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Abstract
The T-NH{Y} family is developed and study in this paper. Various statistical prop-
erties such as the mode, quantile, moments and Shannon entropy were derived. 
Two special distributions namely, exponential-NH{log-logistic}and Gumbel-
NH{logistic} were developed. Plots of the failure rate functions for these distribu-
tions for some given parameter values indicated that the hazard rate functions can 
exhibit different types of non-monotonic failure rates. Two applications using real 
datasets on failure times revealed that the exponential-NH{log-logistic} distribution 
provides better fits to the datasets than the other fitted models.

Keywords  Quantile · Log-logistic · Gumbel · Ordinary least squares · Weighted 
least squares

1  Introduction

Arriving at a sound statistical inference for any given dataset heavily depends on 
the use of appropriate statistical model. Thus, selecting an appropriate model for 
analyzing this barrage of datasets generated from different fields of study often pose 
a challenge to researchers. This is because when an inadequate model is selected 
for a particular dataset, it will reduce the power and efficiency of the statistical test 
associated with that dataset. To improve the precision when fitting the data, statisti-
cal data analysts are therefore interested in using a model that leads to no or less 
loss of information. Among these models often used, probability distributions play 
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an integral role. However, identifying an appropriate distribution that best describes 
the traits of a given dataset is often a challenge despite the existence of several prob-
ability distributions. This can be ascribed to the fact that no single distribution can 
be identified as best for all kinds of datasets.

To fill this lacuna, researchers are proposing techniques for generalizing existing 
distributions. These techniques seek to improve the performance of the distributions 
or make them more flexible in modeling datasets with traits such as skewness, kur-
tosis, monotonic and non-monotonic (bathtub, modified bathtub, upside-down bath-
tub and modified upside-down bathtub) failure rates. One of the techniques used in 
literature in recent time by researchers is the quantile based approach of Aljarrah 
et al. [3] which is often referred to as the T − R{Y} family. This method is an exten-
sion of Alzaatreh et al. [7] transformed-transformer (T-X) family of distributions.

Suppose FT (x) = P(T ≤ x),FR(x) = P(R ≤ x) and FY (x) = P(Y ≤ x) are the 
cumulative distribution functions of the random variables T ,R and Y  respectively. 
Let the inverse distributions (quantile functions) of the random variables be given by 
QT (u),QR(u) and QY (u) , where Qz(u) = Inf {z ∶ FZ(z) ≥ u} , 0 ≤ u ≤ 1 . Also, if the 
density functions of T ,R and Y  exists, and are represented by fT (x), fR(x) and fY (x) 
respectively. If we assume that T , Y ∈ (�1,�2) for −∞ ≤ 𝜑1 < 𝜑2 ≤ ∞ , then the 
cumulative distribution function (CDF) of the random variable X in the T − R{Y} 
family of Aljarrah et al. [3] is given by:

The corresponding probability density function (PDF) and hazard rate function are

and

respectively. �(⋅) denotes the hazard rate function of the random variables.The 
T − R{Y} method have been adopted by number of researchers to develop new fami-
lies of distributions and these include: extended generalized Burr III family [11]; 
T-exponential{Y} class [22]; generalized Burr family [16]; T-normal family [6]; 
T-Pareto family [10]; T-gamma{Y} family [5]; Lomax-R {Y} family [14]; Weibull-
R{Y} family [9] and T-Weibull family [4].

In this study, we assume that the random variable R follows that Nadarajah-
Haghighi (NH) distribution [15] and proposed the T-NH{Y} family of distributions.

Our motivation for developing this family of distributions are: to pro-
duce distributions capable of modeling data sets that exhibit monotonic and 

(1)FX(x) =

QY (FR(x))

∫
�1

fT (t)dt = FT

[
QY (FR(x))

]
.

(2)

fX(x) = fR(x)Q
�

Y
(FR(x))fT

[
QY (FR(x))

]

=fR(x)
fT
[
QY (FR(x))

]

fY
[
QY (FR(x))

]

(3)�X(x) = �R(x)
�T
[
QY (FR(x))

]

�Y
[
QY (FR(x))

] ,
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non-monotonic failure rates; to produce heavy-tailed distributions; to make kur-
tosis more flexible as compared to the baseline distribution; to generate distri-
butions with left-skewed, right-skewed, symmetric and reversed-J shapes; and to 
provide better parametric fit to given data sets than other existing distributions. 
The remaining parts of the article are presented as follow: the T-NH{Y} family 
is presented in Sect. 2, the statistical properties of the proposed family are given 
in Sect. 3, the special distributions are proposed in Sect. 4, the estimation of the 
parameters are presented in Sect. 5, Sect. 6 presents the Monte Carlo simulations, 
the empirical applications are given in Sect. 7 and the conclusions of the study 
are given in Sect. 8.

