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Abstract

This article deals with the constant—stress partially accelerated life test using type |
and type II censored data in the presence of competing failure causes. Suppose that
the occurrence time of the failure cause follows Weibull distribution. Maximum likeli-
hood technique is employed to estimate the population parameters of the distribution.
The performance of the theoretical estimators of the parameters are evaluated and
investigated by using a simulation algorithm.

Keywords Step stress partially accelerated life tests - Weibull distribution - Censored
competing risks data - Maximum likelihood estimation

1 Introduction

In life testing and reliability experiments, time to failure data obtained under normal
operating conditions is used to analyze the products failure time distribution and its
associated parameters. The continuous improvement in manufacturing design creates
a problem in obtaining information about lifetime of some products and materials
with high reliability at the time of testing under normal conditions. Under such condi-
tions the life testing becomes very expensive and time consuming. To obtain failures
quickly, a sample of these materials is tested at more severe operating conditions than
normal ones. These conditions are referred to as stresses, which may be in the form of
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temperature, voltage, force, humidity, pressure, vibrations, etc. This type of testing is
called accelerated life testing (ALT), where products are run at higher than usual stress
conditions, to induce early failures in a short time. The life data collected from such
accelerated tests is then analyzed and extrapolated to estimate the life characteristic
under normal operating conditions by using a proper life stress relationship. There
are situations where a life stress relationship is not known and cannot be assumed,
i.e., the data obtained from ALT cannot be extrapolated to normal conditions. In such
situations, partially accelerated life testing (PALT) is used. In PALT, test units are run
at both normal and accelerated conditions.

1.1 Constant Stress ALT

The stresses can be applied in various ways, namely; constant-stress, step-stress, and
progressive-stress (see Nelson [16]). Under step-stress PALT, a test item is first run
at normal use condition and, if it does not fail for a specified time, then it is run
at accelerated use condition until failure occurs or the observation is censored. On
the other hand a progressive-stress ALT lets the stress level to increase linearly and
continuously on any surviving test units. A constant-stress ALT (CS-PAL) is the most
common type where each test unit is subjected to only one chosen stress level until its
failure or the termination of the test, whichever occurs first.

For an overview of the CS-PALT, there is an amount of literature on designing
CS-PALT for example, Bai and Chung [3], Bai et al. [4], Abdel-Ghani [1], Hassan [9],
Abdel-Hamid [2], Ismail [11], Ismail et al. [12], Wang and Cheng [21], Kamal et al.
[13], Srivastava and Mittal [19, 20], Hassan et al. [10], and Mahmoud et al. [15].

1.2 Competing Risks Schemes

In reliability analysis, the failure of items may be attributable to more than one cause at
the same time. Theses “causes” are competing for the failure of the experimental unit.
This problem is known as the competing risks model in the statistical literature. In the
competing risks data analysis, the data consists of a failure time and the associated
cause of failure. The causes of failure may be assumed to be independent or dependent.
In this paper, we assume the latent failure time model, as suggested by Cox [5],
where the failure times are independently distributed. For several examples, where
the failure is due to more than cause of failure, see Crowder [6]. Considered a life
time experiment with n € N identical units, where its lifetimes are described as
independent and identically distributed (i.i.d) random variables X1, ..., X,. Without
loss of generality; assume that there are only two causes of failure. We have 7; = min
{X1;, Xp;} fori = 1,...,n, where X|;, Xp; denotes the latent failure time of the
ith unit under first and second cause of failure, respectively. We assumed that the
latent failure times X1; and X»; are independent, and the pairs (Xy;, Xo;) are i.i.d.
The observed failure time is given by the random variable 7; = min{Xy;, X»;}. The
survival function of the random variable T is defined as

T(x) = Pr(T > x)
=Pr(T > x1) Pr(T > x)
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= Fi(x)F2(x),

where F(.) = 1 — F(.) is the survival function. On using the relation f(x) = —%F
(x), we get the densities

J - — d - —
g1(x) = —a—G(t) = fi)F2(x) gx) =———G@) = fa(x) Fi(x).
X1 0x2

Recently, some authors have investigated the competing failure models in ALT, see
for example, Shi et al. [17], Han and Kundu [8], Haghighi and Bae [7], Zhang et al.
[22], Shi et al. [18] and Lone et al. [14].

