in Tables 3 and 4. Small values of 4 and w provide
reasonably good estimates. Also, as increase in effective sample size then the cor-
responding MSEs tend to decrease. From all these tables, we can observe that
Bayes estimates of parameters a and f shows better performance than the corre-
sponding MLEs. It can be further observed that the MLEs of unknown parameters
compete well with the respective Lindley estimates. The performance of impor-
tance sampling estimates is quite good for almost all the tabulated schemes and
for both the parameters. We tend to get better estimation results with an increase
in effective sample size. Since Lindley estimates are computationally less inten-
sive and their performance is also good, we recommend its use in making further
inference upon unknown parameters of the Kumaraswamy distribution under type
I progressive hybrid censoring.

5 Real Data Analysis

In this section, we analyze a real data set which describes the monthly water
capacity from the Shasta reservoir in California, USA. The data are recorded for
the month of February from 1991 to 2010 (see for details on the website http://
cdec.water.ca.gov/reservoir_map.html). The observed data are:
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Table 3 Average estimates and MSE values of Bayes estimates, of @ and g for different choices of T
when h = —0.25 and w = —0.25

(n,m) Method T =053 T=0.79

s, S, S, S, s, S, S, S,

(30,10) LIL(L) 1460 1429 1548  1.603 1473 1572 1561 1672
(0.026) (0.024) (0.041) (0.043)  (0.029) (0.038) (0.024) (0.041)

LI L) 2425 2679 2780  2.804 2630 2672 2807  2.607
(0.056) (0.049) (0.042) (0.047)  (0.039) (0.028) (0.046) (0.029)
LI(L,) 1601 1427 1458  1.563 1470 1621 1596  1.652
(0.032) (0.037) (0.025) (0.038)  (0.049) (0.028) (0.040) (0.062)
LIL,) 2775 2660 2639 2810 2682 2753 2643 2714
(0.048) (0.039) (0.029) (0.037)  (0.044) (0.050) (0.039) (0.037)
IS,L) 1473 1491 1498 1599 1,598 1560  1.582 1479
(0.038) (0.032) (0.028) (0.047)  (0.038) (0.042) (0.049) (0.037)

LI, L) 2601 2651 2628 2730 2700 2692 2683 2671
(0.049) (0.037) (0.028) (0.035)  (0.027) (0.039) (0.037) (0.046)
IS,(L) 1620 1598 1583  1.591 1569 1583  1.601  1.625
(0.038) (0.041) (0.036) (0.031)  (0.027) (0.038) (0.038) (0.038)
ISL,) 2710 2587 2683 2619 2640 2480 2596  2.615
(0.051) (0.046) (0.038) (0.038)  (0.027) (0.039) (0.044) (0.039)
(30,15) LI(L) 1498 1585  1.604  1.429 1577 1602  1.611 1496
0.023) (0.022) (0.037) (0.043)  (0.029) (0.038) (0.034) (0.028)

LI, L) 269 2685 2680  2.702 2630 2710 2652 2617
(0.048) (0.046) (0.038) (0.032)  (0.052) (0.039) (0.046) (0.037)
LI(L,) 1572 1483 1491  1.593 1.604 1581  1.623  1.655
(0.032)  (0.046) (0.036) (0.048)  (0.047) (0.037) (0.048) (0.026)
LI,L,) 2705 2676 2651  2.628 2618 2605 2651 2579
(0.043) (0.028) (0.026) (0.047)  (0.049) (0.036) (0.029) (0.039)
IS,(L) 1453 1495 1488  1.591 1496 1576 1.636 1652
(0.037) (0.048) (0.053) (0.029)  (0.048) (0.038) (0.027) (0.043)
ISL) 2359 2608 2627 2482 2469 2715 2691 2278
(0.042) (0.046) (0.052) (0.0514) (0.029) (0.047) (0.052) (0.046)
IS,L,) 1.620 1582 1489 1511 1.604  1.588  1.590 1612
(0.033) (0.046) (0.036) (0.028)  (0.029) (0.037) (0.038) (0.045)
ISyL,) 2720 2482 2701 2409 2644 2474 2628  2.651
(0.034) (0.049) (0.050) (0.038)  (0.029) (0.038) (0.036) (0.048)
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Table 3 (continued)