2 � T‑NH {Y} Family of Distributions

Given that the underlying distribution of the random variable R is NH with CDF 
and PDF given by; FR(x) = 1 − exp(1 − (1 + 𝛾x)𝛼), x > 0, 𝛾 > 0, 𝛼 > 0 and 
fR(x) = ��(1 + �x)�−1 exp(1 − (1 + �x)�) respectively. Then, the CDF of the 
T-NH{Y} family is:

The PDF and hazard function of the family are respectively given by:

and

Remark 1  If X follows the T-NH{Y} family of distributions, then the following 
holds:

(i)	 If � = 1 , then the T-NH{Y} family becomes the T-exponential{Y} family.

(ii)	 X=
1

�

{[
1 − log(1 − FY (T))

] 1
� − 1

}
.

(iii)	QX(u) =
1

�

{[
1 − log(1 − FY (QT (u)))

] 1
� − 1

}
, u ∈ [0, 1]

(iv)	 If Y = NH(�, �) , then X = T .
(v)	 If T = Y  , then X = NH(�, �).

(4)FX(x) =

QY (1−exp(1−(1+�x)
� )

∫
�1

fT (t)dt = FT

[
QY (1 − exp(1 − (1 + �x)�)

]
.

(5)
fX(x) = ��(1 + �x)�−1 exp(1 − (1 + �x)�)Q

�

Y
(1 − exp(1 − (1 + �x)�))

× fT
[
QY (1 − exp(1 − (1 + �x)�))

]

(6)�X(x) = ��(1 + �x)�−1
�T
[
QY (1 − exp(1 − (1 + �x)�))

]

�Y
[
QY (1 − exp(1 − (1 + �x)�))

] .
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2.1 � Some Sub‑families of T‑NH{Y}

In this sub-section, two sub-families of the T-NH{Y} family are discussed. These 
are: the T-NH{log-logistic} and T-NH{logistic} families.

2.1.1 � T‑NH{log‑logistic} Family

If the random variable T  is defined on the support (0,∞) and Y  follows the log-logis-
tic (LL) distribution with quantile function QY (u) = �[(1 − u)−1 − 1]

1

� . The CDF 
and PDF of the T-NH{LL} family are respectively given by:

and

The T-NH{LL} family reduces to the T-exponential{LL} family when the parameter 
� = 1.

2.1.2 � T‑NH{logistic} Family

If the support of the random variable T  is defined on the interval (−∞,∞) and 
the distribution of the random variable Y  is logistic (L) with quantile function 
QY (u) = −

1

�
log(u−1 − 1) . Then, the CDF and PDF of the T-NH{L} family are 

respectively given by;

and

When � = 1 , the T-NH{L} family becomes the T-exponential{L} family.

3 � Statistical Properties of T‑NH{Y} Family

This section presents some statistical properties of the T-NH{Y} family of 
distributions.

(7)FX(x) = FT

[
�(exp((1 + �x)� − 1) − 1)

1

�

]

(8)fX(x) =
��(1 + �x)�−1(exp((1 + �x)� − 1) − 1)

1

�
−1

� exp(1 − (1 + �x)�)
fT

[
�(exp((1 + �x)� − 1) − 1)

1

�

]
.

(9)FX(x) = FT

[
−1

�
log

[
(1 − exp(1 − (1 + �x)�))−1 − 1

]]

(10)
fX(x) =

��(1 + �x)�−1 exp(1 − (1 + �x)�)

�(1 − exp(1 − (1 + �x)�))2
[
(1 − exp(1 − (1 + �x)�))−1 − 1

]

× fT

[
−1

�
log

[
(1 − exp(1 − (1 + �x)�))−1 − 1

]]
.
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3.1 � Mode

The mode of the T-NH{Y} family is presented in this sub-section.

Proposition 1  The mode of the T-NH{Y} family of distributions can be obtained 
from the solution of the equation:

where Ψ(f ) = f �∕f .

Proof  Finding the first derivative of the logarithm of Eq.  (5) with respect x and 
equating it to zero completes the proof.                                                                     □

3.2 � Transformation

Lemma 1  Given that the random variable T  has CDF FT (x) , then the random 
variable:

	 (i)	 X =
1

�

{[
1 + log

(
1 + (T∕�)�

)] 1
� − 1

}
 has the T-NH{LL} distribution.

	 (ii)	 X =
1

�

{[
1 + (�T + log(1 + exp(−�T)))

] 1
� − 1

}
 has the T-NH{L} distribu-

tion.

Proof  The proof easily follows from Remark 1 (ii).                                                   □

3.3 � Quantile Function

Quantile functions are useful in statistical analysis. For instance, they can be used 
to compute measures of shapes of a distribution and generate random observations 
during simulation experiments.

Lemma 2  The quantile functions of the T-NH{LL} and T-NH{L} are respectively 
given by:

	 (i)	 QX(u) =
1

�

{[
1 + log

(
1 + (QT (u)∕�)

�
)] 1

� − 1

}
, u ∈ [0, 1].

