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Abstract
In this paper, an endeavor has been made to fit three distributions Marshall–Olkin
with exponential distributions, Marshall–Olkin with exponentiated exponential dis-
tributions and Marshall–Olkin with exponentiated extension distribution keeping in
mind the end goal to actualize Bayesian techniques to examine visualization of prog-
nosis of women with breast cancer and demonstrate through utilizing Stan. Stan is an
abnormal model dialect for Bayesian displaying and deduction. This model applies
to a genuine survival controlled information with the goal that every one of the ideas
and calculations will be around similar information. Stan code has been created and
enhanced to actualize a censored system all through utilizing Stan technique. More-
over, parallel simulation tools are also implemented and additionally actualized with
a broad utilization of rstan.
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1 Introduction

Survival analysis is the name for a collection of statistical techniques used to describe
and quantify time to event data. In survival analysis we use the term failure to define
the occurrence of the event of interest. The term ‘survival time species’ is the length of
time taken for failure to occur. Types of studies with survival outcomes include clini-
cal trials, time from birth until death. Survival analysis arises in many fields of study
includingmedicine, biology, engineering, public health, epidemiology and economics.
In this paper, an attempt has been made to outline how Bayesian approach proceeds
to fit Marshall–Olkin exponential model, Marshall–Olkin exponentiated exponential
and Marshall–Olkin exponential extension for lifetime data using Stan. The tools and
techniques used in this paper are in Bayesian environment, which are implemented
using rstan package [21]. Exponential, Weibull and Gamma are some of the impor-
tant distributions widely used in reliability theory and survival analysis [19]. But these
distributions have a limited range of behavior and cannot represent all situations found
in applications. For example; although the exponential distribution is often described
as flexible, of the major disadvantages of the exponential distribution is that it has a
constant hazard function. The limitations of standard distributions often arouse the
interest of researchers in finding new distributions by extending existing ones. The
procedure of expanding a family of distributions for added flexibility or constructing
covariate models is a well known technique in the literature. For instance the family
of Weibull distributions contains exponential distribution and is constructed by tak-
ing powers of exponentially distributed random variables. Marshall and Olkin [15]
introduced a new method of adding a parameter into a family of distributions. Stan
is a probabilistic programming language for specifying statistical models. Bayesian
inference is based on the Bayes rule which provides a rational method for updating
our beliefs in the light of new information. The Bayes rule states that posterior dis-
tribution is the combination of prior and data information. It does not tell us what
our beliefs should be, it tells us how they should change after seeing new informa-
tion. The prior distribution is important in Bayesian inference since it influences the
posterior. When no information is available, we need to specify a prior which will
not influence the posterior distribution. Such priors are called weakly-informative or
non-informative, such as, Normal, Gamma and half-Cauchy prior, this type of priors
will be used throughout the paper. The posterior distribution contains all the infor-
mation needed for Bayesian inference and the objective is to calculate the numeric
summaries of it via integration. In cases, where the conjugate family is considered,
posterior distribution is available in a closed form and so the required integrals are
straightforward to evaluate. However, the posterior is usually of non-standard form,
and evaluation of integrals is difficult. For evaluating such integrals, various methods
are available such as Laplace’s method (see, for example, [5,18,22]) and numerical
integration methods of [8]. Simulation can also be used as an alternative technique.
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Simulation based on Markov chain Monte Carlo (MCMC) is used when it is not
possible to sample θ directly from posterior p(θ |y) . For a wide class of problems,
this is the easiest method to get reliable results [11]. Gibbs sampling, Hamiltonian
Monte Carlo and Metropolis–Hastings algorithm are the MCMC techniques which
render difficult computational tasks quite feasible. A variant of MCMC techniques are
performed such as independence Metropolis, and Metropolis within Gibbs sampling.
To make computation easier, software such as R, Stan [full Bayesian inference using
the No-U-Turn sampler (NUTS), a variant of Hamiltonian Monte Carlo (HMC)] are
used. Bayesian analysis of proposal appropriation has been made with the following
objectives:

• To define a Bayesian model, that is, specification of likelihood and prior distribu-
tion.

• To write down the R code for approximating posterior densities with Stan.
• To illustrate numeric as well as graphic summaries of the posterior densities.

2 Analysis of Marshall–Olkin Distribution

Marshall and Olkin [15] introduced a new way of incorporating a parameter to expand
a family of distributions. Marshall–Olkin distribution as mentioned by Marshall and
Olkin [15]

The probability density function (pdf) and cumulative distribution function (cdf)
of Marshall–Olkin distribution which are given by (2.1) and (2.2), respectively,

f (t) = bg(t)

[b + (1 − b)G(t)]2 (2.1)

F(t) = G(t)

[b + (1 − b)G(t)] (2.2)

where g(t) and G(t) are corresponding pdf and cdf of t, respectively.

2.1 TheMarshall–Olkin Exponential Distribution

In this section, we introduce a Marshall–Olkin exponential distribution. The pdf, cdf,
survival function and hazard function of exponential distribution when g(t) ∼ exp(θ)

are given by (2.3), (2.4), (2.5) and (2.6), respectively, as in Fig. 1.

f (t) = b/θexp(−t/θ)

[b + (1 − b)(1 − exp(−t/θ))]2 (2.3)

F(t) = 1 − exp(−t/θ)

[b + (1 − b)(1 − exp(−t/θ))] (2.4)

S(t) = 1 − F(t) = bexp(−t/θ)

[b + (1 − b)(1 − exp(−t/θ))] (2.5)

h(t) = f (t)

S(t)
(2.6)
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Fig. 1 Probability density plots, cdf, survival and hazard curves ofMarshall–Olkin Exponential Distribution
for different values of θ

If b = 1, then we obtain exponential distribution with parameter θ > 0.