(n, m) Method T =0.53 T=0.79

s, S, S, S, s, S, S, S,

40,200 LI (L) 1.467 1.598 1.594 1.620 1.477 1.942 1.596 1.490
(0.046)  (0.028) (0.043) (0.039) (0.051) (0.032) (0.048) (0.041)

LIg(L) 2.428 2.675 2.490 2.680 2.631 2.672 2.652 2.609
(0.038) (0.026) (0.048) (0.041) (0.038) (0.029) (0.046) (0.042)

LI (L,) 1.591 1.632 1.589 1.490 1.464 1.487 1.617 1.625
(0.044) (0.049) (0.036) (0.038) (0.027) (0.035) (0.038) (0.048)

LIyL,)  2.603 2.609 2.431 2.643 2.618 2.595 2.615 2.574
(0.028) (0.034) (0.053) (0.047) (0.043) (0.029) (0.026) (0.049)

IS, (L;) 1.590 1.453 1.568 1.519 1.490 1.596 1.603 1.579
(0.036) (0.041) (0.033) (0.039) (0.052) (0.048) (0.054) (0.039)

IS,(Ly) 2.6044  2.702 2.677 2.683 2.565 2.609 2.639 2.878
(0.042) (0.046) (0.054) (0.051) (0.033) (0.037) (0.048) (0.036)

IS, (L,) 1.421 1.483 1.583 1.612 1.449 1.480 1.409 1.605
(0.028) (0.049) (0.053) (0.038) (0.027) (0.035) (0.038) (0.038)

IS,(L,) 2.701 2.682 2.689 2.619 2.644 2.628 2.609 2.670

(0.056) (0.041) (0.031) (0.038)  (0.026) (0.035) (0.048) (0.052)
(4030) LL(L) 1462 1485 1574 1590 1477 1483 1449 1432
(0.046)  (0.029) (0.052) (0.048)  (0.051) (0.038) (0.045) (0.038)

LI, L) 2704 2730 2408  2.684 2633 2672 2657  2.630
(0.038) (0.036) (0.041) (0.054)  (0.032) (0.047) (0.040) (0.052)

LI(L,) 1427 1482 1583 1419 1594 1448 1590  1.573
(0.049) (0.046) (0.056) (0.038)  (0.047) (0.035) (0.048) (0.045)

LI, L,) 2637 2661 2620 2589 2589 2625 2618 2671
(0.058) (0.038) (0.056) (0.042)  (0.049) (0.036) (0.051) (0.045)

IS,(L) 1419 1456 1438  1.605 1464 1596  1.699 1579
(0.029) (0.034) (0.033) (0.027)  (0.039) (0.049) (0.037) (0.029)

ISy(L) 2640 2702 2667  2.753 2657 2710 2653  2.628
(0.049) (0.044) (0.034) (0.051)  (0.029) (0.037) (0.046) (0.036)

IS,(L) 1429 1482 1490  1.601 1.604 1488 1469  1.487
(0.028)  (0.049) (0.036) (0.048)  (0.073) (0.031) (0.036) (0.048)

ISy(L,) 2630 2658 2483 2619 2644 2473 2469  2.579
(0.038)  (0.049) (0.026) (0.038)  (0.037) (0.039) (0.043) (0.045)
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Table 4 Average estimates and MSE values of Bayes estimates, of @ and g for different choices of T
when 2 =0.5and w = 0.5