	 (ii)	 QX(u) =
1

�

{[
1 +

(
�QT (u) + log(1 + exp(−�QT (u)))

)] 1
� − 1

}
, u ∈ [0, 1].

Proof  The proof of this Lemma can easily be derived from Remark 1 (iii).              □

(11)
Ψ
[
Q

�

Y
(1 − exp(1 − (1 + �x)�))

]
+ Ψ

[
fT
(
QY (1 − exp(1 − (1 + �x)�))

)]

+
�(� − 1)

1 + �x
− ��(1 + �x)�−1 = 0,
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3.4 � Moments

Moments are used to estimate measures of central tendencies, shapes and dis-
persions. This subsection presents the moments of the T-NH{Y} family and its 
sub-families.

Proposition 2  The kth non-central moment of the T-NH{Y} family is given by:

Proof  The proof follows from Remark 1 (ii).                                                             □

Corollary 1  The kth non-central moments of T-NH{LL} and T-NH{L} are respec-
tively given by:

	 (i)	 E(Xk) = E

[
1

�k

{[
1 + log(1 + (T∕�)�)

] 1
� − 1

}k
]
, k = 1, 2,….

	 (ii)	 E(Xk) = E

[
1

�k

{[
1 + (�T + log(1 + exp(−�T)))

] 1
� − 1

}k
]
, k = 1, 2,….

Proof  The proof of Corollary 1 follows from Lemma 1.                                            □

Proposition 3  The upper bound for the moment of the T-NH{Y} family is given by:

where

Proof  From Theorem 1 of Aljarrah et  al. [3], if R is a non-negative random vari-
able and E[(1 − FY (T))

−1] < ∞ , then E(Xk) ≤ E(Rk)E[(1 − FY (T))
−1] . From 

Nadarajah and Haghighi [15], the kth non-central moment of the NH distribution is 
�� exp(1)I(k, 0, 1) . Substituting and simplifying yields the proof of Proposition 3.  □

Corollary 2  The upper bound for the moments of T-NH{LL} and T-NH{L} are 
respectively given by:

	 (i)	 E(Xk) ≤ �� exp(1)I(k, 0, 1)[1 + E((T∕�)�)].
	 (ii)	 E(Xk) ≤ �� exp(1)I(k, 0, 1)E[(1 − (1 + exp(−�T))−1)−1].

(12)E(Xk) = E

[
1

�k

{[
1 − log(1 − FY (T))

] 1
� − 1

}k
]
, k = 1, 2,…

(13)E(Xk) ≤ �� exp(1)I(k, 0, 1)E[(1 − FY (T))
−1],

I(k, 0, 1) =
1

��k+1

k∑

i=0

(−1)k−i
(
k

i

)
� (

i

�
+ 1, 1).
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Proof  Substituting the CDFs of the LL and L distributions into Proposition 3 and 
simplifying gives the results obtained in Corollary 2.                                               □

3.5 � Entropy

Entropies are useful measures of uncertainty. Although different types of entro-
pies exist in literature, in this sub-section, we derived the Shannon entropy of the 
T-NH{Y} family and its sub-families. The Shannon entropy of a random variable X 
with PDF fX(x) is defined as �X = −E[log(fX(X))] [19].

Proposition 4  The Shannon entropy of the T-NH{Y} family is given by:

where �T is the Shannon entropy of the random variable T .

Proof  Since X = QR(FY (T)) , it implies that T = QY (FR(X)) . Thus,

This implies that

Substituting the PDF of the random variable R and simplifying completes the  
proof.                                                                                                                          □

Corollary 3  The Shannon entropies of the T-NH{LL} and T-NH{L} are respec-
tively given by:

	 (i)	
�X = �T − log(��) − 1 + log(��−�) + (� − 1)E(T) − 2E[log(1 + (T∕�)�)]

+ (1 − �)E[log(1 + �X)] + E[(1 + �X)�]
.

	 (ii)	
�X = �T − log(��) − 1 + log(�) − �E(T) − 2E[log(1 + exp(−�T))]

+ (1 − �)E[log(1 + �X)] + E[(1 + �X)�]
.

Proof  The Proof of Corollary 3 follows by substituting the PDFs of LL and L  
distributions in Proposition 4.                                                                                        □

4 � Special Distributions

This section presents some new probability distributions arising from the T-NH{LL} 
and T-NH{L} families using different distributions of the random variable T .

(14)
�X = �T − log(��) − 1 + E[log fY (T)] + (1 − �)E[log(1 + �X)] + E[(1 + �X)�],

fX(x) = fR(x) ×
fT (t)

fY (t)
.