2.2 TheMarshall–Olkin Exponentiated Exponential Distribution

Marshall–Olkin extra shapes parameter to the two-parameter exponentiated exponen-
tial distribution. It is observed that the new three-parameter distribution is very flexible.
When the pdf, cdf, survival function and hazard function of exponentiated exponen-
tial distribution is g(t) ∼ expexp(θ, α), the results are (2.7), (2.8), (2.9) and (2.10),
respectively, as in Fig. 2.

f (t) = bα/θ(1 − exp(−t/θ))α−1exp(−t/θ)

[b + (1 − b)(1 − exp(−t/θ))α]2 (2.7)

F(t) = (1 − exp(−t/θ))α

[b + (1 − b)(1 − exp(−t/θ))α] (2.8)

S(t) = 1 − (1 − exp(−t/θ)α

[1 + (1/b − 1)(1 − exp(−t/θ))α] (2.9)

h(t) = f (t)

S(t)
(2.10)

It may be observed that several special cases can be obtained from (2.8). For example,
if we set b = 1 in (2.8), then we obtain the exponentiated exponential distribution
as introduced by Gupta and Kundu [12]. If α = 1, we obtain the Marshall–Olkin
exponential distribution introduced by Marshall and Olkin [15]. If α = 1 and b = 1,
we obtain the exponential distribution with parameter θ .
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Fig. 2 Probability density plots, cdf, survival and hazard curves of Marshall–Olkin exponentiated expo-
nential distribution for different values of b, α and at θ = 1

2.3 TheMarshall–Olkin Exponential Extension Distribution

When the pdf, cdf, survival function and hazard function of exponential extension
distribution is g(t) ∼ expext(θ, α), the results are (2.11), (2.12), (2.13) and (2.14),
respectively, as in Fig. 3

f (t) = bα/θ(1 + t/θ)α−1exp(1 − (1 + t/θ)α

[1 − (1 − b)exp(1 − (1 + t/θ)α)]2 (2.11)

F(t) = 1 − exp(1 − (1 + t/θ)α)

1 − (1 − b)exp(1 − (1 + t/θ)α)
(2.12)

S(t) = 1 − F(t) = bexp(1 − (1 + t/θ)α)

1 − (1 − b)exp(1 − (1 + t/θ)α)
(2.13)

h(t) = f (t)

S(t)
(2.14)

3 Bayesian Inference

Gelman [11] break applied Bayesian modeling into the following three steps:

1. Set up a full probability model for all observable and unobservable quantities. This
model should be consistent with existing knowledge of the data being modeled
and how it was collected.
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Fig. 3 Probability density plots, cdf, survival and hazard curves of Marshall–Olkin exponential extension
distribution for different values of b, α and at θ = 1

2. Calculate the posterior probability of unknown quantities conditioned on observed
quantities. The unknownsmay include unobservable quantities such as parameters
and potentially observable quantities such as predictions for future observations.

3. Evaluate the model fit to the data. This includes evaluating the implications of the
posterior.

Typically, this cycle will be repeated until a sufficient fit is achieved in the third step.
Stan automates the calculations involved in the second and third steps [6].

We have to specify here the most vital in Bayesian inference which are as per the
following:

• prior distribution: p(θ): The parameter θ can set a prior distribution elements that
using probability as a means of quantifying uncertainty about θ before taking the
data into a count.

• Likelihood p(y|θ): likelihood function for variables are related in full probability
model.

• Posterior distribution p(θ |y): is the joint posterior distribution that expresses
uncertainty about parameter θ after considering about the prior and the data, as in
equation.

P(θ |y) = p(y|θ) × p(θ) (3.1)
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4 The Prior Distributions

Section 3, the Bayesian inference has the prior distribution which represents the
information about an uncertain parameter θ that is combined with the probability
distribution of data to get the posterior distribution p(θ |y). For Bayesian paradigm,
it is critical to indicate prior information with the value of the specified parameter
or information which are obtained before analyzing the experimental data by using a
probability distribution function which is called the prior probability distribution (or
the prior). In this paper, we use three types of priors which are half-Cauchy prior,
Gamma prior and Normal prior. The simplest of all priors is a conjugate prior which
makes posterior calculations easy. Also, a conjugate prior distribution for an unknown
parameter leads to a posterior distribution for which there is a simple formulae for
posterior means and variances. Akhtar and Khan [4] use the half-Cauchy distribution
with scale parameter α = 25 as a prior distribution for scale parameter.

Hereinafter we will discuss the types of prior distribution:

• Half-Cauchy prior.
• Normal prior.

First, the probability density function of half-Cauchy distribution with scale parameter
α is given by

f (x) = 2α

π(x2 + α2)
x > 0, α > 0.

The mean and variance of the half-Cauchy distribution do not exist, but its mode is
equal to 0. The half-Cauchy distribution with scale α = 25 is a recommended, default,
weakly informative prior distribution for a scale parameter. At this scale α = 25, the
density of half-Cauchy is nearly flat but not completely (see Fig. 4), prior distributions
that are not completely flat provide enough information for the numerical approxima-
tion algorithm to continue to explore the target density; the posterior distribution. The
inverse-gamma is often used as a non-informative prior distribution for scale parame-
ter, however; thismodel creates a problem for scale parameters near zero; Gelman et al.
[9] recommend that, the uniform, or if more information is necessary, the half-Cauchy
is a better choice. Thus, in this paper, the half-Cauchy distributionwith scale parameter
α = 25 is used as a weakly informative prior distribution. Second, in the normal (or
Gaussian), each parameters is assigned a weak information Gaussian prior probabil-
ity distribution. In this paper, we use the parameters βi independently in the normal
distribution with mean=0 and standard deviation=1000, that is, β j ∼ N (0, 1000), for
this, we obtain a flat prior. From Fig. 4, we see that the large variance indicates a lot
of uncertainty about each parameter and hence, a weak informative distribution.