(n,m)  Method T =053 T =0.79
S, s, S5 S, S, s, S, S,
(30,10) LI(L) 1437 1582 1489  1.609 1492 1578 1580  1.684
0.032) (0.029) (0.047) (0.039) (0.035) (0.042) (0.028) (0.037)
LI L) 2602 2691 2423 2402 2638 2664 2699 2623
0.062) (0.055) (0.039) (0.051) (0.050) (0.044) (0.049) (0.046)
LI(L,) 1607 1622 1606 1581 158  1.609 1446  1.428
(0.039) (0.047) (0.051) (0.039) (0.054) (0.043) (0.052) (0.056)
LI, L) 2781 2669 2643 2769 2724 2773 2660 2719
0.056) (0.044) (0.047) (0.039) (0.047) (0.049) (0.043) (0.041)
IS,(L) 1430 1443 1480 1459 1605 1577 1602  1.609
(0.044)  (0.039) (0.046) (0.039) (0.044) (0.050) (0.052) (0.039)
LI,L) 2635 2687 2655 2709 2723 2740 2703 2711
(0.053) (0.038) (0.052) (0.041) (0.045) (0.052) (0.049) (0.048)
IS,L) 1627 1622 1603 1609 1612 1607 1609 1611
(0.047) (0.044) (0.040) (0.037) (0.033) (0.039) (0.041) (0.043)
ISy(L,) 2453 2430 2427 2470 2466 2457 2612 2619
(0.042) (0.048) (0.039) (0.041) (0.039) (0.044) (0.048) (0.042)
(30,15) LI(L) 1475 1487 1598 1623 1606 1609  1.622  1.599
(0.033) (0.035) (0.039) (0.038) (0.041) (0.047) (0.039) (0.035)
LI, L) 2723 2710 2718 27152 2655 2697 2660  2.622
0.052) (0.048) (0.044) (0.052) (0.057) (0.053) (0.049) (0.041)
LI(L,) 1579 1449 1477 1483 1473 1611 1619  1.627
0.037) (0.050) (0.042) (0.049) (0.053) (0.050) (0.059) (0.038)
LI,L,) 2711 2719 2663 2632 2624 2622 2640  2.602
(0.048) (0.033) (0.037) (0.034) (0.053) (0.049) (0.041) (0.047)
IS,L) 1589 1600 1583  1.612 1445 1487 1638 1420
(0.046) (0.049) (0.048) (0.037) (0.056) (0.057) (0.054) (0.059)
IS,L) 2621 2627 2634 2638 2429 2433 2418 2476
(0.058) (0.054) (0.059) (0.066) (0.042) (0.063) (0.061) (0.057)
IS,L,) 1627 1623 1611 1615 1445 1487 1479  1.466
(0.049) (0.048) (0.056) (0.037) (0.044) (0.041) (0.051) (0.054)
ISy(L,) 2701 2467 2716 2424 2449 2623 2700  2.689
(0.039) (0.055) (0.057) (0.059) (0.036) (0.053) (0.051) (0.057)
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Table 4 (continued)
(n, m) Method 7 =0.53 T=0.79

s, S, S, S, s, S, S, S,

(40,20) LI (L) 1.432 1.455 1.471 1.459 1.617 1.622 1.627 1.609
(0.048) (0.033) (0.047) (0.052) (0.057) (0.044) (0.058) (0.046)

LI,(Ly) 2.601 2.623 2.628 2.609 2.700 2.692 2.704 2.687
(0.041) (0.033) (0.055) (0.049) (0.051) (0.040) (0.052) (0.057)

LI (L,) 1.602 1.643 1.640 1.665 1.687 1.675 1.679 1.650
(0.049) (0.056) (0.043) (0.052) (0.051) (0.058) (0.043) (0.057)

LI, (L,)  2.682 2.679 2.684 2.691 2.703 2.685 2.682 2.664
(0.047)  (0.045) (0.049) (0.052) (0.053) (0.048) (0.055) (0.058)

IS, (Ly) 1.622 1.438 1.426 1.426 1.449 1.621 1.609 1.626
(0.056) (0.048) (0.052) (0.059) (0.058) (0.054) (0.062) (0.050)

