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Abstract
In this paper, the likelihood estimation of model parameters and acceleration factor
are considered under step-stress partially accelerated life test using adaptive type-II
progressive hybrid censoring scheme, when the lifetime of the test units follows Expo-
nentiated Pareto distribution. The numerical values ofMaximum likelihood estimators
are obtained using the Newton–Raphson technique. The performance ofmodel param-
eters and acceleration factor in terms of mean square errors and biases are evaluated
using the Monte-Carlo simulation technique.

Keywords Step-stress partially accelerated life test · Adaptive type-II progressive
hybrid censoring · Exponentiated pareto distribution · Newton–raphson technique ·
Monte-carlo simulation

1 Introduction

In the present time, technology is improved day by day. The lifetime of products/items
is improved due to this change in technology and the reliability of the products also
become high. If a reliability practitioner tests the lifetime of these types of products
under normal operating conditions, he receives no or very small number of failures at
the end of the experiment. So, the reliability practitioners introduced a test for testing
the lifetime of products in a short period and shortage of cost, called Accelerated life
tests (ALTs) or partially accelerated life tests (PALTs). To obtain the information on
the lifetime of the products, the reliability practitioner prefers this test because the test
saves time and money and gives a good and appropriate result at the end of the test.
There is a little difference in ALT and PALT; the test units are tested at both use and
accelerated conditions in PALT, while in ALT, all test units are subjected to higher
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usual stress levels. The failure behavior of the products at normal use conditions is
estimated with the use of information data collected from the experiment in the ALTs
or PALTs.

According to Nelson [1], the stress can be applied in many ways. The most com-
mon used methods are constant-stress PALTs (CSPALTs) and step-stress PALTs
(SSPALTs). In this paper, we focus only on SSPALTs. In SSPALTs, the test units
are run first at use (normal) condition, and after this, the units are run at accelerated
condition until the test is ended if they do not fail for a specified duration of time.
While in CSPALTs, each test unit is run at constant stress until either failure occurs
or the test is ended.

In many circumstances, reliability practitioner may not be able to gather the exact
information about the failure time for the testing units (data). This type of data is known
as censored data, and the scheme is known as censoring.Many types of censoring occur
in reliability theory, but type-I and type-II are the two most common and important
censoring schemes. These two schemes have a major drawback. These schemes may
not allow drawing the units at any point except the ending point of the test. To remove
this type of complication, Balakrishnan andAggarwala [2] introduced a new censoring
scheme, which is known as progressive censoring type-II or progressively type-II
hybrid censoring. This scheme allows to reliability practitioner to drawing the units
at any point in the test. The progressive type-II hybrid censoring is defined as.

If we put n independent and identically test units on the testing and the observed
failures to be m. t(1) is the time when the first failure occurs, R1 test units randomly
withdraw from the experiment at that time from the n − 1 remaining (surviving)
units. t(2) is the time when the second failure occurs, R2 test units randomly withdraw
from the experiment at that time from the n − 2 − R1 remaining (surviving) units.
This process continues until the mth failure occurs. All the remaining units Rm �
n−m− R1 − R2 −· · ·− Rm−1 are taken off from the experiment at this point. Where
R1, R2, . . . , Rm are thewhole numberswhich are pre-fixed.Thesewhole numbersmay
also occur randomly in some practical situations. Such as Yuen and Tse [3] presented
a study on the number of patients taken from the clinical test at each phase is random
and also can not be prefixed. Many authors presented a statistical inference on lifetime
distribution using a progressive type-II censoring scheme for random removals. For
example, Wu et al. [4], Yan et al. [5], Tse et al. [6], and Dey and Dey [7]. If we are
talking about especially for progressive type-II censoring scheme, Kundu and Joarder
[8], Ng et al. [9], Lin et al. [10], Mokhtari et al. [11] and Alma and Belaghi [12] are
presented some work on ordinary life testing or PALT. PALTs are studied under type-I
and type-II censoring schemes by several authors, such as Goel [13], DeGroot and
Goel [14], Bhattacharyya and Soejoeti [15], Bai and Chung [16], Abdel-Ghani [17],
Abd-Elfattah et al. [18], Aly and Ismail [19], Hassan and Thobety [20]. Ismail and
Sarhan [21], Srivastava and Mittal [22], and Mohie EL-Din et al. [23] are presented
studies on PALTs using progressive censoring (Tables 1, 2).