�X = �T + E[log fY (T)] − E[log fR(X)].
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4.1 � Exponential‑NH{LL} Distribution

Suppose the random variable T follows the standard exponential distribution, that is 
T − exponential(1) . The CDF and PDF of the Exponential-NH{LL} (ENHLL) distri-
bution are respectively given by:

and

Figure 1 shows the plot of the density function of the ENHLL distribution for some 
given parameter values. The density function exhibits right skewed, decreasing and 
approximately symmetric shapes for the chosen parameter values.

The hazard rate function of the ENHLL distribution is given by:

The hazard rate function plot for some selected parameter values are presented in 
Fig. 2. The hazard rate function exhibit different kinds of shapes such as decreasing, 
bathtub and upside-down bathtub.

(15)
FX(x) = 1 − exp[−𝜆(exp((1 + 𝛾x)𝛼 − 1) − 1)

1

𝛽 ], x > 0, 𝛼 > 0, 𝛽 > 0, 𝛾 > 0, 𝜆 > 0,

(16)

fX(x) =
𝛼𝛾𝜆(1 + 𝛾x)𝛼−1 exp((1 + 𝛾x)𝛼 − 1)

𝛽(exp((1 + 𝛾x)𝛼 − 1) − 1)
1−

1

𝛽

exp[−𝜆(exp((1 + 𝛾x)𝛼 − 1) − 1)

1

𝛽 ], x > 0.

(17)𝜏X(x) =
𝛼𝛾𝜆(1 + 𝛾x)𝛼−1 exp((1 + 𝛾x)𝛼 − 1)

𝛽(exp((1 + 𝛾x)𝛼 − 1) − 1)
1−

1

𝛽

, x > 0.

Fig. 1   Plots of the density function of the ENHLL distribution
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To generate random observations from the ENHLL distribution, the quantile 
function is need. Hence, the quantile function of the ENHLL distribution is given 
by:

Substituting u = 0.25, 0.5 and 0.75 yields the first quartile, median and third quar-
tile of the ENHLL distribution respectively.

4.2 � Gumbel‑NH{L} Distribution

This section presents the Gumbel-NH{L} (GNHL) distribution. 
Given that T ∼ Gumbel(0, 1) with CDF FT (x) = exp(− exp(−x)) and 
PDF fT (x) = exp(−x − exp(−x)) . The CDF and PDF of the GNHL distribution are 
respectively given by:

and

(18)QX(u) =
1

�

{[
log

(
1 +

(
−�−1 log(1 − u)

)�)]
1

� − 1

}
, u ∈ [0, 1].

(19)
FX(x) = exp[−((1 − exp(1 − (1 + 𝛾x)𝛼))−1 − 1)

1

𝜆 ], x > 0, 𝛼 > 0, 𝛾 > 0, 𝜆 > 0,

(20)

fX(x) =
𝛼𝛾(1 + 𝛾x)𝛼−1 exp(1 − (1 + 𝛾x)𝛼) exp[−((1 − exp(1 − (1 + 𝛾x)𝛼))−1 − 1)

1

𝜆 ]

𝜆[1 − exp(1 − (1 + 𝛾x)𝛼)]2[(1 − exp(1 − (1 + 𝛾x)𝛼))−1 − 1]
1−

1

𝜆

, x > 0.

Fig. 2   Hazard rate function plot of the ENHLL distribution
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The plot of the density function of the GNHL distribution for some selected param-
eter values is shown in Fig.  3. The density function exhibit reversed-J and right 
skewed shapes for the chosen parameter values.

The hazard rate function of the GNHL distribution is given by:

The hazard rate function plot of the GNHL distribution for some chosen param-
eter values is presented in Fig. 4. The hazard rate function of the GNHL distribution 
exhibit decreasing, bathtub and upside-down bathtub shapes for the given parameter 
values.

The quantile function of the GNHL distribution is given by:

Putting u = 0.25, 0.5 and 0.75 gives the first quartile, median and upper quartile 
of the GNHL distribution respectively.

5 � Parameter Estimation

The section presents three procedures for estimating the parameters of the ENHLL 
distribution.

(21)

𝜏X (x) =

𝛼𝛾 exp(1 − (1 + 𝛾x)𝛼)[1 − exp(1 − (1 + 𝛾x)𝛼 )]−2 exp[−((1 − exp(1 − (1 + 𝛾x)𝛼 ))−1 − 1)
1

𝜆 ]

𝜆(1 + 𝛾x)1−𝛼{1 − exp[−((1 − exp(1 − (1 + 𝛾x)𝛼))−1 − 1)
1

𝜆 ]}[(1 − exp(1 − (1 + 𝛾x)𝛼 ))−1 − 1]
1−

1

𝜆

, x > 0.

(22)QX(u) =
1

�

{[
1 − log

[
1 − (1 + (− log(u))�)−1

]] 1
� − 1

}
, u ∈ [0, 1].