5 StanModeling

Stan is a high level language written in a C++ library for Bayesian modeling and [6]
is a new Bayesian software program for inference that primarily uses the No-U-Turn
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Fig. 4 Half-Cauchy, Gamma and Normal priors

sampler (NUTS) [13] to obtain posterior simulations given a user-specified model
and data. Hamiltonian Monte Carlo (HMC) is one of the algorithms belonging to the
general class of MCMC methods. In practice, HMC can be very complex, because in
addition to the specific computation of possibly complex derivatives, it requires fine
tuning of several parameters. HamiltonianMonte Carlo takes a bit of effort to program
and tune. In more complicated settings, though, HMC to be faster and more reliable
than basic Markov chain simulation, Gibbs sampler and the Metropolis algorithm
because they explores the posterior parameter space more efficiently. they do so by
pairing each model parameter with a momentum variable, which determines HMC’s
exploration behavior of the target distribution based on the posterior density of the cur-
rent drawn parameter and hence enable HMC to “suppress the random walk behavior
in the Metropolis algorithm” [11]. Consequently, Stan is considerably more efficient
than the traditional Bayesian software programs. However, the main function in the
rstan package is stan, which calls the Stan software program to estimate a specified
statisticalmodel,rstan provides a very clever system inwhichmost of the adaptation
is automatic. Statistical model through a conditional probability function p(θ |y, x)
can be classified by Stan program, where θ is a sequence of modeled unknown values,
y is a sequence ofmodeled known values, and x is a sequence of un-modeled predictors
and constants (e.g., sizes, hyperparameters) [21]. A Stan program imperatively defines
a log probability function over parameters conditioned on specified data and constants.
Stan provides full Bayesian inference for continuous-variable models throughMarkov
chain Monte Carlo methods [16], an adjusted form of Hamiltonian Monte Carlo sam-
pling [17]. Stan can be called from R using the rstan package, and through Python
using the pystan package. All interfaces support sampling and optimization-based
inference with diagnostics and posterior analysis. rstan and pystan also provide
access to log probabilities, parameter transforms, and specialized plotting. Stan pro-
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grams consist of variable type declarations and statements. Variable types include
constrained and unconstrained integer, scalar, vector, and matrix types. Variables are
declared in blocks corresponding to the variable use: data, transformed data, parameter,
transformed parameter, or generated quantities.

6 Bayesian Analysis of Model

Bayesian analysis is the method to obtain the marginal posterior distribution of the
particular parameters of interest. In principle, the route to achieving this aim is clear;
first, we require the joint posterior distribution of all unknown parameters, then, we
integrate this distribution over the unknowns parameters that are not of immediate
interest to obtain the desired marginal distribution. Or equivalently, using simulation,
we draw samples from the joint posterior distribution, then, we look at the parameters
of interest and ignore the values of the other unknown parameters.

6.1 Marshall–Olkin Exponential Model

Now, the probability density function (pdf ) is given by

f (t, b, θ) = b/θexp(−t/θ)

[b + (1 − b)(1 − exp(−t/θ))]2 .

Also, the survival function is given by

S(t, b, θ) = 1 − F(y) = bexp(−t/θ)

[b + (1 − b)(1 − exp(−t/θ))] .

We can state the likelihood function for right censored (as is our case the data are right
censored)as

L =
n∏

i=0

Pr(ti , δi )

=
n∏

i=0

[ f (ti )]δi [S(ti )]1−δi

where δi is an indicator variable which takes value 0 if observation is censored and 1
if observation is uncensored. Thus, the likelihood function is given by AbuJarad and
Khan [2]

L =
n∏

i=0

[
b/θexp(−t/θ)

[b + (1 − b)(1 − exp(−t/θ))]2
]δi

[
bexp(−t/θ)

[b + (1 − b)1 − exp(−t/θ)]
]1−δi

.

(6.1)
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Thus, the joint posterior density is given by

p(b, β|t, X) ∝ L(t |X , b, β) × p(β) × p(b)

∝
n∏

i=0

[
b/eXβexp(−t/eXβ)

[b + (1 − b)(1 − exp(−t/eXβ))]2
]δi

[
bexp(−t/eXβ)

[b + (1 − b)1 − exp(−t/eXβ)]
]1−δi

×
J∏

i=0

1√
2π × 103

exp

(
− 1

2

β2
j

103

)
× 2 × 25

π(b2 + 252)
. (6.2)

To carry out Bayesian inference in the Marshall–Olkin exponential model, we
should determine an prior distribution for b and β ′s. We discussed the issue associated
with specifying prior distributions in Sect. 4, but for simplicity at this point, we assume
that the prior distribution for b is half-Cauchy on the interval [0, 25] and forβ isNormal
with [0, 1000]. Elementary application of Bayes rule as displayed in (3.1), applied to
(6.1), then gives the posterior density for b and β as Eq. (6.2). Result for this marginal
posterior distribution get high-dimensional integral over all model parameters β j and
b. To solve this integral, we employ the approximated using Markov Chain Monte
Carlo methods. However, due to the availability of computer software package like
rstan, this required model can easily be fitted in Bayesian paradigm using Stan as
well as MCMC techniques.

6.2 Marshall–Olkin Exponentiated Exponential Model

Now, the probability density function (pdf ) is given by

f (t, b, α, θ) = bα/θ(1 − exp(−t/θ))α−1exp(−t/θ)

[b + (1 − b)(1 − exp(−t/θ))α]2 .

Also, the survival function is given by

S(t, b, α, θ) = 1 − (1 − exp(−t/θ))α

[1 + (1/b − 1)(1 − exp(−t/θ))α] .

In the presence of censoring, the resulting log-likelihood function is modified to
account for the possibility of partially observed data (in correspondence with cen-
soring) We can write the likelihood function for right censored (as is our case the data
are right censored) as [3]

L =
n∏

i=0

Pr(ti , δi )

=
n∏

i=0

[ f (ti )]δi [S(ti )]1−δi ,
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where δi is an indicator variable which takes value 0 if observation is censored and 1
if observation is uncensored. Thus, the likelihood function is given by

L =
n∏

i=0

[
bα/θ(1 − exp(−t/θ))α−1exp(−t/θ)

[b + (1 − b)(1 − exp(−t/θ))α]2
]δi

[
1 − (1 − exp(−t/θ))α

[1 + (1/b − 1)(1 − exp(−t/θ))α]
]1−δi

.