A vast literature is dedicated to the SSPALT research domain under the different
censoring schemes. Ismail [24] presented a study first time on SSPALT with the use of
an adaptive progressively type-II hybrid censoring scheme. Ismail [25] has been also
done a work on SSPALT using adaptive type-I progressively hybrid censoring scheme
for Weibull distribution. Alam et al. [26] has been done a study on SSPALT using
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Table 1 Mean values of RABs, MSEs and MLEs, when the parameters λ, γ , τ , β and δ are fixed at 1, 1.2,
1.4, 2.2 and 4

(n, m) Schemes Estimates of λ Estimates of γ Estimates of β

MLE RAB MSE MLE RAB MSE MLE RAB MSE

(30, 10) 1 0.884 0.552 0.664 1.316 0.733 0.874 1.553 0.511 0.609

2 1.221 0.631 0.713 0.993 0.862 0.912 1.442 0.573 0.676

3 0.665 0.583 0.687 1.265 0.798 0.894 1.453 0.533 0.632

(40, 10) 1 1.342 0.503 0.612 0.997 0.688 0.764 1.523 0.430 0.521

2 0.887 0.586 0.665 1.119 0.797 0.831 1.338 0.518 0.598

3 0.778 0.544 0.633 1.331 0.734 0.809 1.556 0.466 0.544

(60, 10) 1 1.009 0.455 0.563 1.271 0.608 0.674 1.667 0.312 0.443

2 0.554 0.538 0.599 1.331 0.721 0.764 1.487 0.462 0.533

3 0.996 0.481 0.588 0.989 0.664 0.710 1.551 0.377 0.476

(30, 16) 1 0.775 0.408 0.510 1.441 0.536 0.593 1.563 0.233 0.365

2 0.574 0.471 0.555 1.226 0.655 0.684 1.333 0.389 0.449

3 1.286 0.438 0.539 0.992 0.589 0.611 1.442 0.278 0.397

(40, 16) 1 1.223 0.355 0.427 1.336 0.480 0.532 1.662 0.156 0.286

2 0.889 0.412 0.488 1.454 0.548 0.617 1.553 0.300 0.365

3 0.598 0.382 0.467 1.187 0.520 0.587 1.338 0.211 0.312

(60, 16) 1 0.776 0.299 0.317 1.442 0.398 0.453 1.432 0.108 0.199

2 0.751 0.351 0.387 0.909 0.473 0.520 1.229 0.223 0.276

3 1.334 0.316 0.349 1.227 0.432 0.477 1.343 0.187 0.221

adaptive type-I progressively hybrid censoring for Inverse Rayleigh distribution. Lone
et al. [27] has been done a study onSSPALTusing adaptive type-II progressively hybrid
censoring scheme for Rayleigh distribution. Lone et al. [28] has been also done a study
on SSPALTwith competing riskwhen the lifetime of units followsWeibull distribution
using adaptive type-I progressively hybrid censoring scheme. Mazen and Abu [29]
proposed a work on Burr type-XII distribution using adaptive type-II progressively
hybrid censoring scheme with approximation form of Lindley distribution. Alam et al.
[30] presented a study on CSPALT using Exponentiated Exponential distribution for
multiply censoring scheme.

Our study is based on estimating failure information on SSPALT when the life-
time of units follows Exponentiated Pareto distribution with the use of an adaptive
progressively type-II hybrid censoring scheme.