Fig. 3   Density function plot of the GNHL distribution
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5.1 � Maximum Likelihood Method

The maximum likelihood method is the most common parameter estimation tech-
nique used in literature. Given that X ∼ ENHLL(�, �, � , �) , � = (�, �, � , �)T , 
z = exp((1 + �x)� − 1) − 1 and z = exp((1 + �x)� − 1) . For a single observation x of 
X from the ENHLL distribution, the log-likelihood function � = �(�) is given by:

The first partial derivatives of the log-likelihood function with respect to 
� = (�, �, � , �)T are:

(23)
� = log(���∕�) + (� − 1) log(1 + �x) + (1∕� − 1) log(z) + [(1 + �x)� − 1] − �z

1

� .

��

��
=

1

�
+ log(1 + �x) + (1 + �x)� log(1 + �x)

+
z(1∕� − 1)(1 + �x)� log(1 + �x)

z
−

zz

1

�
−1
�(1 + �x)� log(1 + �x)

�
,

��

��
= −

1

�
−

log(z)

�2
+

z

1

� � log(z)

�2
,

Fig. 4   Hazard rate function plot for the GNHL distribution
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and

For a random sample of m observations x1, x2,… , xm from the ENHLL distri-
bution, the total log-likelihood function is given by �∗

m
=
∑m

j=1
�j(�) , where 

�j(�), j = 1, 2,… ,m is defined in Eq.  (23). To obtain the estimates of the param-
eters, the first partial derivatives with respect to the parameters are equated to zero 
and the resulting system of equations solved simultaneously. However, apart from 
the equation for the parameter � , the rest of the resulting system of equations are 
not tractable and have to be solved numerically to obtain the estimates of the param-
eters. Thus, the estimates are obtained by solving the nonlinear system of equation 
(��∗

m

/
��, ��∗

m

/
��, ��∗

m

/
�� , ��∗

m

/
��)T = 0 . Solving the system of equation using 

numerical methods can sometimes be time consuming. Hence, we can efficiently 
find the maximum likelihood estimates of the parameters by maximizing the total 
likelihood equation directly using MATLAB, MATHEMATICA and R software. In 
this study, the mle2 function in the bbmle package of the R software is used [8].

To find confidence interval for the parameters of the ENHLL distribution, a 4 × 4 
observed information matrix I(�) = {Ipq} for p, q = �, �, � , � is needed. The mul-
tivariate normal N4(�, I(�̂)) distribution can be employed to construct approximate 
confidence interval for the parameters under the usual regularity conditions. I(�̂) is 
the total observed information matrix evaluated at �̂ . A 100(1 − �)% asymptotic con-
fidence interval (ACI) for each parameter �p is given by:

where se(�̂p) is the standard error of the estimated parameter and is obtained as 
se(�̂p) =

√
Ipp(�̂), p = �, �, � , � , and z�∕2 is the upper (�∕2) th quantile of the stand-

ard normal distribution.

5.2 � Ordinary and Weighted Least Squares

The methods of ordinary least squares (OLS) and weighted least squares (WLS) 
were proposed by Swain et al. [20]. Given that x(1), x(2),… , x(m) are order statistics 
of a random sample of size m from the ENHLL distribution. The OLS estimates 
�̂LSE, �̂LSE, �̂LSE, �̂LSE for the parameters of the ENHLL distribution can be obtained 
by minimizing function:

��

��
=

1

�
+

(� − 1)x

1 + �x
+ �x(1 + �x)�−1 +

z�(1∕� − 1)x(1 + �x)�−1

z
−

zz
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with respect to �, �, � and � . Alternatively, the following nonlinear equations can be 
solved numerically to obtain the OLS estimates. That is

where�1(x(j)|�, �, � , �) =
�

��
FX(x(j)|�, �, � , �), �2(x(j)|�, �, � , �) =

�

��
FX(x(j)|�, �, � , �), 

�3(x(j)|�, �, �, �) =
�

��
FX(x(j)|�, �, �, �) and �4(x(j)|�, �, � , �) =

�

��
FX(x(j)|�, �, � , �).

The WLS estimates �̂WLS, �̂WLS, �̂WLS, �̂WLS of the ENHLL distribution parameters 
are obtained by minimizing the function:

with respect to the parameters. Also, the WLS estimates of the parameters can be 
obtained by solving the following nonlinear equation numerically. That is

where �1(⋅|�, �, � , �), �2(⋅|�, �, � , �), �3(⋅|�, �, � , �) and �4(⋅|�, �, � , �) are the 
same as defined above.

6 � Monte Carlo Simulation

This section presents Monte Carlo simulation results for the estimators of the param-
eters of the ENHLL distribution. The average absolute bias (AB) and mean square 
error (MSE) of the maximum likelihood estimator (MLE), OLS and WLS estima-
tors for the parameters are presented in Tables 1 and 2 for some parameters values. 
The simulations results revealed that the ABs and MSEs of the estimators’ decreases 
as the sample size increases. This means that the MLE, OLS and WLS estimators 
are consistent. However, it was also evident that in most cases the MLE had the least 
values of the AB and MSE for the different parameter values employed for the simu-
lation exercise.

