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Abstract
In this paper, we derive the likelihood function of the neoteric ranked set sampling 
(NRSS) as dependent in sampling method and double neoteric ranked set sampling 
(DNRSS) designs as combine between independent sampling method in the first 
stage and dependent sampling method in the second stage and they compared for 
the estimation of the parameters of the inverse Weibull (IW) distribution. An inten-
sive simulation has been made to compare the one and the two stages designs. The 
results showed that likelihood estimation based on ranked set sampling (RSS) as 
independent sampling method, NRSS and DNRSS designs provide more efficient 
estimators than the usual simple random sampling design. Moreover, the DNRSS is 
slightly more efficient than the NRSS and RSS designs in the case of estimating the 
IW distribution parameters.

Keywords  Simple random sampling · Ranked set sampling · Neoteric ranked set 
sampling · Double neoteric ranked set sampling · Maximum likelihood estimation

1  Introduction

McIntyre [1] first introduced the ranked set sampling (RSS) in the estimation of the 
mean of pasture yields as a method of improving precision of estimates by a method 
related to two-phase sampling. He proposed a method of sampling to estimate mean 
pasture yields with greater efficiency than simple random sampling (SRS). RSS is a 
useful alternative to SRS when measurements for the variable of interest are expen-
sive or difficult to obtain, the method is shown to be at least as efficient as SRS with 
the same number of quantification. The RSS has wide applications in many scientific 
problems, especially in environmental and ecological studies where the main focus 
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is on economical and efficient sampling strategies. A recently developed extension 
of RSS, Zamanzade and Al-Omari [2] was proposed a new neoteric ranked set sam-
pling (NRSS). NRSS differs from the original RSS scheme by the composition of a 
single set of m2 units, instead of m sets of size m, this strategy has been shown to be 
effective, producing more efficient estimators for the population mean and variance.

The inverse Weibull (IW) distribution can be readily applied to modeling pro-
cesses in reliability, ecology, medicine, branching processes and biological studies. 
The properties and applications of IW distribution in several areas can be seen in the 
literature Keller et al. [3], Calabria and Pulcini [4], Johnson et al. [5].

A random variable X has an IW distribution if the probability density function 
(PDF) is given by

If � = 1, the IW pdf becomes inverse exponential pdf, and when � = 2; the IW PDF 
is referred to as the inverse Raleigh pdf. The IW cumulative distribution function 
(CDF) is given by

where x > 0 , 𝜆 > 0 , 𝛽 > 0 and 0 < u < 1 . � and � are the shape and scale param-
eters, respectively.

2 � Some Ranked Set Sampling

In this section, we give brief descriptions of RSS, NRSS, and double neoteric ranked 
set sampling (DNRSS) schemes.

Some notation frequently used in this section and in the rest of the paper are 
given as follows.

2.1 � Ranked Set Sampling

RSS is an alternative design of SRS, The RSS design has some advantages accord-
ing SRS. For example, by this design, efficient estimates can be obtained using less 
data in the sample.

This ordering criterion may be based, for example, on values of a concomitant 
variable or personal judgment. Several studies have proved the higher efficiency of 
RSS, relative to SRS, for the estimation of a large number of population parameters.

The RSS scheme can be described as follows:

Step 1 Randomly select m2 sample units from the population.
Step 2 Allocate the m2 selected units as randomly as possible into m sets, each of 
size m.

(1)f (x; �, �) = ��x−(�+1)e−�x
−�

,

(2)F(x; �, �) = e−�x
−�

,
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Step 3 Choose a sample for actual quantification by including the smallest ranked 
unit in the first set, the second smallest ranked unit in the second set, the process 
is continues in this way until the largest ranked unit is selected from the last set.
Step 4 Repeat steps 1 through 3 for r cycles to obtain a sample of size mr (Fig. 1).