The rest of the paper is organized as follows. The Exponentiated Pareto distbution
and adaptive type-II progressive hybrid censoring scheme are introduced in Sect. 2.
The test method is also described in this section. The maximum likelihood estimation
method under used censoring scheme is described in Sect. 3. The point and interval
estimation are also described in this section. In Sect. 4, the simulation study and results
are presented. Finally, the conclusion is made in Sect. 5.
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Table 2 Mean values of RABs, MSEs and MLEs, when the parameters λ, γ , τ , β and δ are fixed at 1.1,
1.4, 1.6, 2.3 and 6

(n,m) Schemes Estimates of λ Estimates of γ Estimates of β

MLE RAB MSE MLE RAB MSE MLE RAB MSE

(30, 10) 1 0.743 0.398 0.489 0.664 0.332 0.421 1.443 0.770 0.712

2 0.993 0.440 0.554 0.993 0.390 0.467 1.654 0.821 0.764

3 1.223 0.421 0.512 0.882 0.354 0.440 1.221 0.800 0.721

(40, 10) 1 1.372 0.307 0.400 1.020 0.287 0.341 1.748 0.698 0.632

2 1.009 0.354 0.476 1.290 0.342 0.409 1.192 0.761 0.709

3 0.673 0.320 0.431 0.993 0.315 0.383 1.332 0.724 0.685

(60 ,10) 1 0.783 0.223 0.322 1.293 0.234 0.265 1.354 0.608 0.543

2 1.332 0.276 0.387 0.775 0.322 0.331 1.443 0.687 0.632

3 0.983 0.243 0.356 0.993 0.242 0.321 1.754 0.643 0.589

(30, 16) 1 1.329 0.134 0.259 1.453 0.155 0.187 1.002 0.519 0.476

2 1.002 0.190 0.301 1.002 0.243 0.263 1.121 0.609 0.556

3 0.837 0.154 0.278 1.234 0.178 0.242 0.993 0.547 0.525

(40, 16) 1 1.309 0.080 0.167 0.995 0.119 0.044 1.029 0.433 0.388

2 1.212 0.130 0.232 1.121 0.165 0.182 1.563 0.529 0.476

3 1.008 0.118 0.209 1.442 0.121 0.103 1.774 0.477 0.429

(60, 16) 1 0.773 0.030 0.109 1.220 0.091 0.009 1.282 0.353 0.277

2 0.929 0.102 0.142 1.009 0.110 0.110 1.632 0.443 0.380

3 1.372 0.021 0.122 0.987 0.077 0.056 1.222 0.378 0.344

2 Description of Model and Test Method

ThePareto distribution plays an important role in analyzing skeweddata and real-world
situations, not only the field of statistics or economics. This distribution was mainly
introduced to model the uneven distribution of wealth since it was recognized the way
that a superior part of the wealth of any community is owned by a lesser percentage of
the public. Sizes of sand molecules and groups of Bose–Einstein condensate are the
closed examples of Pareto distributed Phenomenon. The Exponentiated Pareto (EP)
distribution plays an important role in reliability analysis and life testing because the
failure rate of EP is decreasing and upside-down bathtub form. TheEP distribution also
plays an important role in the field ofmedical, biological sciences and engineering, etc.
for modeling and analyzing the data. Gupta et al. [31] introduced a two parameters
distribution called EP distribution. If Y is Pareto distributed random variable, then
X � log Y is called corresponding EP distribution.

The probability density function (pd f ) of two parameters EP distribution is given
as

f (t) � λγ (1 + t)−(γ+1)[1 − (1 + t)−γ ]λ−1, t, λ, γ > 0 (1)

where λ, γ are the shape parameters.
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The cumulative density function (cd f ) of two parameters EP distribution is given
as

F(t) � [1 − (1 + t)−γ ]λ (2)

The Reliability function of two parameters EP distribution is given as

R(t) � 1 − [1 − (1 + t)−γ ]λ (3)

The Hazard function of two parameters EP distribution is given as

H (t) � λγ (1 + t)−(γ+1)[1 − (1 + t)−γ ]λ−1

1 − [1 − (1 + t)−γ ]λ
(4)

As we know, mostly Pareto distributions are defined over one side of the real line. So,
five EP distributions and their sveral properties are introduced by Saralees [32] for
wider use in the field of statistics as well as economics, medical, and engineering also.