7 � Empirical Applications

The section presents empirical applications of the ENHLL distribution using two 
real datasets. The first dataset comprises the failure time of 36 appliances subjected 
to automatic life test. The data can be found in Lawless [12] and are given by: 11, 
35, 49, 170, 329, 381, 708, 958, 1062, 1167, 1594, 1925, 400, 2451, 2471, 2551, 
2565, 2568, 2694, 2702, 2761, 2831, 3034, 3059, 3112, 3214, 3478, 3504, 4329, 
6367, 6976, 7846, 13,403. The second dataset which comprises the failure times of 

m∑

j=1

[
FX(x(j)|�, �, � , �) −

j

m + 1

]
�q(x(j)|�, �, � , �) = 0, q = 1, 2, 3, 4,

(24)W(�, �, � , �) =
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j=1

(m + 1)2(m + 2)

j(m − j + 1)

[
FX(x(j)|�, �, � , �) −

j

m + 1

]2
,

m∑

j=1

(m + 1)2(m + 2)

j(m − j + 1)

[
FX(x(j)|�, �, � , �) −

j

m + 1

]
�q(x(j)|�, �, � , �) = 0, q = 1, 2, 3, 4,
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100 cm polyster/viscose yarn subjected to 2.3% strain level in textile experiment in 
order to examine the tensile fatigue characteristics of the yarn. The dataset can be 
found in Quesenberry and Kent [18] and are: 86, 146, 251, 653, 98, 249, 400, 292, 
131, 169, 175, 176, 76, 264, 15, 364, 195, 262, 88, 264, 157, 220, 42, 321, 180, 198, 
38, 20, 61, 121, 282, 224, 149, 180, 325, 250, 196, 90, 229, 166, 38, 337, 65, 151, 
341, 40, 40, 135, 597, 246, 211, 180, 93, 315, 353, 571, 124, 279, 81, 186, 497, 
182, 423, 185, 229, 400, 338, 290, 398, 71, 246, 185, 188, 568, 55, 55, 61, 244, 
20, 284, 393, 396, 203, 829, 239, 236, 286, 194, 277, 143, 198, 264, 105, 203, 124, 
137, 135, 350, 193, 188. The performance of the ENHLL distribution is compared 
with the Weibull NH (NH) [17], Topp-Leone NH (TLNH) [21], Kumaraswamy NH 
(KNH) [13] and Exponentiated NH (ENH) [2] using the Akaike information crite-
rion (AIC), consistent Akaike information criterion (CAIC), Bayesian information 
criterion (BIC), −2� , Cramér-von Mises (W*) and Anderson–Darling (AD) test sta-
tistics. The smaller the values of the model selection criteria and the goodness-of-fit 
statistics, the better the model. The PDFs of the WNH, TLNH, KNH and ENH dis-
tributions are respectively given by:

Table 1   Simulation results for � = (� = 0.8, � = 0.9, � = 0.3, � = 0.5)T

Parameter m MLE OLS WLS

AB MSE AB MSE AB MSE

� 30 0.3661 0.2709 0.4458 0.4176 0.4411 0.2796
70 0.2623 0.1248 0.3213 0.1891 0.3856 0.2392

150 0.1865 0.0655 0.2493 0.1065 0.3161 0.1582
250 0.1388 0.0353 0.2007 0.0673 0.2734 0.1215
500 0.1043 0.0194 0.1402 0.0324 0.2504 0.1046

� 30 0.4747 0.3871 0.9612 1.5484 0.6572 0.8161
70 0.3098 0.1523 0.4907 0.3876 0.3542 0.2033

150 0.1885 0.0573 0.2809 0.1159 0.2174 0.0702
250 0.1353 0.0294 0.2119 0.0643 0.1629 0.0392
500 0.0820 0.0116 0.1398 0.0277 0.0964 0.0139

� 30 0.4625 0.6976 7.0911 465.1828 0.6963 1.6875
70 0.2436 0.1688 3.8375 104.8697 0.3242 0.2961

150 0.1282 0.0390 1.8261 13.1183 0.1896 0.1006
250 0.0991 0.0214 1.3117 7.7448 0.1327 0.0419
500 0.0660 0.0076 0.7950 2.4866 0.0836 0.0142

� 30 0.4342 0.5985 0.7828 5.7994 0.4094 0.5245
70 0.3759 0.4324 0.6116 3.2909 0.4342 0.6066

150 0.2804 0.1768 0.4247 0.9088 0.3320 0.3379
250 0.2044 0.0863 0.3416 0.2963 0.2709 0.1734
500 0.1388 0.0320 0.2663 0.0974 0.1789 0.0630
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and