Let 
{
X(i)j, i = 1, 2,… ,m;j = 1, 2,… , r

}
 be a RSS where m is the set size, r is the 

number of cycle, Then the CDF and the PDF of X(ii)j is given by

and

The Likelihood function corresponding to RSS scheme is as follows:

where Ci =
m!

(i−1)!(m−i)!
.

2.2 � Noetric Ranked Set Sampling

Zamanzade and Al-Omari [2] have defined a new NRSS. A recently developed 
extension of RSS. NRSS differs from the original RSS scheme by the composition 
of a single set of m2 units, instead of m sets of size m. this strategy has been shown 
to be effective, producing more efficient estimators for the population mean and 
variance.

In this section, a steps for applying a NRSS scheme will be showed.
The following steps describe the NRSS sampling design:

Step 1 Select a simple random sample of size m2 units from the target finite popu-
lation.
Step 2 Ranked the m2 selected units in an increasing magnitude based on a visual 
inspection or any other cost free method with respect to a variable of interest.

Fm

(
x(i)j;�

)
=

m∑
t=i

(
m

t

)[
F
(
x(i)j;�

)]t
×
[
1 − F

(
x(i)j;�

)]m−t
,

fm
(
x(i)j;�

)
= Cif

(
x(i)j;�

)[
F
(
x(i)j;�

)]i−1
⋅
[
1 − F

(
x(ii)j;�

)]m−i
.

(3)L(x;�) =

r∏
j=1

m∏
i=1

Cif
(
x(i)j;�

)[
F
(
x(i)j;�

)]i−1[
1 − F

(
x(i)j;�

)]m−i

cycle 1 cycle 2 cycle 3

Fig. 1   RSS design [6]
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Step 3 If m is an odd, then select the 
[
m+1

2
+ (i − 1)m

]
 th ranked unit for 

(i = 1, 2,… ,m).

If m is an even, then select the [l + (i − 1)m] th ranked unit, where 
[
l = m∕2

]
 if i is 

an even and 
[
l =

m+2

2

]
 if i is an odd for (i = 1, 2, ...,m).

Step 4 Repeat steps 1 through 3 r cycles if needed to obtain a NRSS of size 
n = rm.

The NRSS scheme can be described as follows: (Fig. 2)
Where m = 3 and r = 1.
Using NRSS method, we have to choose the units with the rank 2, 5, 8 for 

actual quantification, then the measured NRSS units are 
{

X(2)1 , X(5)1 , X(8)1

}
 

for one cycle.

2.3 � Double Neoteric Ranked Set Sampling

DNRSS is defined by Taconeli and Cabral [7] which defined to be a two-stage 
design in which the first stage is defined by as RSS scheme, while the NRSS pro-
cedure should be applied in the second stage. To draw a DRSS sample of size n, 
the following steps must be implemented:

Step 1 Identify m3 elements from the target population and divide them, ran-
domly, into m blocks with m sets of size m.
Step 2 Apply the RSS method to each block to obtain m RSS samples of size n.
Step 3 Employ the NRSS procedure to the m2 elements selected in step 2 to 
obtain a DNRSS sample of size m. Only these sample units must be measured for 
the variable of interest.
Step 4 Steps 1–3 can be repeated r times to draw a sample of size mr.

In Fig. 3, we show how to select a sample of size m = 3 and r = 1, then we have 
to select m3= 27 units as.

3 � Maximum Likelihood Function Based on NRSS and DNRSS

In this section, Maximum likelihood function based on NRSS and DNRSS will be 
derived.

Fig. 2   NRSS design in case of odd sample size and one cycle [6]
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3.1 � Maximum Likelihood Function Based on NRSS

In this section, we will define the likelihood function for NRSS scheme using the order 
statistics theory through Proposition 1 and depend on Lemma 1.