Ali et al. [33, 34] considered some exponentiated distributions including EP distri-
bution and talked about their important properties. They showed that EP distribution
provides a good and better fit for the tail-distribution of NASDAQ data. Shawky and
HanaaAbu-Zinadah [35] proposed how the different estimators of the unknownparam-
eters of EP distribution can perform for different sample sizes and different parameter
values. They considered the maximum likelihood estimation of the different param-
eters of EP distribution. Gupta et al. [31] showed the most important property of
EP distribution. They studied that this distribution is used quite successfully in ana-
lyzing many lifetime data. The failure rate of this distribution depends on the shape
parameter, it has decreasing and upside-down bathtub shaped failure rates. Kumar [36]
estimated EP distribution parameters for Progressive type-II censored data using Ran-
dom Removals scheme, while Singh et al. [37] estimated EP distribution parameters
for Progressive type-II censored with Binomial RandomRemovals scheme.Mahmoud
et al. [38] estimated EP distribution parameters under progressively type-II right cen-
sored data.

The lifetime, say, Y of an item under SSPALT is given as

Y �
{
T if T ≤ τ

τ + β−1(T − τ ) if T > τ
(5)

where the lifetime of an unit under normal operating conditions is denoted by T . β is
acceleration factor and τ is stress change time.

The above technique has been proposed by DeGroot and Goal [39] and is known
as the variable-transformation technique. The pd f under SSPALT is given as

f (y) �
⎧⎨
⎩
0, y ≤ 0
f1(y), 0 < y ≤ τ

f2(y), y > τ

(6)
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where f1(y) � λγ (1 + y)−(γ+1)[1 − (1 + y)−γ ]λ−1 and f2(y) � λγ (1 + τ + β(y −
τ ))−(γ+1)[1 − (1 + τ + β(y − τ ))−γ ]λ−1, f2(y) is obtained by applying the variable
transformation technique on Eq. (1).

Kundu and Joarder [8] introduced a new censoring scheme which is called the
progressive type-II hybrid censoring (PHCT-II). This scheme is described as follows.

If a life testing experimentation ends at a random time min(Xm:m:n, δ). 1 ≤ m ≤ n
and 0 < δ < ∞ are set to prior and X1:m:n ≤ X2:m:n ≤ · · · ≤ Xm:m:n are the
ordered failure times resultant from the experimentation, then (R1, R2, . . . , Rm) is
described the progressive hybrid censoring (PHC) scheme. If the mth progressively
censored observed will take place prior to time δ(δ > Xm:m:n), then the life testing
experimentation terminates at the time Xm:m:n .. Otherwise, the experimentation will
terminate at the time δ with X j :m: n < δ < Y j+1:m: n, and all the remaining (n −∑ j

i�1 Ri − j) existing units are censored at δ. Here, the number of failed units up to
δ is j and it is a random variable.

The reliability practitioner (engineer) faces a difficulty if he uses the abovediscussed
censoring schemes, the engineer may come out with a tiny sample size (even it is
equal to zero), and so, this is impossible to come with usual inference procedures
to get positive and exact outcomes. To remove this difficulty, the adaptive censoring
scheme is introduced byNg et al. [9]. Mohamed et al. [40] has been done an estimation
procedure forGeneralizedPareto distribution using adaptive type-II progressive hybrid
censoring. The observed number of failures m is fixed to prior in this scheme, and the
experimentation time is open to run overtime δ. The experimentwill be in process along
with pre-specifiedprogressive censoring schemes (R1, R2, R3, . . . , Rm) if Xm:m: < δ,
else, the surviving units (existing units), which following the ( j + 1)th to (m − 1)th
observed failures, are not removed from the experiment. All the existing units Rm �
n − m − ∑ j