Often the choice of statistical distributions for modeling a given dataset can easily 
be made if the nature of the failure rate of the dataset is known. To establish the 
nature of the failure rate of a given dataset, the total time on test (TTT) plot devel-
oped by Aarset [1] can be used. Plotting

F(x) = 1 − exp
[
−a[exp((1 + 𝜆x)𝛼 − 1) − 1]b

]
, a > 0, b > 0, 𝛼 > 0, 𝜆 > 0, x > 0,

F(x) =
[
1 − exp(2(1 − (1 + 𝜆x)𝛼))

]𝛽
, 𝛼 > 0, 𝛽 > 0, 𝜆 > 0, x > 0,

F(x) = 1 −
[
1 − [1 − exp(1 − (1 + 𝜆x)𝛼)]a

]b
, a > 0, b > 0, 𝛼 > 0, 𝜆 > 0, x > 0,

F(x) =
[
1 − exp(1 − (1 + 𝜆x)𝛼)

]a
, a > 0, 𝛼 > 0, 𝜆 > 0, x > 0.

T(i∕n) =

[(
i∑

j=1

x(j)

)
+ (n − i)x(i)

]/
n∑

j=1

x(j),

Table 2   Simulation results for � = (� = 0.3, � = 0.2, � = 0.3, � = 0.5)T

Parameter m MLE OLS WLS

AB MSE AB MSE AB MSE

� 30 0.3664 0.4402 0.2003 0.1362 0.6038 0.7398
70 0.1760 0.1187 0.1303 0.0433 0.2761 0.1744

150 0.1090 0.0405 0.1176 0.0244 0.1515 0.0443
250 0.0816 0.0144 0.1207 0.0214 0.1220 0.0228
500 0.0746 0.0079 0.1159 0.0182 0.1065 0.0155

� 30 0.1238 0.0665 0.2964 0.3075 0.4601 0.4245
70 0.0634 0.0113 0.1138 0.0567 0.1602 0.0624

150 0.0525 0.0049 0.0593 0.0140 0.0752 0.0116
250 0.0397 0.0040 0.0530 0.0041 0.0575 0.0051
500 0.0330 0.0016 0.0494 0.0033 0.0461 0.0029

� 30 0.0982 0.0139 0.1829 0.0564 0.1308 0.0222
70 0.0793 0.0086 0.1592 0.0420 0.1074 0.0143

150 0.0687 0.0063 0.1279 0.0254 0.0922 0.0102
250 0.0654 0.0054 0.1099 0.0175 0.0867 0.0089
500 0.0659 0.0053 0.1001 0.0128 0.0834 0.0081

� 30 0.2883 0.1053 0.3630 0.1530 0.3687 0.1512
70 0.2740 0.0921 0.3582 0.1732 0.3500 0.1402

150 0.2528 0.0773 0.3766 0.2282 0.3202 0.1178
250 0.2518 0.0773 0.3237 0.2114 0.3046 0.1060
500 0.2518 0.0750 0.3080 0.1366 0.2922 0.0973
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where i = 1,… , n and x(j)(j = 1,… ,m) are the order statistics obtained from the 
sample of size n , against i∕n gives the TTT plot. Figure 5 shows the TTT plots for 
the datasets. From the TTT plots, the appliances dataset exhibit modified bathtub 
failure rate since the curve first display convex shape, followed by concave shape 
and then convex shape again. The yarn data has increasing failure rate since the 
curve exhibit concave shape.

Tables  3 and 4 shows the maximum likelihood estimates for the parameters, 
their corresponding standard errors and confidence intervals (CI) for the appli-
ances and yarn datasets respectively.

Tables 5 and 6 shows the model selection criteria and goodness-of-fit statistics 
for the appliances and yarn datasets. The results revealed that the ENHLL distri-
bution provides better fit to the datasets compared to the other fitted distributions 
since for all the model selection criteria and goodness-of-fit statistics it has the 
least values.

Figures 6 and 7 displays the histograms, fitted densities, empirical CDFs and 
fitted CDFs of the distributions for the appliances and yarn datasets respectively. 
From both plots, the ENHLL distribution mimics the shapes of the datasets well 
than the other fitted distributions.