(6.3)

Thus, the joint posterior density is given by

p(α, β, b|t, X) ∝ L(t |X , α, β, b) × p(β) × p(α) × p(b)

∝
n∏

i=0

[
bα/eXβ(1 − exp(−t/eXβ))α−1exp(−t/eXβ)

[b + (1 − b)(1 − exp(−t/eXβ))α]2
]δi

×
[

1 − (1 − exp(−t/eXβ))α

[1 + (1/b − 1)(1 − exp(−t/eXβ))α]
]1−δi

×
J∏

i=0

1√
2π × 103

exp

(
− 1

2

β2
j

103

)
× 2 × 25

π(α2 + 252)
× 2 × 25

π(b2 + 252)
. (6.4)

To carry out Bayesian inference in the Marshall–Olkin exponentiated exponential
model, we must specify a prior distribution for α, b and β ′s. We discussed the issue
associated with specifying prior distributions in Sect. 4, but for simplicity at this point,
we assume that the prior distribution for α and b is half-Cauchy on the interval [0, 25]
and for β is Normal with [0, 1000]. Elementary application of Bayes rule as displayed
in (3.1), applied to (6.3), then gives the posterior density for α, b and β as Eq. (6.4).
The result for thismarginal posterior distribution get high-dimensional integral over all
model parameters β j , b and α. To resolve this integral we use the approximated using
Markov chain Monte Carlo methods. However, due to the availability of computer
software package like rstan, this required model can easily fit in Bayesian paradigm
using Stan as well as MCMC techniques.

6.3 Marshall–Olkin Exponential ExtensionModel

The probability density function (pdf ) given by

f (t, α, θ, b) = bα/θ(1 + t/θ)α−1exp(1 − (1 + t/θ)α

[1 − (1 − b)exp(1 − (1 + t/θ)α)]2 ;

The survival function is given by

S(t, α, θ, b) = bexp(1 − (1 + t/θ)α)

1 − (1 − b)exp(1 − (1 + t/θ)α)
;
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We can state the likelihood function for right censored (as is our case the data are right
censored) as

L =
n∏

i=0

Pr(ti , δi )

=
n∏

i=0

[ f (ti )]δi [S(ti )]1−δi ,

where δi is an indicator variable which takes value 0 if observation is censored and 1
if observation is uncensored. Thus, the likelihood function is given by

L =
n∏

i=0

[
bα/θ(1 + t/θ)α−1exp(1 − (1 + t/θ)α

[1 − (1 − b)exp(1 − (1 + t/θ)α)]2
]δi

[
bexp(1 − (1 + t/θ)α)

1 − (1 − b)exp(1 − (1 + t/θ)α)

]1−δi

. (6.5)

Thus, the joint posterior density is given by [1]

p(α, β, b|t, X) ∝ L(t |X , α, β, b) × p(β) × p(α) × p(b)

∝
n∏

i=0

[
bα/eXβ(1 + t/eXβ)α−1exp(1 − (1 + t/eXβ)α

[1 − (1 − b)exp(1 − (1 + t/eXβ)α)]2
]δi

×
[

bexp(1 − (1 + t/eXβ)α)

1 − (1 − b)exp(1 − (1 + t/eXβ)α)

]1−δi

×
J∏

i=0

1√
2π × 103

exp

(
− 1

2

β2
j

103

)
× 2 × 25

π(α2 + 252)
× 2 × 25

π(b2 + 252)
. (6.6)

To carry outBayesian inference in theMarshall–Olkin exponential extensionmodel,
wemust specify a prior distribution for α, b and β ′s. We discussed the issue associated
with specifying prior distributions in Sect. 4, but for simplicity at this point, we assume
that the prior distribution for α and b is half-Cauchy on the interval [0, 25] and for β

is Normal with [0, 1000]. Elementary application of Bayes rule as displayed in (3.1),
applied to (6.5), then gives the posterior density for α, b and β as equation (6.6). The
result for this marginal posterior distribution get high-dimensional integral over all
model parameters β j , b and α. To resolve this integral we use the approximated using
Markov chain Monte Carlo methods. However, due to the availability of computer
software package like rstan, this required model can easily fit in Bayesian paradigm
using Stan as well as MCMC techniques.
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6.4 The Data: Prognosis ofWomenwith Breast Cancer Survival Data

Breast cancer is one of the most common forms of cancer occurring in women living
in the Western World. The data given in Table refers to the survival times (in months)
of womenwho had received a simple or radical mastectomy to treat a tumour. The data
is carried out at the Middlesex Hospital, and documented in [14] and is also discussed
by Collet [7]. In the table, the survival times of each woman are classied according
to whether their tumour was positively or negatively stained. Censored survival times
are labeled with an asterisk:

Negatively stained: 23, 47, 69, 70*, 71*, 100*, 101*, 148, 181, 198*, 208*, 212*, 224*
Positively stained: 5, 8, 10, 13, 18, 24, 26, 26, 31, 35, 40, 41, 48, 50, 59, 61, 68, 71, 76*, 105*, 107*,
109*, 113, 116*, 118, 143*, 154*, 162*, 188*, 212*, 217*, 225*

7 Implementation Using Stan

Bayesian modeling of Marshall–Olkin models in rstan package includes the cre-
ation of blocks, data, transformed data, parameter, transformed parameter, or generated
quantities. To use the method for Marshall–Olkin exponential model, Marshall–Olkin
exponentiated exponential, and Marshall–Olkin exponential extension, we will fol-
low the following steps; starting with build a function for the model containing the
accompanying items:

• Define the log survival.
• Define the log hazard.
• Define the sampling distributions for right censored data.

At that point the distribution ought to be built on the function definition blocks. The
function definition block contains user defined functions. The data block states the
needed data for the model. The transformed data block permits the definition of
constants and transforms of the data. The parameters block declares themodel’s param-
eters. The transformed parameters block allows variables to be defined in terms of data
and parameters that may be used later and will be saved. The model block is where
the log probability function is defined.