i�1 Ri are taken back from the experimant at the moment point Xm:m: n
if m observed failure attained, i.e. R j+1 � · · · � Rm−1 � 0. The progressive type-II
censoring is attained if n → ∞ and the traditional type-II censoring is attained, if
n → 0. If the engineer have no boundation to change the value of δ, then this type of
scheme is called an adaptive progressive type-II hybrid censoring scheme (APHCT-II).
This change in δ is done to adjust the optimum of lessened testing time and a greater
possibility of monitoring many failures.

3 Maximum Likelihood Estimation

If Y1,Y2, . . . ,Yn be the n independent and identically distributed (i.i.d.) lifetime of test
units which are following the EPD and y1:m:n < · · · < ynu+1:m:n < · · · < yJ :m:n ≤
δ < yJ+1:m:n < · · · < ym:m:n are the m completely (ordered) lifetimes.

3.1 Point Estimation

The likelihood function under SSPALT form ordered lifetime data set using the APHC
scheme is given as
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L(λ, γ , β) ∝
m∏
i�1

f1(yi :m: n) f2(yi :m: n)
J∏

i�1

[S1(τ )]
Ri [S2(ym:m: n)]

n−m−
J∑

i�1
Ri

(7)

where, f1(yi :m: n) � λγ (1 + yi )−(γ+1)[1 − (1 + yi )−γ ]λ−1

f (yi :m: n) � λγ (1 + τ + β(yi − τ ))−(γ+1)[1 − (1 + τ + β(yi − τ ))−γ ]λ−1

S1(τ ) � 1 − [1 − (1 + τ )−γ ]λ

S2(ym:m: n) � 1 − [1 − (1 + τ + β(ym:m: n − τ ))−γ ]

χi � τ + β(yi − τ ), χm � τ + β(ym:m: n − τ )

J � nu + na

nu is the number of units which are failed on the usual condition and na is the number
of units which are failed in accelerated condition.

The log-likelihood function is obtained by taking the natural logarithm of Eq. (7)
and is given as

ln L(λ, γ , β) �m ln(λγ ) − (γ + 1)
m∑
i�1

ln(1 + yi ) + (λ − 1)

×
m∑
i�1

ln[1 − (1 + yi )
−γ ]+m ln(βλγ ) − (γ + 1)

×
m∑
i�1

ln(1 + 1 + τ + β(yi − τ )) + (λ − 1)

×
m∑
i�1

ln[1 − (1 + (1 + τ + β(yi − τ ))−γ ]

+
J∑

i�1

Ri ln[1 − (1 − (1 + τ )−γ )λ]

+
J∑

i�1

(n − m −
J∑

i�1

Ri ) ln[1 − (1 − (1 + τ + β(ym:m: n − τ ))−γ )λ]

ln L �m ln(λγ ) − (γ + 1)
m∑
i�1

ln(1 + yi ) + (λ − 1)
m∑
i�1

ln[1 − (1 + yi )
−γ ]

+ m ln(βλγ ) − (γ + 1)
m∑
i�1

ln(1 + 1 + χi ) + (λ − 1)

×
m∑
i�1

ln[1 − (1 + (1 + χi )
−γ ]
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+
J∑

i�1

Ri ln[1 − (1 − (1 + τ )−γ )λ]

+
J∑

i�1

(n − m −
J∑

i�1

Ri ) ln[1 − (1 − (1 + χm)
−γ )λ] (8)

where ln L � ln L(λ, γ , β).
Differentiate the above log-likelihood equation with respect to parameters λ, γ and

β, and equating to zero to get Maximum likelihood (ML) estimates of λ, γ and β,
respectively.