Fig. 5   TTT plots for a appliances and b yarn datasets
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Table 3   Parameter estimates, 
standard error and CI for 
appliances dataset

Model Estimates Standard error CI

ENHLL �̂ = 0.0346 3.7889 × 10−4 [0.0339, 0.0353]

�̂ = 0.1172 1.5799 × 10−2 [0.0862, 0.1482]

�̂ = 1000.3290 1.2721 × 10−7 [1000.3290, 1000.3290]

�̂ = 1.4747 4.9353 × 10−5 [1.4746, 1.4748]

WNH â = 82.2699 0.0020 [82.2660, 82.2738]

b̂ = 6.6478 0.7951 [5.0894, 8.2062]

�̂ = 0.0351 0.0091 [0.0314, 0.0388]

�̂ = 7.3731 0.0697 [7.2365, 7.5097]

TLNH �̂ = 0.0968 0.0055 [0.0860, 0.1076]

�̂ = 48.8265 16.6952 [16.1039, 81.5491]

�̂ = 96.6532 2.2906 [92.1636, 101.1428]

KNH â = 21.7156 4.9212 [12.0701, 31.3612]

b̂ = 50.1481 0.2218 [49.7134, 50.5828]

�̂ = 0.0698 4.9936 × 10−3 [0.0600, 0.0796]

�̂ = 1000.7060 1.3119 × 10−2 [1000.6800, 1000.732]

ENH â = 47.4046 15.8380 [16.3621, 78.4471]

�̂ = 0.1170 5.2158 × 10−3 [0.1068, 0.1272]

�̂ = 1000.5722 0.1424 [1000.2930, 1000.8510]

Table 4   Parameter estimates, 
standard error and CI for yarn 
dataset

Model Estimates Standard error CI

ENHLL �̂ = 0.0835 0.0296 [0.0255, 0.1415]

�̂ = 0.1912 0.0747 [0.0448, 0.3376]

�̂ = 0.8865 1.9970 [0, 4.8006]

�̂ = 4.1209 0.0166 [4.0884, 4.1534]

WNH â = 0.0052 0.0059 [0, 0.0160]

b̂ = 0.8480 0.7379 [0, 2.2943]

�̂ = 0.2540 0.0738 [0.1094, 0.3986]

�̂ = 9.2594 0.0136 [9.2327, 9.2861]

TLNH �̂ = 0.1871 0.0129 [0.1618, 0.2124]

�̂ = 93.0389 0.1818 [92.6826, 93.3952]

�̂ = 4.5608 1.9920 [0.6565, 8.4651]

KNH â = 2.3312 0.0558 [2.2218, 2.4406]

b̂ = 4.6174 0.0064 [4.6049, 4.6299]

�̂ = 0.6127 0.1201 [0.3773, 0.8481]

�̂ = 0.0057 0.0016 [0.0026, 0.0088]

ENH â = 78.2147 1.8521 [74.5846, 81.8448]

�̂ = 0.2308 0.0152 [0.2010, 0.2606]

�̂ = 11.5794 5.4007 [0.9940, 22.1648]
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8 � Conclusion

This study presents a new class of distributions called the T-NH{Y} family using the 
T-R{Y} framework. Statistical properties such as mode, quantile function, moments 
and Shannon entropy of the family are derived. Two special distributions, that is the 
ENHLL and GNHL distributions are proposed and the shapes of their densities and 
hazard rate functions for some given parameter values studies. The plots of the haz-
ard rate functions revealed that the ENHLL and GNHL can exhibit different types 
of non-monotonic failure rates. This makes the ENHLL and GNHL distributions 

Table 5   Model selection criteria and goodness-of-fit statistics for appliances dataset

Model −2� AIC CAIC BIC W* AD

ENHLL 643.3899 651.3899 652.6802 657.7240 0.3221 1.6086
WNH 645.3352 653.3352 654.6255 659.6693 0.3595 1.8093
TLNH 669.2659 675.2659 676.0159 680.0165 0.7311 3.8437
KNH 650.0037 658.0037 659.2940 664.3378 0.4451 2.2872
ENH 667.1458 675.1459 676.4363 681.4800 0.6952 3.6551

Table 6   Model selection criteria and goodness-of-fit statistics for yarn dataset

Model −2� AIC CAIC BIC W* AD

ENHLL 1249.9800 1257.9800 1258.4020 1268.4010 0.1090 0.6033
WNH 1258.7130 1266.7130 1267.1340 1277.1340 0.1226 0.8134
TLNH 1283.7130 1289.7130 1289.9630 1297.5280 0.6811 3.7275
KNH 1250.9700 1258.9700 1259.3910 1269.3910 0.1354 0.7342
ENH 1279.6600 1287.6600 1288.0810 1298.0800 0.6216 3.4013

Fig. 6   Fitted densities and CDFs for the appliances dataset
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suitable for modeling datasets that exhibit these kinds of failure rates. Three esti-
mations techniques; maximum likelihood, ordinary least squares and weighted 
least squares are employed in estimating the parameters of the ENHLL distribu-
tion and Monte Carlo simulations performed to examine how this methods perform. 
The findings revealed that the three techniques are all consistent as the sample size 
increases but in most cases the maximum likelihood tends to have smaller values of 
the average absolute bias and mean square error. Empirical illustrations with two 
failure time datasets revealed that the ENHLL distribution provides better fit to the 
datasets than other generalizations of the NH distribution in literature.
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