Lemma 1  Let X1,X2,… ,Xn be a random sample of size n from a continuous popula-
tion and xr1 < Xr1∶n

≤ xr1 + 𝛿xr1 , xr2 < Xr2∶n
≤ xr2 + 𝛿xr2 ,… , xrk < Xrk∶n

≤ xrk + 𝛿xk 
denote the corresponding order statistics, Then the joint probability density function 
(PDF) of Xri∶n

 is given by

where r0 = 0, rk−1 = n + 1 and i = 1, 2,… , k.

To proof the joint probability density function (PDF) of Xri∶n
 by the multinomial 

method [8], we could derive the joint PDF of Xri∶n
 for (1 ≤ r1 < r2 < ⋯ < rk ≤ n) as

fri∶n
�
xr1 , xr2 ,… , xrk

�

=
n!∏n+1

i=1

�
ri − ri−1 − 1

�
!

n�
i=1

f
�
xri

�
×

n+1�
i=1

�
F
�
xri

�
− F

�
xri−1

��ri−ri−1−1

Block 1 Block 2 Block 3

Stage
1

Stage
2

DNRSS sample

Fig. 3   DNRSS design in case of odd sample size and one cycle
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Proposition 1  Depending on the previous lemma, to find the maximum likelihood 
for NRSS. Let 

{
X(k(i))j, i = 1, 2,… ,m;j = 1, 2,… , r

}
 and w = m2 be a NRSS where 

m2 is the set size, r is the number of cycles and k(i) is chosen as

fri∶n(xr1 , xr2 ,… , xrk )𝛿xr1𝛿xr2 … 𝛿xrk

≈ p
(
xr1 < Xr1∶n

≤ xr1 + 𝛿xr1 ;xr2 < Xr2∶n
≤ xr2 + 𝛿xr2 ;… ;xrk

< Xrk∶n
≤ xrk + 𝛿xrk

)

≈ p
(
(r1 − 1) of the Xri∶n

≤ xr1 ; one Xri∶n
in (xr1 , xr1 + 𝛿xr1 ); (r2 − r1 − 1) of the Xri∶n

in(xr1

+ 𝛿xr1 , xr2 ); one Xri∶n
in (xr2 , xr2 + 𝛿xr2 );… ; (rk − rk−1

− 1) of the Xri∶n
in
(
xrk−1 + 𝛿xrk−1 , xrk

)
; one Xri∶n

in(xrk , xrk

+ 𝛿xrk ); (n − rk) of the Xri∶n
> xrk + 𝛿xrk

)

fri∶n
(
xr1 , xr2 ,… , xrk

)
�xr1�xr2 … �xrk

≈
n!(

r1 − 1
)
!
(
r2 − r1 − 1

)
!…

(
n − rk

)
!

[
F
(
xr1

)]r1−1f (xr1
)
�xr1

×
[
F
(
xr2

)
− F

(
xr1 + �xr1

)]r2−r1−f (x2
)
�xr2 …

×
[
F
(
xrk

)
− F

(
xrk−1 + �xrk−1

)]rk−rk−1−1f (xrk
)
�xrk

×
[
1 − F

(
xrk + �xrk

)]n−rk

fri∶n
(
xr1 , xr2 ,… , xrk

)
�xr1�xr2 … �xrk

≈
n!(

r1 − 1
)
!
(
r2 − r1 − 1

)
!…

(
n − rk

)
!

[
F
(
xr1

)]r1−1

×
[
F
(
xr2

)
− F

(
xr1

)]r2−r1−1 … [
F
(
xrk

)
− F

(
xrk−1

)]rk−rk−1−1
×

[
1 − F

(
xrk

)]n−rk f (xr1
)
f
(
x2
)
… f

(
xrk

)

fri∶n
�
xr1 , xr2 ,… , xrk

�
�xr1�xr2 … �xrk

=
n!∏n+1

i=1

�
ri − ri−1 − 1

�
!

n�
i=1

f
�
xri

�

×

n+1�
i=1

�
F
�
xri

�
− F

�
xri−1

��ri−ri−1−1
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Then, the joint probability density function (PDF) of X(k(i))j is given by

where k(0) = 0, k(m + 1) = w + 1 and x(k(0)) = −∞, x(k(i+1)) = ∞.