∂ ln L

∂λ
� 2mλ−1 +

m∑
i�1

ln[1 − (1 + yi )
−γ ] +

m∑
i�1

ln[1 − (1 + (1 + χi )
−γ ]

−
J∑

i�1

Ri
λ(1 − (1 + τ )−γ )λ−1

1 − (1 − (1 + τ )−γ )λ

−
J∑

i�1

(n − m −
J∑

i�1

Ri )
λ(1 − (1 + χm)−γ )λ−1

1 − (1 − (1 + χm)−γ )λ
� 0 (9)

∂ ln L

∂γ
� 2mγ −1 −

m∑
i�1

ln[(1 + yi ) −
m∑
i�1

γ (1 + yi )−γ−1

1 − (1 + yi )−γ
−

m∑
i�1

ln[1 + τ + β(yi − τ )]

−
m∑
i�1

γ (1 + χi )−γ−1

1 − (1 + χi )−γ

−
J∑

i�1

(n − m −
J∑

i�1

Ri )
λγ (1 − (1 + χm)−γ )λ−1(1 + χm)−γ−1

1 − (1 − (1 + χm)−γ )λ

−
J∑

i�1

Ri
λγ (1 + τ )−γ−1(1 − (1 + τ )−γ )λ−1

1 − (1 − (1 + τ )−γ )λ
� 0 (10)

∂ ln L

∂β
� mβ−1 −

m∑
i�1

ln[(1 + yi ) − (1 + γ )
m∑
i�1

(yi − τ )

(1 + χi )

− γ (λ − 1)
m∑
i�1

(yi − τ )(1 + χi )−γ−1

1 − (1 + χi )−γ
+

J∑
i�1

(n − m −
J∑

i�1

Ri )

× λγ (1 − (1 + 1 + χm)−γ )λ−1(1 + χm)−γ−1(ym:m: n − τ )

1 − (1 − (1 + χm)−γ )λ
� 0 (11)

It looks impossible to obtain an exact solution of above non-linear Eqs. (9), (10),
and (11). So, an iterative technique (Newton–Raphson Method) is applied to obtain
ML estimates of λ, γ and β.
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3.2 Interval Estimation

Using the data obtained from the APHC scheme, the interval ML estimates of λ, γ

and β are estimated here. The asymptotic distribution of ML estimates is suggested
by Miller [41] and this distribution for λ, γ and β is given as

((λ̂ − λ), (γ̂ − γ ), (β̂ − β)) → N (0, I−1(λ, γ , β))

where I−1(λ, γ , β) is the variance–covariance matrix of unknown model parameters
λ, γ and β.

The 3 × 3 matrix I−1(λ, γ , β), which is approximated equal to I (λ, γ , β) based
on used censoring scheme is given as

I �

⎡
⎢⎢⎣

− ∂2 ln L
∂λ2

− ∂2 ln L
∂λ∂γ

− ∂2 ln L
∂λ∂β

− ∂2 ln L
∂γ ∂λ

− ∂2 ln L
∂γ 2 − ∂2 ln L

∂γ ∂β

− ∂2 ln L
∂β∂λ

− ∂2 ln L
∂β∂γ

− ∂2 ln L
∂β2

⎤
⎥⎥⎦ (12)

The elements of the matrix are

−∂2 ln L

∂λ2
� 2mλ−2 +

J∑
i�1

Ri
λ(1 − (1 + τ )−γ )λ−1

1 − (1 − (1 + τ )−γ )λ

×
[
−λ−1 + ln(1 − (1 + τ )−γ ) +

λ(1 + (1 + τ )−γ )λ−1

1 − (1 − (1 + τ )−γ )λ

]

+
J∑

i�1

(n − m −
J∑

i�1

Ri )
λ(1 − (1 + τ + β(ym:m: n − τ ))−γ )λ−1

1 − (1 − (1 + τ + β(ym:m: n − τ ))−γ )λ

×
[
−λ−1 + ln(1 − (1 + τ + β(ym:m: n − τ ))−γ )