stan(file, model_name = "anon_model", model_code = "",
fit = NA, data = list(), pars = NA, chains = 4,
iter = 2000, warmup = floor(iter/2), thin = 1,
init = "random",algorithm = c("NUTS", "HMC",
"Fixed_param"),)

file A stands for character string file name or a connection that R supports
containing the text of a model specification in the Stan modeling language; a model
may also be specified directly as a character string using parameter model_code,
or through a previous fit using parameter fit. When fit is specified, the parameter
file is ignored. model_name A is a character string naming the model; defaults to
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anon_model. However, themodel namewould be drawn fromfile or model_code
(if model_code is the name of a character string object) if model_name is not
specified. model_codeA is a character string either containing the model definition
or the name of a character string object in the workspace. This parameter is used only
if parameter file is not specified. When fit is specified and the previously compiled
model is used, we can ignor so specifying model_code. data A is a named list or
environment providing the data for the model, or a character vector for all the names of
objects used as data. pars A is a vector of character strings specifying parameters of
interest. The default is NA indicating all parameters in the model. If include = TRUE,
only samples for parameters named in pars are stored in the fitted results. Conversely,
if include = FALSE, samples for all parameters except those named in pars are stored
in the fitted results. chains A is a positive integer specifying the number of Markov
chains. iter A is a positive integer specifying the number of iterations for each
chain (including warmup). warmup A is a positive integer specifying the number of
warmup (aka burnin) iterations per chain. As step-size adaptation is on (which it is by
default), this controls the number of iterations for which adaptation is run (and hence
these warmup samples should not be used for inference). The number of warmup
iterations should not be larger than iter and the default is iter/2. thin A is a
positive integer specifying the period for saving samples. The default is 1, which is
usually the recommended value. init can be the digit 0, the strings 0 or random, a
function that returns a named list, or a list of named lists [20].

7.1 Model Specification

Now we will examine the posterior estimates of the parameters when the Marshall–
Olkin exponential, Marshall–Olkin exponentiated exponential and Marshall–Olkin
exponential extension model’s are fitted to the above mentioned information (data).
Thus the meaning of the probability (likelihood) becomes the topmost necessity for
the Bayesian fitting. Here, we have likelihood as:

L(θ |t) =
n∏

i=1

f (ti )
δi S(ti )

1−δi

=
n∏

i=1

(
f (ti )

S(ti )

δi

S(ti )

)

=
n∏

i=1

h(ti )
δi S(ti ),

this way, our log-likelihood progresses toward becoming

logL =
∑n

i=i

(
log

[
h(ti )

]δi

+ log(St )

)
.
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7.1.1 Marshall–Olkin Exponential Model

The first model is Marshall–Olkin exponential :

y ∼ MOexp(θ, b),

where θ = exp(Xβ) is a linear combination of explanatory variables, log is the natural
log for the time to failure event. The Bayesian system requires the determination and
specification of prior distributions for the parameters. Here, we stick to subjectivity
and thus introduce weakly informative priors for the parameters. Priors for the β and
α are taken to be normal and half-Cauchy as follows:

β j ∼ N (0, 1000); j = 1, 2, 3, . . . J

b ∼ HC(0, 25).

To fit this model in Stan, we first write the Stan model code and save it in a separated
text-file with name “model_code1”.:

library(rstan)
model_code1="
functions{
//defined survival
vector log_s(vector t, real shape, vector scale){
vector[num_elements(t)] log_s;
for(i in 1:num_elements(t)){
log_s[i]=log((shape*exp(-t[i] / scale[i]))/
(shape+(1-shape)*
(1-exp(-t[i] / scale[i]))));
}
return log_s;
}
//define log_ft
vector log_ft(vector t, real shape, vector scale){
vector[num_elements(t)] log_ft;
for(i in 1:num_elements(t)){
log_ft[i]=log((shape/scale[i]*exp(-t[i] / scale[i]))/
(shape+(1-shape)*(1-exp(-t[i] / scale[i])))ˆ2);
}
return log_ft;
}
//define log hazard
vector log_h(vector t, real shape, vector scale){
vector[num_elements(t)] log_h;
vector[num_elements(t)] logft;
vector[num_elements(t)] logs;
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logft=log_ft(t,shape,scale);
logs=log_s(t,shape,scale);
log_h=logft-logs;
return log_h;
}
//define the sampling distribution
real surv_MOEXP_lpdf(vector t, vector d, real shape,
vector scale){

vector[num_elements(t)] log_lik;
real prob;
log_lik=d .* log_h(t,shape,scale)+log_s(t,shape,scale);
prob=sum(log_lik);
return prob;
}
}

In this manner, we acquire the survival and hazard of the Marshall–Olkin exponential
model.

7.1.2 Marshall–Olkin Exponentiated Exponential Model

The second model is Marshall–Olkin exponentiated exponential model:

y ∼ MOexpexp(α, b, θ),

where θ = exp(Xβ). The Bayesian framework requires the specification of prior
distributions for the parameters. Here, we stick to subjectivity and thus introduce
weakly informative priors for the parameters. Priors for the β, α, and b are taken to
be normal and half-Cauchy as follows:

β j ∼ N (0, 1000); j = 1, 2, 3, . . . J

α ∼ HC(0, 25).

b ∼ HC(0, 25).

To fit this model in Stan, we first write the Stan model code and save it in a separated
text-file with name “model_code2”.:

library(rstan)
model_code2="
functions{
//defined survival
vector log_s(vector t, real shape,real scale,
vector rate){

vector[num_elements(t)] log_s;
for(i in 1:num_elements(t)){
log_s[i]=log((scale*(1-(1-exp(-t[i] / rate[i]))ˆshape))
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/(scale+(1-scale)*(1-exp(-t[i] / rate[i]))ˆshape));
//define log_ft
vector log_ft(vector t, real shape,real scale,
vector rate){

vector[num_elements(t)] log_ft;
for(i in 1:num_elements(t)){
log_ft[i]=log(((scale*shape/rate[i])*((1-exp(-t[i] /
rate[i]))ˆ(shape-1))*

(exp(-t[i] / rate[i])))/(scale+(1-scale)*(1-exp(-t[i] /
rate[i]))ˆshape)ˆ2);}

return log_ft;}
//define log hazard
vector log_h(vector t, real shape,real scale, vector
rate){

vector[num_elements(t)] log_h;
vector[num_elements(t)] logft;
vector[num_elements(t)] logs;
logft=log_ft(t,shape,scale,rate);
logs=log_s(t,shape,scale,rate);
log_h=logft-logs;
return log_h;
}
//define the sampling distribution
real surv_MOEXPEXP_lpdf(vector t, vector d,
real shape,real scale, vector rate){

vector[num_elements(t)] log_lik;
real prob;
log_lik=d .* log_h(t,shape,scale,rate)+log_s
(t,shape,scale,rate);
prob=sum(log_lik);
return prob;
}}

Therefore, we obtain the survival and hazard of the Marshall–Olkin exponentiated
exponential model .