3.2 � Maximum Likelihood Function Based on DNRSS

The likelihood function corresponding to DNRSS scheme will be derived in the 
same DRSS scheme based on the joint of order statistics but two stage.

Proposition 2  Let 
{
Y(i)j, i = 1, 2, ..,m2;j = 1, 2, .., r

}
 and w = m2 be a neoteric 

ranked set sample where m2 is the set size and r is the number of cycles in the sec-
ond stage, where in the first stage select m3 elements from the target population and 
divide these elements randomly into m sets (of size m2). Then the PDF of X(k(i))j is 
given by:

4 � Estimation of the Inverse Weibull Distribution Parameters

This section is devoted to the MLE for the unknown parameters of IW distribution 
based on RSS, NRSS and DNRSS designs.

4.1 � Estimation Based on SRS

Let X1,X2,… ,Xn be independent and identically distributed random variables from 
IW distribution with pdf given in Eq. (1). The likelihood function of � and � is given by

k(i) =

⎧
⎪⎨⎪⎩

m+1

2
+ (i − 1)m, m odd

m

2
+ (i − 1)m, meven, i even

m+2

2
+ (i − 1)m, meven, i odd

(4)

L
�
xk(i)j;�

�
=

w!∏m+1

i=1
(k(i) − k(i − 1) − 1)!

m�
i=1

f
�
x(k(i))j;�

�

⋅

m+1�
i=1

�
F
�
x(k(i))j;�

�
− F

�
x(k(i−1))j;�

��k(i)−k(i−1)−1

(5)

L
�
xk(i)j;�

�
=

w!∏m+1

i=1
(k(i) − k(i − 1) − 1)!

m�
i=1

fm
�
y(k(i))j;�

�

×

m+1�
i=1

�
Fm

�
y(k(i))j;�

�
− Fm

�
y(k(i−1))j;�

��k(i)−k(i−1)−1
.
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and the log likelihood function is then derived as

Let

and

4.2 � Estimation Based on RSS

According to the Eq. (3) the Likelihood function for set sizes m and with r cycles based 
on RSS is given by

The log likelihood function can be derived directly as follows

and the first derivatives of the �(�, �) are given by

L(x; �, �) =

n∏
i=1

��x
−(�+1)

i
e−�x

−�

i ,

�(�, �) = n log � + n log � − (� − 1)

n∑
i=1

log xi −

n∑
i=1

�x
−�

i
,

��(�, �)

��
=

n

�
−

n∑
i=1

x
−�

i
= 0,

��(�, �)

��
=

n

�
−

n∑
i=1

log xi −

n∑
i=1

�x
−�

i
log xi = 0.

L(x;�, �) =

r∏
j=1

m∏
i=1

Ci

(
��

(
x(i)j

)−(�+1)
e−�(x(i)j)

−�
)(

e−�(x(i)j)
−�
)i−1

⋅

(
1 − e−�(x(i)j)

−�
)m−i

�(�, �) =rm logc + mrlog� + mr log � − (� + 1)

r∑
j=1

m∑
i=1

log x(i)j

− �

r∑
j=1

m∑
i=1

(i)
(
x(i)j

)−�
+

r∑
j=1

m∑
i=1

(m − i)log
(
1 − e−�(x(i)j)

−�
)

��(�, �)

��
=

mr

�
−

r∑
j=1

m∑
i=1

(i)
(
x(i)j

)−�
+

r∑
j=1

m∑
i=1

(m − i)
e−�(x(i)j)

−�(
x(i)j

)−�

1 − e−�(x(i)j)
−�



365

1 3

Annals of Data Science (2020) 7(2):357–371	

and

These two nonlinear equations can’t be solved analytically and will be solved 
numerically.