+
λ(1 + (1 + τ + β(ym:m: n − τ ))−γ )λ−1

1 − (1 − (1 + τ + β(ym:m: n − τ ))−γ )λ

]

− ∂2 ln L

∂β2 � mβ−2 −
m∑
i�1

(γ + 1)(yi − τ )2(1 + τ + β(yi − τ ))−2 +
m∑
i�1

(λ − 1)γ (yi − τ )

×
[
− (γ + 1)(yi − τ )

1 + τ + β(yi − τ )
+

λ(yi − τ )(1 + τ + β(yi − τ ))−γ−1

1 − (1 + τ + β(yi − τ ))−γ

]
−

J∑
i�1

λγ (ym:m: n − τ )

×
[
(λ − 1)γ (ym:m: n − τ )(1 + τ + β(ym:m: n − τ ))−γ−1

1 − (1 + τ + β(ym:m: n − τ ))−γ
− (γ + 1)(ym:m: n − τ )

1 + τ + β(ym:m: n − τ )

−λγ (1 + τ + β(ym:m: n − τ ))−γ−1(1 − (1 + τ + β(ym:m: n − τ ))−γ )λ−1

1 − (1 − (1 + τ + β(ym:m: n − τ ))−γ )λ

]
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−∂2 ln L

∂λ∂γ
� −∂2 ln L

∂γ ∂λ

−∂2 ln L

∂λ∂γ
� −

m∑
i�1

γ (1 + yi )−γ−1

1 − (1 + yi )−γ
−

m∑
i�1

γ (1 + τ + β(yi − τ ))−γ−1

1 − (1 + τ + β(yi − τ ))−γ

+
J∑

i�1

λRi
(1 − (1 + τ )−γ )λ−1

1 − (1 − (1 + τ )−γ )λ

×
[
(λ − 1)γ (1 + τ )−γ−1

1 − (1 + τ )−γ
+

λγ (1 + τ )−γ−1(1 + τ )λ−1

1 − (1 − (1 + τ )−γ )λ

]

+
J∑

i�1

λ(n − m −
J∑

i�1

Ri )
(1 − (1 + τ + β(ym:m: n − τ ))−γ )λ−1

1 − (1 − (1 + τ + β(ym:m: n − τ ))−γ )λ

×
[
(λ − 1)γ (1 + τ + β(ym:m: n − τ ))−γ−1

1 − (1 + τ + β(ym:m: n − τ ))−γ

+
λγ (1 + τ + β(ym:m: n − τ ))−γ−1(1 + τ + β(ym:m: n − τ ))λ−1

1 − (1 − (1 + τ + β(ym:m: n − τ ))−γ )λ

]

−∂2 ln L

∂λ∂β
� −∂2 ln L

∂β∂λ

−∂2 ln L

∂λ∂β
�

m∑
i�1

(yi − τ )γ (1 + τ + β(yi − τ ))−γ−1

1 − (1 + τ + β(yi − τ ))−γ

+
J∑

i�1

(n − m −
J∑

i�1

Ri )
λ(1 − (1 + τ + β(ym:m: n − τ ))−γ )λ−1

1 − (1 − (1 + τ + β(ym:m: n − τ ))−γ )λ

×
[
(λ − 1)γ (ym:m: n − τ )(1 + τ + β(ym:m: n − τ ))−γ−1

1 − (1 + τ + β(ym:m: n − τ ))−γ

+
λγ (ym:m: n − τ )(1 − (1 + τ + β(ym:m: n − τ ))−γ )λ−1

1 − (1 − (1 + τ + β(ym:m: n − τ ))−γ )λ

×(1 + τ + β(ym:m: n − τ ))−γ−1
]