The Weibull distribution is a very popular model and it has been extensively used
over the past decades for modeling data in reliability, engineering and bio-logical
studies. In this paper, we consider the estimation problem for the CS-PALT competing
failure model from Weibull distribution under fype I censoring (TIC) and type II
censoring (TIIC). The rest of this paper is organized as follows. In Sect. 2, under TIC
and TIIC schemes, a CS-PALT competing failure model from Weibull distribution is
described and some basic assumptions are given. In Sect. 3, we obtain the maximum
likelihood (ML) estimators of the acceleration factor and unknown parameters for
CS-PALT competing model under TIC. Section 4 gives the ML estimators of the
acceleration factor and unknown parameters for CS-PALT competing model under
TIIC. The simulation results of all proposed methods for different sample sizes and
for different censoring schemes are presented in Sect. 5.

2 Model Description and Assumptions

This section displays the main assumptions for product life test in CS-PALT competing
failure model. Also, the test procedures in CS-PALT based on TIC and TIIC schemes
when the lifetime of competing failures are assumed to have Weibull distribution are
explained.

2.1 Model Description

The test procedure in CS-PALT is considered as follows:
e Total n items are divided into two groups:

e Group 1 consistsof n; = n(1 — ), (1 — ) is sample proportion items allocated
to normal conditions.

e Group 2 consists of n, = nx remaining items are subjected to accelerated con-
ditions.

e Each item in Group 1 and Group 2 is run at constant level of stress until the test
terminates when the censoring time t in case of TIC or the rth failure in case of
TIIC is reached.

e The lifetimes 7;, i =1,2,...,n(1 — ), of items allocated at normal conditions
follow Weibull distribution with shape parameter 6, scale parameter A and have
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the probability density function (pdf) and cumulative distribution function (cdf) as
follows:

Fy =0nl™ e M s 6.0 >0, )
and,
—t?
Fi)=1—e", 2
where, the observed ordered failure times are f(;) < --- < t(,) < 7 under TIC

and n, is the number of failed items at normal conditions. While the observed rth
ordered failure is #(1) < t2) < ¢@3) - -+ < t() under TIIC.

The lifetimes X;, j =1,2,...,nm of items allocated at accelerated conditions
follow a Weibull distribution with shape parameter 6 and scale parameter A and
have the pdf and cdf as follows:

_ 0
F(x;) =018(Bx;)" e B ;0,0 >0,8> 1, 3)
and,
0
Flxj)=1—e ") @)
where, the observed ordered failure times are x(;) < -+ < X(u,) < T and ng is

the number of failed items at accelerated conditions under TIC. While the observed
ordered rth failure is x(1) < x(2) < x(3) - -+ < X(» under TIIC.

2.2 Basic Assumption

The lifetimes 7;, i =1,2,...,n(1 — ) of items allocated at normal conditions
are i.i.d random variables
The lifetimes X;, j =1,2,...,nm of items allocated at accelerated conditions

are i.i.d random variables
The lifetimes 7; and X ; are mutually independent.

3 ML Estimators Under TIC Competing Risks Data

Suppose that the observed values of the total lifetime 7 of size n(1 — &) at normal
condition are #(1y, t(2), - - - , {(n(1—n)), and the observed values of the total lifetime X of
size nm at accelerated condition are x(1), X(2), - - - , X(ux)- Let §,; and 8,; denote the
failure indicators such that

_ 1 i<t .
8'“_{0 otherwise ' = L% --onll—=m),

and

@ Springer



Annals of Data Science (2020) 7(1):45-62 49

1 xj<rt .
Sai = {0 otherwise ' L2, .