4.3 � Estimation Based on NRSS

By substitution in Eq. (4) based on IW distribution the Likelihood function for set sizes 
m and with r cycles based on NRSS is given by

where h =
w!∏m+1

i=1
(k(i)−k(i−1)−1)!

.

The associated log-likelihood function is as follows

and the first derivatives of the ��(�, �) are given by

��(�, �)

��
=

mr

�
−

r∑
j=1

m∑
i=1

log x(i)j + �

r∑
j=1

m∑
i=1

(i)
(
x(i)j

)−�
log x(i)j

−

r∑
j=1

m∑
i=1

(m − i)
e−�(x(i)j)

−�

�
(
x(i)j

)−�
log x(i)j

1 − e−�(x(i)j)
−�

L(x; �, �) =

r∏
j=1

(
h

m∏
i=1

(
��

(
x(k(i))j

)−(�+1)
e−�(x(k(i))j)

−�
)

×

m+1∏
i=1

[
e−�(x(k(i))j)

−�

− e−�(x(k(i−1))j)
−�
]k(i)−k(i−1)−1)

�(�, �) = r log h + mrlog� + mr log � − (� + 1)

r∑
j=1

m∑
i=1

log x(k(i))j − �

r∑
j=1

m∑
i=1

(
x(k(i))j

)−�

+

r∑
j=1

m+1∑
i=1

(k(i) − k(i − 1) − 1)log
(
e−�(x(k(i))j)

−�

− e−�(x(k(i−1))j)
−�
)

��(�, �)

��
=
mr

�
−

r�
j=1

m�
i=1

�
x(k(i))j

�−�

+

r�
j=1

m+1�
i=1

(k(i) − k(i − 1) − 1)

×

⎛⎜⎜⎝
−e−�(x(k(i))j)

−��
x(k(i))j

�−�
+ e−�(x(k(i−1))j)

−��
x(k(i−1))j

�−�

e−�(x(k(i))j)
−�

− e−�(x(k(i−1))j)
−�

⎞⎟⎟⎠
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and

4.4 � Estimation Based on DNRSS

By substitution in Eq. (5) based on IW distribution the Likelihood function for set sizes 
m and with r cycles based on DNRSS is given by

The associated log-likelihood function is as follows

��(�, �)

��

=
mr

�
−

r�
j=1

m�
i=1

log x(k(i))j + �

r�
j=1

m�
i=1

�
x(k(i))j

�−�
log x(k(i))j

+

r�
j=1

m+1�
i=1

(k(i) − k(i − 1) − 1)

×

⎛⎜⎜⎝
e−�(x(k(i))j)

−�

�
�
x(k(i))j

�−�
log x(k(i))j + e−�(x(k(i−1))j)

−�

�
�
x(k(i−1))j

�−�
log x(k(i−1))j

e−�(x(k(i))j)
−�

− e−�(x(k(i−1))j)
−�

⎞⎟⎟⎠

L(�, �;x) =

r∏
j=1

(
h

m∏
i=1

(
cf
(
x(ii)j;�

)[
F
(
x(ii)j;�

)]i−1[
1 − F

(
x(ii)j;�

)]m−i)

×

m+1∏
i=1

[
m∑
t=i

(
m

t

)[
F
(
x(ii)j;�

)]t[
1 − F

(
x(ii)j;�

)]m−t

−

m∑
t=i−1

(
m

t

)[
F
(
x(ii)j;�

)]t[
1 − F

(
x(ii)j;�

)]m−t]k(i)−k(i−1)−1
)

L(�, �; x) =

r�
j=1

�
h

m�
i=1

�
c��x

−(�+1)