1S,(Ly) 2.672 2.723 2.728 2.733 2.667 2.659 2.670 2.674
(0.048) (0.052) (0.058) (0.054) (0.047) (0.049) (0.051) (0.057)

IS, (L,) 1.602 1.613 1.636 1.623 1.422 1.432 1.415 1.422
(0.055) (0.053) (0.059) (0.044) (0.056) (0.051) (0.049) (0.047)

IS,(L,) 2.709 2.712 2.719 2.723 2.687 2.689 2.664 2.710

(0.059) (0.056) (0.048) (0.044) (0.050) (0.054) (0.046) (0.049)
(4030) LI(L) 1620 1585 1604  1.627  1.604 1621 1609 1596
(0.034) (0.048) (0.056) (0.055) (0.053) (0.042) (0.049) (0.050)

LI, L) 2721 2729 2684 2690 2431 2432 2447 2463
(0.043) (0.050) (0.047) (0.056) (0.045) (0.059) (0.047) (0.055)

LI(L,) 1603 1612 1609 1.607 1644  1.669 1645  1.650
(0.055) (0.057) (0.059) (0.047) (0.048) (0.052) (0.058) (0.057)

LI, L,) 2671 2710 2730 2693 2655 2660 2659  2.691
(0.059) (0.044) (0.047) (0.048) (0.057) (0.042) (0.057) (0.059)

IS.(L) 1424 1429 1431 1443 1427 1460 1459 1457
(0.033) (0.037) (0.039) (0.031) (0.038) (0.047) (0.043) (0.036)

ISy(L) 2688 2675 2682 2655 2670 2695 2660  2.681
(0.054) (0.057) (0.042) (0.058) (0.036) (0.041) (0.053) (0.044)

IS,L,) 1601 1609 1614 1618 1.624 1633 1629  1.640
(0.035) (0.037) (0.041) (0.053) (0.057) (0.043) (0.048) (0.052)

ISy(L) 2677 2683 2687 2701 2429 2433 2429 2446
(0.042) (0.053) (0.051) (0.047) (0.046) (0.053) (0.048) (0.056)
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Table 5 Goodness of fit tests for different distributions

& A NLC AIC AlCc BIC
Kumaraswamy 9.99956  0.0268196  11.6331 27.2662  27.5995 30.5933
Generalized Exponential 9.99988  3.48229 12.9608 29.9216  30.2549  33.2487
Poisson-exponential 4.93358  29.9967 11.8426 27.6852 28.0185 31.0123
Burr XII 17.150 18.000 12.878 29.756 30.0894  33.0832

Table 6 Censoring schemes and generated data

(n, m) T Scheme Data

(20,10)  0.74 S, =(10,0%) 0.338936  0.431915 0.580194  0.742563  0.759932
0.785339  0.787408  0.815627  0.828689  0.847413
(20,10) 081 S, =(2,0,5,3,03) 0.338936 0.431915 0.580194 0.695970  0.742563
0.783660  0.787408  0.811556  0.842316  0.849868

0.338936 0.430681 0.431915 0.580194 0.695970 0.724626

0.742563 0.757583 0.759932 0.768007 0.783660 0.785339

0.787408 0.811556 0.815627 0.828689 0.842316 0.843485

0.847413 0.849868

We first fit the Kumaraswamy distribution to this data set. For comparison pur-
poses, three more distributions such as generalized exponential, Poisson-expo-
nential, and Burr XII distributions are also fitted. We judge the goodness of fit
using various criteria, for example, negative log-likelihood criterion (NLC),
Akaike information criterion (AIC), corrected AIC (AICc), and Bayesian infor-
mation criterion (BIC). Smaller values of these criteria indicate that a model bet-
ter fits the data. From the values reported in Table 5, we conclude that the Kumar-
aswamy distribution fits the data set good compared to the other models. Thus,
the considered model can be used to make inference from the given data set. We
consider different censoring schemes S, = (10,0*°) and S, = (2,0*,5,3,0%%) by
taking (n,m) = (20,10) (here (1%,0), for example, means that the censoring
scheme employed is (1, 1, 1, 1, 1, 0)). The generated data under these schemes
are listed in Table 6. The MLEs and Bayes estimates under all the considered loss
functions, of both the unknown parameters are presented in Table 7. In this table,
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Table 7 Estimates of a and f for different choices of T'