7.1.3 Marshall–Olkin Exponential Extension Model

The third model is Marshall–Olkin exponential extension model:

y ∼ MOexpext(α, b, θ),

where θ = exp(Xβ). The Bayesian framework requires the specification of prior
distributions for the parameters. Here, we stick to subjectivity and thus introduce
weakly informative priors for the parameters. Priors for the β, α, and b are taken to
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be normal and half-Cauchy as follows:

β j ∼ N (0, 1000); j = 1, 2, 3, . . . J

α ∼ HC(0, 25).

b ∼ HC(0, 25).

To fit this model in Stan, we first write the Stan model code and save it in a separated
text-file with name “model_code3”.:

library(rstan)
model_code3="
functions{
//defined survival
vector log_s(vector t, real shape,real scale,
vector rate){

vector[num_elements(t)] log_s;
for(i in 1:num_elements(t)){
log_s[i]=log((scale*exp(1-(1+t[i] / rate[i])ˆshape))/
(1-(1-scale)*
exp(1-(1+t[i] / rate[i])ˆshape)));
}
return log_s;
}
//define log_ft
vector log_ft(vector t, real shape,real scale, vector
rate){
vector[num_elements(t)] log_ft;
for(i in 1:num_elements(t)){
log_ft[i]=log((scale*shape/rate[i]*(1+t[i] / rate[i])
ˆ(shape-1)*
exp(1-(1+t[i] / rate[i])ˆshape))/(1-(1-scale)*
exp(1-(1+t[i] / rate[i])ˆshape))ˆ2);
}
return log_ft;
}
//define log hazard
vector log_h(vector t, real shape,real scale, vector
rate){

vector[num_elements(t)] log_h;
vector[num_elements(t)] logft;
vector[num_elements(t)] logs;
logft=log_ft(t,shape,scale,rate);
logs=log_s(t,shape,scale,rate);
log_h=logft-logs;
return log_h;
}
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//define the sampling distribution
real surv_MOEXPEXT_lpdf(vector t, vector d, real shape,
real scale, vector rate){
vector[num_elements(t)] log_lik;
real prob;
log_lik=d .* log_h(t,shape,scale,rate)+log_s(t,shape,
scale,rate);
prob=sum(log_lik);
return prob;
}}

Therefore, we obtain the survival and hazard of theMarshall–Olkin exponential exten-
sion model .

7.2 Build the Stan

Stan contains an arrangement of blocks as stated previously; in the first block we will
define the data block, in which we include the number of the observations, observed
times, censoring indicator (1=observed, 0=censored), number of covariates, and
build the matrix of covariates (with N rows and M columns). Then we create the
parameter in block parameters, since we have more one parameter, we will do some
changes for the parameters in side transformed parameters block. Finally, we arrange
the model in blocks model. In these blocks, we put the prior for the parameters and
the likelihood to get the posterior distribution for these model. We save this work in a
file to use it in rstan package.

7.2.1 Marshall–Olkin Exponential Model

data {
int N; // number of observations
vector<lower=0>[N] y; // observed times
vector<lower=0,upper=1>[N] censor;//
1=observed, 0=censored
int M; // number of covariates
matrix[N, M] x;}// matrix of covariates (N r and M col)
parameters {
vector[M] beta; // Coefficients linear predictor
real<lower=0> shape; } // shape parameter
transformed parameters {
vector[N] linpred;
vector[N] scale;
linpred = x*beta;
for (i in 1:N) {
scale[i] = exp(linpred[i]);}}
model {
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shape ˜ cauchy(0,25);
beta ˜ normal(0,1000);
y ˜ surv_MOEXP(censor, shape, scale);}
generated quantities{
real dev;
dev=0;
dev=dev + (-2)*surv_MOEXP_lpdf(y|censor,shape,scale);}"

7.2.2 Marshall–Olkin Exponentiated Exponential Model

//data block
data {
int N; // number of observations
vector<lower=0>[N] y; // observed times
vector<lower=0,upper=1>[N] censor;//censoring indicator
(1=observed, 0=censored)

int M; // number of covariates
matrix[N, M] x; // matrix of covariates (with n rows and
H columns)}

parameters {
vector[M] beta; // Coefficients in the linear predictor
(including intercept)
real<lower=0> shape; // shape parameter
real<lower=0> scale;}
transformed parameters {
vector[N] linpred;
vector[N] rate;
linpred = x*beta;
for (i in 1:N) {
rate[i] = exp(linpred[i]);
}}
model {
shape ˜ cauchy(0,25);
scale ˜ cauchy(0,25);
beta ˜ normal(0,1000);
y ˜ surv_MOEXPEXP(censor, shape, scale, rate);
}
generated quantities{
real dev;
dev=0;
dev=dev + (-2)*surv_MOEXPEXP_lpdf(y|censor,
shape,scale,rate);
}
"

123



Annals of Data Science (2020) 7(3):461–489 481

7.2.3 Marshall–Olkin Exponential Extension Model

//data block
data {
int N; // number of observations
vector<lower=0>[N] y; // observed times
vector<lower=0,upper=1>[N] censor;//censoring indicator
(1=observed, 0=censored)

int M; // number of covariates
matrix[N, M] x; // matrix of covariates
(with n rows and H columns)

}
parameters {
vector[M] beta; // Coefficients in the linear predictor
(including intercept)

real<lower=0> shape; // shape parameter
real<lower=0> scale;
}
transformed parameters {
vector[N] linpred;
vector[N] rate;
linpred = x*beta;
for (i in 1:N) {
rate[i] = exp(linpred[i]);
}}
model {
shape ˜ cauchy(0,25);
scale ˜ cauchy(0,25);
beta ˜ normal(0,1000);
y ˜ surv_MOEXPEXT(censor, shape, scale, rate);
}
generated quantities{
real dev;
dev=0;
dev=dev + (-2)*surv_MOEXPEXT_lpdf(y|censor,
shape,scale,rate);
}
"

7.3 Creation of Data for Stan

In this part, we are going to arrange the data that we need to employ for analysis, data
arrangement requires model matrix X, number of predictors M, information regarding
censoring and response variable. The number of observations is specified by N, that is,
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45. Censoring is taken into account, where 0 stands for censored and 1 for uncensored
values. Lastly, every one of these things are consolidated in a recorded list as dat.