(i)j
e
−�x

−�

(ii)j

�
e
−�x

−�

(i)j

�i−1�
1 − e

−�x
−�

(i)j

�m−i�

×

m+1�
i=1

�
m�
t=i

�
m

t

��
e
−�x

−�

(i)j

�t�
1 − e

−�x
−�

(i)j

�m−t

−

m�
t=i−1

�
m

t

��
e
−�x

−�

(i)j

�t�
1 − e

−�x
−�

(i)j

�m−t�k(i)−k(i−1)−1⎞⎟⎟⎠
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and the first derivatives of the �(θ) are given by

and

where Q = log

�
m∑
t=i

�
m

t

��
e
−�x

−�

(i)j

�t�
1 − e

−�x
−�

(i)j

�m−t
−

m∑
t=i−1

�
m

t

��
e
−�x

−�

(i)j

�t�
1 − e

−�x
−�

(i)j

�m−t�

5 � Simulation Study

Sample units generated by the proposed sampling designs only become order statistics 
when the ranking process is done without any error (perfect ranking). Because of this, 
the RSS-based designs will produce sample units that are neither independent nor iden-
tically distributed which makes it difficult to analytically derive some of the properties 
of their respective estimators (see [7]). Therefore, an extensive simulation study was 
conducted to evaluate the derived MLEs performance and compare their performance 
with other RSS-based designs estimators’ performance. The Monte Carlo simulation 
is made for the IW distribution with different parameter values to ensure a wide range 
of shapes of the IW distribution, namely IW(0.5,0.5), IW(0.5, 1.5), IW(1.5, 1.5) and 
IW(1, 4). Figure  4 shows the density function for the IW distribution for the initial 
parameter values used in the simulation. The simulation is made for samples of sizes 

𝓁(�, �) =r logh + rm logc + mrlog� + mr log � − (� + 1)

r∑
j=1

m∑
i=1

log x(i)j

− �

r∑
j=1

m∑
i=1

(i − 1)
(
x(i)j

)−�
+

r∑
j=1

m∑
i=1

(m − i)log
(
1 − e−�(x(i)j)

−�
)

+

r∑
j=1

m∑
i=1

(k(i) − k(i − 1) − 1)

⋅ log

[
m∑
t=i

(
m

t

)[
e
−�x

−�

(i)j

]t[
1 − e

−�x
−�

(i)j

]m−t
−

m∑
t=i−1

(
m

t

)[
e
−�x

−�
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3, 4, 5 and 6 and 10,000 replications. Let 𝜃̂k·be the kth sample estimator generated by a 
particular RSS based sampling design k = 1, 2, ..., 10, 000 . The comparison were made 
using two criteria’s, the relative bias (RB) and mean square errors (MSE), which are 
calculated as follows:

The relative efficiency (RE) to SRS estimators was calculated for each RSS-based 
design, by

All simulations were performed using routines developed by the authors in the 
R environment for statistical computing. Simulation results are shown in Tables 1 
and 2. Also Fig. 5 shows the performance of the different RSS designs for differ-
ent parameters.

From figures and tables it can be noticed that:

1.	 DNRSS presents a slightly better performance than NRSS and RSS.
2.	 As the sample size increases the relative bias decreases for β for all scheme.
3.	 As λ and α decreases and the sample sizes increase, the performance of the esti-

mators of λ, and β for different designs become higher.
4.	 DNRSS design provide more efficient estimator than NRSS and RSS estimator 

for all the distribution parameters.

RB =

10,000∑
i=1
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Fig. 4   The density function of the IW distribution for different parameter values
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Table 1   Relative efficiency for RSS-based estimators compared to SRS based estimators under perfect 
ranking

IW(�, �) m RSS NRSS DNRSS

� � � � � �

IW(0.5,0.5) 3 1.46630 1.21132 2.81259 3.78537 3.88623 5.82571
4 2.14430 2.03357 3.98699 4.15773 5.96501 7.48505
5 2.94103 2.49280 5.092747 5.22924 9.68038 11.11363
6 2.72526 3.11749 5.73776 6.63662 11.63555 17.72417