The likelihood function for TIC competing risks data when the cause of failure is
known at normal conditions is given by

L« [[[AERo]) " hoRom]) 2 RoBRO],.  ©

i=1

where, t; = t;),and m = 1 — 7. Substituting (1), (2), (3) and (4) in likelihood function
(5), then:
nm _ 01 () alui
Lyiy o l_[|:91)»1tigl_le (A't" i )]
i=1

) 01\ 792ui 5.
|:92)\2t02—le—()»21i2+)»11,-1):| “ I:e—()nlrel+)n21'92)i|6‘”‘

i

Also, the likelihood function for TIC competing risks data when the cause of failure
is known at accelerated conditions is given by

-t 611 —[Al(ﬂlxi)91+)»2(ﬂzxi)gz] Ptai
Li@j) l_[ O1x1B1(Bixj)" e ' :

j=1

824

ga' _ A\ R
[e,[k,(/3”)01”2(52,)92]] / |:92)\.2,32(ﬂ2xj')921€ [22(82x)) 401 (Brx;) ]]}

Since the lifetimes of 71, ..., #,, and x1, ..., x,, are iid then the total likelihood
function for TIC competing risks data when the cause of failure is known at normal
and accelerated conditions (f1; &u1...,%ha; OSunw»X13 Sal---»>Xnzs Oanx) 1S
given by:

nw

Ly < LiwiyLi@j)L1i l_[

i=1

o 02\ 1S1ui 6y . 01\ %2ui 5.
[91)&15‘91_16_0”” Hhat; >i| [szztfz_le_(Azti il )i| [e_()‘lfgl”‘zrez)] "

nm 51(1_/

1_[ |:91)»1ﬁ1 (ﬁlxj)glile_[)‘l(ﬂlx_/)el +)»2(/32X_/)02]i|

j=1

8aj _ 0 0
[e b o] j[@zkzﬂz(ﬂzw)ezle [1aBr) 11 (81xs) 1]}

82aj

’

where, §,; = 1—3,; and Saj = 1—4,4;. The ML estimators él, éz, )11, )12, ﬁl and /§2 of
the parameters and acceleration factors 61, 62, A1, A2, 81 and B, are the values which
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maximize the likelihood function. The logarithm of the likelihood function/; = In Ly;
is given by:

It xniplnb; +nglni; +npglnby + nygln iy
nw

+nig lnﬁl +no, 111/32 + (0 — 1)281,“‘ In¢
i=1

nw nw
— Al |:Z (Sluitle1 + ZSZMitigl:|
i=1 i=1
nw nw nw
+(O— DD Suing — [Z Sruit!® + Zazuirﬂ
i=1 i=1 i=1
nmw nmw 9 nmw 9
+(O =1 SigpIn (Bix;) = A1 | D S1aj (Bixj)" + D 82aj (Brx))”"
j=1 j=1 j=1

+ (6 — 1)Zaza, (B2x;)

j=1
ZSW (,32)6])92 + 252aj (/32xj)02 — (nT — ny)
j=1 j=1
[t? +207%] — (0 — ng) [21 (BT + 22 (B21)™]. (6)

The first derivatives of the logarithm of the likelihood function (6) with respect to
Ok, Lk and By are given by:

ol mko
P Z(Sku, Int; — A Zaku, lnt,+28mt Ing
-1

i=1
— (nm —nu))»kt % 1Int

+ D Skaj In (Brx;)
j=1
- )Lkﬂ/?k Zakaj ( )ln ,kaj Z saj ( >ln ,kaj)
— (nm — na>xkﬂk'<r9k In (Bx7), @)

al n —
ﬁ =K Z 8kmt Z 5suiti0k — (nw —ny) 20
i=1 i

nmw ni
— (n7r — ng) BET% — B Z5kaj (x?k) + Z‘SW (xfk) ’
j=1 j=1 (8)
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and
olq n =
a —1 O pOk—1
—=—+c— 1)) rajBy — (nw —ng) MOkt *B
B Br JX_; “Tk ¢ k
nmw nmw
- )\kekﬂek ! Zskaj (xf'k) + Zssaj (xf'k) s
j=1 j=1 9

nmw nmw
where, ny, = Zi:l Skuis Nka = Zj:l 8kaj, npo = Ngy +Ngqg and k =1, 2.

Setting Eqgs. (7), (8) and (9) by zeros we obtain three nonlinear equations. The
system of these nonlinear equations cannot be solved analytically. So, we can apply
numerical solution via iterative techniques to get the ML estimators.