Method Scheme T=0.74 T =0.81
a B a B
MLE S, 1.688 1.817 2.142 1.731
S, 1.824 2330 2.124 2.244
Lindley s, L, 1.457 1.975 1.574 1.948
L, (h=—0.25) 1.617 2376 1.765 2.470
L, (h=0.5) 1.670 2.189 1.795 2.271
L,,(w=—-0.25) 1.692 2271 1.728 2.307
L,,(w=0.5) 1.607 2.360 1.664 2.590
S, L, 1.793 2.449 1.780 2.230
L, (h=—0.25) 1.689 2251 1.640 2.480
L, (h=0.5) 1.652 2.652 1.674 2.753
L,,(w=—0.25) 1.640 2764 1.763 2415
L,,(w=0.5) 1.654 2251 1.702 2.289
Importance S, L, 1.660 1.854 2919 2.414
sampling L, (h=—0.25) 1.652 2.758 1.642 2.840
L, (h=0.5) 1.607 2756 1.644 2.237
L, (w=—-0.25) 1.197 2329 1.240 2.398
L, (w=05) 1.245 2.391 1.294 2.357
S, L, 1.384 1.593 1.570 2.975
L, (h=—0.25) 1.425 2.758 1.470 2783
L, (h=0.5) 1.419 2.790 1.570 2.681
L, (w=—-0.25) 1.442 2775 1.399 2738
L, (w=0.5) 1.429 2735 1.427 2.687

the Bayes estimates are obtained with respect to a noninformative prior distribu-
tion where hyper-parameters are assigned as zero value. In general, the Bayes
estimates are smaller than the MLEs. In Tables 8 and 9, we present prediction
estimates and prediction intervals of observations censored before and after T at
different stages i and RJ’.‘ of the experiment.

Table 8 Prediction estimates and prediction intervals for the observations censored before 7

Scheme i k T=0.74 i k T=0.81
Prediction  Interval Prediction  Interval
M 1 1 0.4206 (0.0769, 1.9104) 1 1 04314 (0.0987, 2.0346)
2 04611 (0.0978, 2.2109) 2 04661 (0.1174, 2.4022)
S, 3 1 0.6892 (0.0961,2.0895) 3 1 0.7021 (0.1257,2.2133)
2 0.7229 (0.0988, 2.4716) 2 0.7403 (0.1166, 2.5449)

The support of Kumaraswamy random variable is [0, 1]

When the upper bound of prediction interval is beyond 1, one can use 1 to be the upper bound
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Table9 Prediction estimates and prediction intervals for the observations censored after T

R/”.‘ k T=0.74 Rj k T =0.81
Prediction Interval Prediction Interval
2 1 0.7839 (0.2144, 3.1058) 2 1 0.8237 (0.3477, 3.1290)
2 0.7903 (0.2769, 3.4981) 2 0.8421 (0.4105, 3.6329)

The support of Kumaraswamy random variable is [0, 1]

When the upper bound of prediction interval is beyond 1, one can use 1 to be the upper bound

6 Conclusions

In this paper, we consider the estimation and prediction problems for Kumaraswamy
distribution when data come from a type I progressive hybrid censoring. The MLEs
and Bayes estimates are derived. We use the EM algorithm to obtain the MLEs,
and also use the Lindley method and importance sampling approach to obtain the
Bayes estimates under various loss functions. The simulation results show that the
proposed methods perform well. A numerical example are also analyzed using the
proposed methods of estimation and prediction.
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