IW(0.5,1.5) 3 1.27266 1.21184 3.85065 2.45862 3.38222 5.53623
4 2.78971 1.35217 4.10789 3.18146 6.48985 8.39856
5 2.85852 1.53746 4.95179 4.53329 7.47875 13.04239
6 3.66195 2.05133 5.37870 5.39773 9.48357 18.85748

IW(1.5,1.5) 3 1.54470 1.50546 2.44404 2.62619 5.44733 2.65695
4 2.26704 2.13102 2.74003 3.32870 8.58636 5.38930
5 3.2982 3.03945 3.07941 4.32797 9.69485 8.09901
6 4.28763 5.64471 4.63618 6.60479 14.14814 10.43904

IW(1, 4) 3 1.61446 1.63172 2.81621 3.83168 4.89325 5.50302
4 1.75145 2.51913 3.17727 4.27652 6.18853 9.75309
5 2.76019 2.92192 4.21255 4.42390 11.05959 12.82770
6 3.51309 4.05778 6.20407 5.83183 16.73780 23.11162

Table 2   Relative bias for RSS-based estimators under perfect ranking

IW(�, �) m RSS NRSS DNRSS

� � � � � �

IW(0.5,0.5) 3 0.27122 − 0.22457 0.38039 0.06428 0.03968 − 0.06339
4 0.09601 − 0.19283 0.43373 0.03593 0.05381 − 0.05225
5 − 0.30402 − 0.16946 0.43982 − 0.02678 0.05446 − 0.05267
6 0.26262 − 0.16223 0.44115 − 0.02196 0.04867 − 0.04424

IW(0.5,1.5) 3 0.40368 − 0.98366 0.42522 − 0.66853 0.03109 − 0.16927
4 0.01718 0.88135 0.43788 − 0.53550 0.04939 − 0.16079
5 0.12139 − 0.65108 0.43722 − 0.41244 0.05332 − 0.15272
6 0.07200 − 0.61769 0.47304 − 0.30432 0.05385 − 0.14612

IW(1.5,1.5) 3 − 0.14385 − 0.63255 0.65418 − 0.85589 − 0.04055 − 0.18596
4 − 0.14363 − 0.54678 0.66840 − 0.71787 0.06603 − 0.17516
5 − 0.24544 − 0.41382 0.70064 − 0.39076 0.06118 − 0.16921
6 − 0.16207 0.26941 0.71791 − 0.39026 0.04126 − 0.14706

IW(1, 4) 3 − 0.29394 − 0.83746 0.93404 − 1.67601 0.01389 − 0.41074
4 0.70578 − 0.77391 0.86085 − 0.99475 0.04934 − 0.39255
5 − 0.18131 − 0.61650 0.88302 − 0.73519 0.058804 − 0.35885
6 0.17585 − 0.31411 0.91377 − 0.62382 0.05521 − 0.35025
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5.	 The relative efficiency from NRSS to the design with best performance more than 
RSS.

6.	 The efficiency of both RSS and NRSS for some sample sizes are nearly close but 
the overall performance of DNRSS is higher than the NRSS design.

7.	 Regarding the distribution shape, as the distribution becomes almost symmetric 
the RE is always higher than the RE for the other shapes of the distribution.
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Fig. 5   Shows the RE of the different RSS designs for the different parameters
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6 � Conclusions

In this paper, we have derived the likelihood function for the DNRSS design and 
compare it with the RSS and DNRSS designs. Moreover, the MLE for IW distribu-
tion based on SRS, RSS, NRSS and DNRSS has been done. An intensive numerical 
comparison between the SRS and different RSS deigns is done and showed that the 
DNRSS is more efficient for all values for the scale parameter and the two shape 
parameters of the IW distribution. we found that the maximum likelihood estimation 
based on DNRSS proposed by Taconeli and Cabral [7] provides slightly more effi-
cient estimators than the likelihood estimation based on the NRSS designs proposed 
by Zamanzade and Al-Omari [2] in case of inverted Weibull distribution.
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