y<-c(23,47,69,70,71,100,101,148,181,198,208,212,224,
5,8,10,13,18,24,26,
26,31,35,40,41,48,50,59,61,68,71,76,105,107,109,113,116,
118,143,154,162,
188,212,217,225)
x1<-c(rep(0,13), rep(1,32))
censor<-c(rep(1,3),rep(0,4),rep(1,2),rep(0,4),rep(1,18),
rep(0,4),1,0,1,1,rep(0,6))
x <- cbind(1,x1)
N = nrow(x)
M = ncol(x)
event=censor
dat <- list( y=y, x=x, event=event, N=N, M=M)

7.4 Runing theModel Using Stan for Marshall–Olkin Exponential Model

Now we run Stan with 2 chains for 5000 iterations and display the results numerically
and graphically:

#regression coefficient with log(y) as a guess to
initialize

beta1=solve(crossprod(x),crossprod(x,log(y)))
#convert matrix to a vector
beta1=c(beta1)
S1<-stan(model_code=model_code1,init=list
(list(beta=beta1),list(beta=2*beta1)),
data=dat,iter=5000,chains=2)
print(S1,c("beta","shape","dev"),digits=2)

7.4.1 Summarizing Output

A summary of the parameter distributions can be obtained by using print(S1),
which provides posterior estimates for each of the parameters in the model. Before
any inferences can be made, however, it is critically important to determine whether
the sampling process has converged to the posterior distribution. Convergence can be
diagnosed in several different ways. One way is to look at convergence statistics such
as the potential scale reduction factor,Rhat [10], and the effective number of samples,
n_eff [11], both of which are outputs in the summary statistics with print(S1).
The function rstan approximates the posterior density of the fitted model and poste-
rior summaries can be seen in the following tables. Table 1, which contain summaries
for for all chains merged and individual chains, respectively. Included in the sum-
maries are (quantiles),(means), standard deviations (sd), effective sample
sizes (n_eff), and split (Rhats) (the potential scale reduction derived from all
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Table 1 Summary of the simulated results using rstan function with mean stands for posterior mean,
se_mean, sd for posterior standard deviation, LB, Median, UB are 2.5%, 50%, 97.5% quantiles, n_eff
for number effective sample size, and Rhat, respectively

Mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat

beta[0] 6.79 0.04 1.25 4.99 5.92 6.55 7.41 9.86 960 1

beta[1] − 1.11 0.01 0.59 − 2.39 − 1.48 − 1.08 − 0.70 − 0.09 1794 1

shape 0.64 0.02 0.64 0.02 0.20 0.46 0.87 2.30 1667 1

lp__ − 158.45 0.04 1.36 − 162.06 − 159.03 − 158.12 − 157.46 − 156.90 1108 1

dev 314.91 0.06 2.62 311.97 313.00 314.20 316.05 321.73 1770 1

chains after splitting each chain in half and treating the halves as chains). For the
summary of all chains merged, Monte Carlo standard errors (se_mean) are also
reported.

The inference of the posterior density after fitting the (Marshall–Olkin Exponential
model) for prognosis of women with breast cancer data using stan are reposted in
Table 1. The posterior estimate for β0 is 6.79 ± 1.25 and 95% credible interval is
(4.99, 9.86), which is statistically significant. Rhat is close to 1.0, indication of good
mixing of the three chains and thus approximate convergence. posterior estimate for
β1 is−1.11±0.59 and 95% credible interval is (−2.39,−0.09), which is statistically
significant. Rhat is close to 1.0, indication of good mixing of the three chains and
thus approximate convergence. The table displays the output from Stan. Here, the
coefficient beta[0] is the intercept, while the coefficient beta[1] is the effect of
the only covariate included in the model. The effective sample size given an indication
of the underlying autocorrelation in the MCMC samples values close to the total
number of iterations. The selection of appropriate regressor variables can also be done
by using a caterpillar plot. Caterpillar plots are popular plots in Bayesian inference
for summarizing the quantiles of posterior samples. We can see in this Fig. 5, that the
caterpillar plot is a horizontal plot of 3 quantiles of selected distribution. This may
be used to produce a caterpillar plot of posterior samples. In MCMC estimation, it

Fig. 5 Caterpillar plot for
Marshall–Olkin exponential
model

beta[1]

beta[2]

shape

0 4 8

quantile summary plot of posterior samples
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Fig. 6 Checking model convergence using rstan, through inspection of the traceplots or the autocorrela-
tion plot

is important to thoroughly assess convergence as it in Fig. 6, the rstan contains
specialized function to visualise the model output and assess convergence.

stan_ac(S1,"beta")
traceplot(S1,"beta")

7.5 Runing theModel Using Stan for Marshall–Olkin Exponentiated Exponential
Model

Now we run Stan with 2 chains for 5000 iterations and display the results numerically
and graphically:

#regression coefficient with log(y) as a guess to
initialize

beta1=solve(crossprod(x),crossprod(x,log(y)))
#convert matrix to a vector
beta1=c(beta1)
S2<-stan(model_code=model_code2,init=list
(list(beta=beta1),list(beta=2*beta1)),
data=dat,iter=5000,chains=2)
print(S2,c("beta","shape","scale","dev"),digits=2)

7.5.1 Summarizing Output

The function rstan approximates the posterior density of the fitted model and pos-
terior summaries can be seen in the following tables. Table 2, contains summaries
for for all chains merged and individual chains, respectively. Included in the sum-
maries are (quantiles),(means), standard deviations (sd), effective sample
sizes (n_eff), and split (Rhats) (the potential scale reduction is derived from
all chains after splitting each chain in half and treating the halves as chains). For
the summary of all chains merged, Monte Carlo standard errors (se_mean) are
also reported. The inference of the posterior density after fitting the (Marshall–Olkin
exponential exponential model) for prognosis of women with breast cancer data using
stan are reposted in Table 2. The posterior estimate for β0 is 6.74 ± 1.24 and 95%
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Table 2 Summary of the simulated results using rstan function with mean stands for posterior mean,
se_mean, sd for posterior standard deviation, LB, Median, UB are 2.5%, 50%, 97.5% quantiles, n_eff
for number effective sample size, and Rhat, respectively

Mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat

beta[0] 6.74 0.04 1.24 5.04 5.89 6.51 7.30 9.82 1084 1

beta[1] − 1.12 0.01 0.55 − 2.32 − 1.44 − 1.08 − 0.75 − 0.12 1933 1

shape 1.08 0.01 0.28 0.57 0.89 1.07 1.26 1.67 1943 1

scale 0.71 0.03 0.95 0.01 0.16 0.42 0.88 3.14 1327 1

lp__ − 158.84 0.04 1.54 − 162.77 − 159.55 − 158.49 − 157.72 − 156.93 1416 1

dev 315.39 0.07 3.13 311.03 313.05 314.84 317.21 322.94 1915 1

Fig. 7 Caterpillar plot for
Marshall–Olkin exponentiated
exponential model

beta[1]

beta[2]

scale

shape

0 4 8

quantile summary plot of posterior samples

credible interval is (5.04, 9.82), which is statistically significant. Rhat is close to 1.0,
indication of good mixing of the three chains and thus approximate convergence. pos-
terior estimate for β1 is −1.12 ± 0.55 and 95% credible interval is (−2.32, −0.12),
which is statistically significant. Rhat is close to 1.0, indication of good mixing of the
three chains and thus approximate convergence. The selection of appropriate regressor
variable can also be done by using a caterpillar plot. Caterpillar plots are popular plots
in Bayesian inference for summarizing the quantiles of posterior samples. we can see
in this Fig. 7, that the caterpillar plot is a horizontal plot of 3 quantiles of selected
distribution. In MCMC estimation, it is important to thoroughly assess convergence
as in Fig. 8, the rstan contains specialized function to visualise the model output
and assess convergence.

stan_ac(S2,"beta")
traceplot(S2,"beta")

7.6 Runing theModel Using Stan for Marshall–Olkin Exponential ExtensionModel

Now we run Stan with 2 chains for 5000 iterations and display the results numerically
and graphically:

#regression coefficient with log(y) as a guess to
initialize

beta1=solve(crossprod(x),crossprod(x,log(y)))
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Fig. 8 Checking model convergence using rstan, through inspection of the traceplots or the autocorrela-
tion plot

#convert matrix to a vector
beta1=c(beta1)
S3<-stan(model_code=model_code3,control =
list(adapt_delta = 0.99),init=list(list(beta=beta1),
list(beta=2*beta1)),
data=dat,iter=5000,chains=2)
print(S3,c("beta","shape","scale","dev"),digits=2)

7.6.1 Summarizing Output

The function rstan approximates the posterior density of the fitted model, and pos-
terior summaries can be seen in the following tables. Table 3, contains summaries
for for all chains merged and individual chains, respectively. Included in the sum-
maries are (quantiles),(means), standard deviations (sd), effective sample
sizes (n_eff), and split (Rhats) (the potential scale reduction derived from all
chains after splitting each chain in half and treating the halves as chains). For the
summary of all chains merged, Monte Carlo standard errors (se_mean) are also
reported. The inference of the posterior density after fitting the (Marshall–Olkin expo-
nential extension model) for prognosis of women with breast cancer data using stan
are reposted in Table 3. The posterior estimate for β0 is 7.53± 2.97 and 95% credible

Table 3 Summary of the simulated results using rstan function with mean stands for posterior mean,
se_mean, sd for posterior standard deviation, LB, Median, UB are 2.5%, 50%, 97.5% quantiles, n_eff
for number effective sample size, and Rhat, respectively

Mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat

beta[0] 7.53 0.09 2.97 1.92 5.36 7.76 9.59 13.10 997 1

beta[1] − 1.16 0.01 0.60 − 2.41 − 1.55 − 1.12 − 0.75 − 0.09 1913 1

shape 24.94 9.37 538.00 0.25 0.55 1.85 6.52 77.92 3298 1

scale 1.51 0.14 6.99 0.01 0.14 0.35 0.97 9.25 2335 1

lp__ − 158.55 0.04 1.53 − 162.43 − 159.42 − 158.29 − 157.52 − 156.77 1290 1

dev 314.75 0.05 2.47 312.03 313.06 314.26 316.11 321.23 2140 1
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Fig. 9 Caterpillar plot for
Marshall–Olkin exponential
extension model
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Fig. 10 Checking model convergence using rstan, through inspection of the traceplots or the autocorre-
lation plot

interval is (1.92, 13.10), which is statistically significant. Rhat is close to 1.0, indica-
tion of good mixing of the three chains and thus approximate convergence. posterior
estimate for β1 is −1.16 ± 0.60 and 95% credible interval is (−2.41, −0.09), which
is statistically significant. Rhat is close to 1.0, indication of good mixing of the three
chains and thus approximate convergence. The selection of appropriate regressor vari-
able can also be done by using a caterpillar plot. Caterpillar plots are popular plots in
Bayesian inference for summarizing the quantiles of posterior samples. we can see in
Fig. 9, that the caterpillar plot is a horizontal plot of 3 quantiles of selected distribu-
tion. In MCMC estimation, it is important to thoroughly assess convergence as it in
Fig. 10, the rstan contains specialized function to visualise the model output and
assess convergence.

stan_ac(S2,"beta")
traceplot(S2,"beta")

8 Conclusion

To display choice in this segment, we need to looking into the model which best
suits the purpose. Here, therefore, Table 4 clearly demonstrates that Marshall–Olkin
exponential extension is the most proper model for the Stan as it has least estimation
of deviance when contrasted with Marshall–Olkin exponential and Marshall–Olkin
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Table 4 Model comparison ofMarshall–Olkin exponential, Marshall–Olkin exponentiated exponential and
Marshall–Olkin exponential extension models for the prognosis of women with breast cancer data

Models Stan deviance

Marshall–Olkin exponential 314.91

Marshall–Olkin exponentiated exponential 315.39

Marshall–Olkin exponential extension 314.75

It is evident from this table that Marshall–Olkin exponential Extension is much better than Marshall–Olkin
exponential and Marshall–Olkin exponentiated exponential

exponentiated exponential. Finally, we can conclude that deviance is great criteria of
model examination.
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