−∂2 ln L

∂γ ∂β
� −∂2 ln L

∂β∂γ

−∂2 ln L

∂β∂γ
�

m∑
i�1

(yi − τ )

1 + τ + β(yi − τ )
−

m∑
i�1

(λ − 1)(yi − τ )
(1 + τ + β(yi − τ ))−γ−1

1 − (1 + τ + β(yi − τ ))−γ

×
[
ln(1 + τ + β(yi − τ )) +

γ (1 + τ + β(yi − τ ))−γ−1

1 − (1 + τ + β(yi − τ ))−γ

]

−
J∑

i�1

(n − m −
J∑

i�1

Ri )λγ (ym:m: n − τ )
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× (1 + τ + β(ym:m: n − τ ))−γ−1(1 − (1 + τ + β(ym:m: n − τ ))−γ )λ−1

1 − (1 − (1 + τ + β(ym:m: n − τ ))−γ )λ

×
[
(λ − 1)γ (1 + τ + β(ym:m: n − τ ))−γ−1 + γ −1

+ ln(1 + τ + β(ym:m: n − τ ))

+
λ(1 + τ + β(ym:m: n − τ ))−γ−1(1 − (1 + τ + β(ym:m: n − τ ))−γ )λ−1

1 − (1 − (1 + τ + β(ym:m: n − τ ))−γ )λ

]

The 100(1 − α)% approximated two-sided limits of confidence for parameters λ, γ

and βare given as

λ̂ ± Zγ /2
−1
√
I−1
11 (λ̂, γ̂ , β̂), γ̂ ± Zγ /2

−1
√
I−1
22 (λ̂, γ̂ , β̂) and β̂ ± Zγ /2

−1
√
I−1
33 (λ̂, γ̂ , β̂).

4 Simulation Study and Results

The comparison of unlike censoring schemes is probably impossible for unlike values
of parameters. In this situation, reliability praticioner used different type of techniques
or softwares. TheMonte-Carlo simulation technique alongwith R-Software is a useful
technique in this type of situation. So, we are using this technique in this section for
comparision of performance of MLEs values. This performance of MLEs is evaluated
in terms of mean squared errors (MSEs) and Relative absolute biases (RABs). The
three censoring schemes are considered for this study and the schemes are.

Scheme (I)R1 � R2 � R3 � · · · � Rm−1, Rm � n − m.
Scheme (II)R1 � n − m, R2 � R3 � R4 · · · � 0.
Scheme (III) R1 � R2 � R3 � · · · � Rm−1, Rm � n − 2m + 1.

1000 simulations based MSEs and RABs are estimated for this study. The basic
steps for this study are given as.

i. First, choose the values of parameters n, m, τ , δ, λ, γ and β.
ii. Generate a random sample from Exponentiated Pareto distribution with size n by

the Inverse CDF method in both cases (normal and accelerated condition).
iii. Generate the progressive hybrid censored sample for the parameters

n, m, τ , δ, λ, γ and β using the technique presented in Eq. (6).
iv. The sample data set used in this study for APHC scheme is given as

y1:m:n < y2:m:n < ...ynu :m: n ≤ τ < ynu+1:m: n ≤ δ < yJ+1:m: n < ... < ym: n: n

v. Compute the MSEs and RABs correlated with MLEs of parameters.

5 Conclusion

The likelihood estimation of Exponentiated Pareto distribution under step-stress
partially accelerated life test models using an adaptive type-II progressive hybrid
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censoring scheme is considered in this paper. The Fisher Information matrix under
this censoring scheme is also estimated. The numerical values of MLEs of parame-
ters are obtained using an iterative technique (Newton–Raphson technique), and their
characteristics are measured and recorded in terms of RABs and MSEs. We have seen
that if the sample size increases, then the values of RABs and MESs decreases. So,
the maximum likelihood estimators are consistent as well as asymptotically normally
distributed also. Bayesian inference using step stress PALT under the same censoring
scheme will be considered for future work.
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