Additionally, the asymptotic variances and covariance matrix of the ML estimators
of 6, Ax and By can be approximated by numerically inverting the asymptotic Fisher-
information matrix F. It is composed of the negative second and mixed derivatives of
the natural logarithm of the likelihood function evaluated at the ML estimates. So, the
elements of the Fisher information are given by

?h nko
207 = — Ak ZSkmt “Inr? + Z(Ssmt — (7 — n)ret% In 2

nm nm
= B | 3 ke (%) n(Brx))” + D 800y (xF) In(Bes)*
j=1 j=1

— (n7 — n)M BT In(Brr)?,

3 mo
w: o a
32l -
Ch_ Ma (g 1Y by — um — ma) O — Drer B
aIBk ﬂk j=1
nmw niw
— MOk (O — 1),3}5“2 Z(Skaj(x?k) + ZSsaj (x;o-") )
j=1 j=1
8211 nmw
89k3)»k - Z‘Skuz fIng; — ZSS“itin Inz; — (n7w — n”)rek Inz

— B 2 8y () n (Bix;) ZSW( ) (pex;)
j=1
— (n7 — ng) B 2% In (Bro),
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nim

321 _ _
=3 Sy — i — n) BT L+ 0 In(BiT)]
j=1

00 9Bk

— B! {i‘ kap{ X" + 0 (x) In(Bex) | + i oaj [ + 0 (x) In(Bix;) }} :

j=1 j=1

nmw

021, e -
= =B | D b () + b (x5 | = o — me e
I Ak 0B o

J=1

For interval estimation of the parameters, the 3 x 3 observed information matrix
1(P) = {Iu,v} for (u,v) = (0, A, B). Under the regularity conditions, the known

N d
asymptotic properties of the ML method ensure that: \/n (d’) — d)) — N3 (0, ! (cb))
d
asn — oo where — means the convergence in distribution, with mean 0 = (0, 0, O)T

and 3 x 3 covariance matrix I~ (®) then, the 100(1 — v)% confidence intervals for
0, X and B are given, respectively, as follows

ék £ Zyp, var(ék>, )Ank + Zyp,/var ()A»k) and /§k * Zyj2,/ var(,ék), (10)

where Z,, is the [100(1 — v/2)] th standard normal percentile and var(.)’s denote
the diagonal elements of /! (&) corresponding to the model parameters.

4 ML Estimators Under TIIC Competing Risks Data

Suppose that the observed values of the total lifetime T of size n(1 — &) at normal
condition are #(1), ¢y, . . ., I(r), and the observed values of the total lifetime X of size
nm at accelerated condition are x(1y, xX(2), - . ., X(r). Let 8,; and §,; denote the failure
indicators such that

L 1 < tr) . _
Sui = {O otherwise for i=1,2,...,n(1 —m)

and

U xS xg .
3(;1—{0 otherwise for j=1,2,...,nm.

The total likelihood function for TIIC competing risks data when the cause of failure
is known at normal (¢;, §,;) and accelerated conditions (x j8a j) are respectively given

by:

ni 0 03\ 781ui 0 01\ 7 02ui 0 03\ 7 8ui
—1 —(rie +a0r 2 1 —(ror24nq ! —(rit +a0n2
L2(ui) 0(1_[|:91)~lll~91 le ( 11, +A2L; )] [92)\2%_92 le (2, 17 ) e ( 1 Zr) !

i=1
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and,

nm 61—1 —[Al(ﬂ1Xj)9'+)»2(/32xj)92] 81aj
Loajy l_[ O1riB1(Bixj) e

Jj=1
82aj

[ R el | I PR R

Then, the total likelihood function for TIIC competing risks data
when the cause of failure is known at normal and accelerated conditions

(15 Sut---stams SunwsX15 Oal .-y Xnms Oanz) iS:

Lo;i o LawiyL2aj)

R L o PR ) o e
i=1
nmw 8161
H[lelﬁl(,31)5./‘)917167[M(ﬁ1x~’)01MZ(ﬁzxj)gz]] ]

j=1

824 .
[N e S| A

The ML estimators 91, éz, ):1, ):z, ,(91 and ,32 of the parameters and acceleration
factor 61, O,A1, A2, B1 and B; are the values which maximize the likelihood function.
The logarithm of the likelihood function /> = In L»; is given by:

I xniplnd) +npglni; +nyglnbs +nypln iy
nw

+n1aInBr+nyaIn By + (01— 1)) Suilng
i=1

nw nw nw
.Y [zamtfl ; zazm-tfl} - 1S g
j j= i=1
nmw
- )\2 |:Z(Slmt 2 + 282mt i|
nim

— (7t — ) [t + 2012 ]+ (01 — 1)) 8145 In (Bix;)
j=1

— (n7r — ng) [ Brx) + g (ﬂzxr)ez]

nm nm
=X Z5laj (/31)6,')01 + Z5zaj (ﬁlx]')gl + (62 — 1)Z5zaj (B2xj)
i=1 j=1 j=1

nmw

) Z(Slaj (,32)6;)92 + Z(Szaj (/32xj)62 )
-1 =1 (1D
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The first derivatives of the logarithm of the likelihood function (11) with respect to
Ok, Mk, B and k = 1, 2 are given by:

al
392 _”"0 § SkM,lnt,—Ak|:§ Sruit™ 1nt,+§ Syuit™ lnt,:|
k

i=1

— (nrr — n,,))\kt In¢,

+ Z 5]«1] ﬁk-x]

_ )‘lek ZSka/ ( >ln ﬁkxl) iﬁsaj (x?’f> In (,Bka)

j=1
— (nw — na)kkﬁk"xrek In (Bex,), (12)
312 nkO nw nw nmw
3)» = Z6ku1t Z(Ssuitiek Z(Skaj ( ) Z(SW/ (x?k>
k i=1 i=1 j=1
— (n7w — ny) 1% — (7w — ny) ,Bek O, (13)
and
312 I’lka Ok pbk—1
e 1)Zaka,ﬂk — (1 — ng) M By
8 B =
nmw nmw
_ Akekﬂgk ! Zakaj (x?k) + Z(Smj (xf.")
j=1 Jj=1 (14)

Setting Eqgs. (12), (13) and (14) by zeros we obtain three nonlinear equations. As
mentioned in the previous section, the system of these nonlinear equations cannot be
solved analytically. So, numerical solution is applied via iterative techniques to obtain
the ML estimators.

The asymptotic variance covariance matrix of 6y, A; and By is obtained by inverting
the Fisher information matrix, so the elements of the Fisher information are obtained
as follows

821 nk() " - 6 2
a0 = — A Zakmt In 72 +Z8smt Ine? | — (n — n)rt% In ¢

nmw nm
=B | D 0k (37 ) In(Bis) 4 D 8 (3 ) In(Bixs)?
j=1 j=1

— (7 — n) M B In(Brx,)?,

@ Springer



Annals of Data Science (2020) 7(1):45-62 55

L mo

an: Az
3212 _ Mka Ok pBk—2
— = — O — 1) Zaka,ﬂk — (n7r — 1) (O — DO B
B B =

— MO (O — DB Zaka,(e") Zawj(xj?k) ,
j=1

8212 nmw .
v Z‘S"’“ “Ing; — Zémtig" Ing; — (nw —ny) 1% Int,

%51@;( )111 ﬁkxj ZSMJ< >1n ﬂkxj)
j=1

— (n7 — ng) B x% In (Brx, ),

nm

821, Oc—1
= Skai —n ) MBr x4 61 »
90,30 ]2 kajBr ' — (M7 — ) By [1+ 6 In (Bex, )]

—A /39k I{Z&W {x +9k( )ln Prx; } 285“/ {x +9k< >1n('8kxj)}:|

3% nx
a)tka;k = -0 gk ! ZSka}( ) ;5saj(x?k) (nn—na)ekﬁg" 1 Hk

By similar way, the approximate confidence intervals of 6y, A; and S under TIIC
competing risk are obtained by using Eq. (10).

5 Simulation Study

In this section, a simulation study is carried out to evaluate the performance of the
estimates. The estimates of the acceleration factor (81, 82) and population parameters
(61, 62, A1, Ao) are evaluated in terms of their mean squared errors (MSEs) and biases.
The numerical procedure is designed as below:

e A random sample of size ny = n(1 — m), where w = 0.4 is the proportion and » is
the total sample size, is generated under normal conditions. So, we generate samples
from Wy ~ Weibull(ny, 61, A1) and Wy ~ Weibull(ni, 6>, A2). In view of two
samples we generate new samples | = (/(1), {2), {(3)s - - - -+ L(ny)) Where T = min
(W1, W2).
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e A random sample of size ny = nm is generated under accelerated conditions. So,
we generate samples from Wi ~ Weibull(ny, 61, B1, A1) and Wy ~ Weibull
(n2, 602, B2, A2). Based on this two samples we generate new samples x; =
(X(l), X(2)s X(3)s -+ X(nz)) where X = min(Wy, W).

e In TIC, let r = 1.5, while, in TIIC, let r = 10 for sample sizes 50, 75 and 100.

e For some choices of unknown parameters and accelerated factor, the above process
is repeated 1000 times

e The average values of biases and MSEs are computed.

Numerical outcomes are listed in Tables 1 and 2. The following observations can
be detected as follows:

e The MSEs and biases decrease as n increases under TIC and TIIC data (see Tables 1,
2).

e For fixed value of (A1, 03, A2, B1, B2) and as the value of 0] increases, the MSEs and
biases of estimates of (61, A1, 82, A2) are increasing except the MSEs and biases for
estimates of B and §; are decreasing under TIC data (see Table 1).

e For fixed value of (62, A2, B1, B2), as the value of 6 decreases and A increases,
the MSEs and biases of estimates for (A1, 81, f2) are increasing but the MSEs and
biases for estimates of (9, 62, A») are decreasing under TIC data (see Table 1).

e For fixed value of (01, A2, B1, B2) and as the value of (11, 6») is decreasing, the
MSEs and biases for estimates of (A2, 81, B2) are increasing but the MSEs and
biases for estimates of (61, 62, A1) are decreasing under TIC data (see Table 1).

e For fixed value of (01, A1, B1, B2), as the value of A,. decreases and 6 increases,
the MSEs and biases of estimates of (A7, 6,) are increasing but the MSEs and biases
of estimates for (61, A1, B1, B2) are decreasing under TIC data (see Table 1).

e For fixed value of (01, A1, 62, B2) and as the value of (A7, B1) increases, the MSEs
and biases of estimates for (61, A1, 62, B1) are increasing except the MSEs and biases
of estimates for A and B, are decreasing under TIIC data (see Table 1).

e For fixed value of (6, A1, 03, A2) and as the value of (81, B2) decreases, the MSEs
and biases of estimates of (62, A1, A2, B1, B2) are increasing but the MSEs and biases
of estimates for 61 are increasing under TIC data (see Table 1).

e When the value of (A, 62, X2, B1, B2) is fixed and the parameter value of 6,
increases, the MSEs and biases for estimates of (61, A2, B1, fB2) are increasing while
the MSEs and biases for estimates of (11, 8;) are decreasing based on TIIC (see
Tables 2).

e For fixed value of (62, A2, B1, B2), as the value of 6; decreases, and the value of A4
increases, the MSEs and biases for estimates of (11, 81, 82) are increasing but the
MSE:s and biases for estimates of (61, 82, A2) are decreasing under TIIC data (see
Table 2).

e Under TIIC, when the value of (01, A2, B1, B2) is fixed and the value of (6>, A1)
are decreasing, the MSEs and biases for estimates of (01, 62, A1, A2, B1, B2) are
increasing (see Table 2).

e Under TIIC, when the value of (0, A1, B1, B2) is fixed, the value of A, are
decreasing and the value of 6, are increasing, the MSEs and biases for estimates
(01, 02, A1, A2, B1, B2) are decreasing (see Table 2).
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e For fixed value of (01, A1, 62, B2) and as the value of (A7, B1) increases, the MSEs
and biases for estimates of (61, 62, A2, B1, B2) are increasing but the MSEs and
biases for estimates of (A1) are decreasing under TIIC data (see Table 2).

e When the value of (01, 6>, A1, A7) is fixed and the value of (81, B2) decreases, the
MSE:s and biases for estimates of (0, 62, 2) are increasing while the MSEs and
biases for estimates of (A1, A2, B1) are decreasing based on TIIC (see Table 2).
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