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Abstract
Anew class of distributions with increasing, decreasing, bathtub-shaped and unimodal
hazard rate forms called generalized quadratic hazard rate-power series distribution is
proposed. The new distribution is obtained by compounding the generalized quadratic
hazard rate and power series distributions. This class of distributions contains sev-
eral important distributions appeared in the literature, such as generalized quadratic
hazard rate-geometric, -Poisson, -logarithmic, -binomial and -negative binomial dis-
tributions as special cases. We provide comprehensive mathematical properties of the
new distribution.We obtain closed-form expressions for the density function, cumula-
tive distribution function, survival and hazard rate functions, moments, mean residual
life, mean past lifetime, order statistics andmoments of order statistics; certain charac-
terizations of the proposed distribution are presented as well. The special distributions
are studied in some details. The maximum likelihood method is used to estimate the
unknown parameters. We propose to use EM algorithm to compute the maximum
likelihood estimators of the unknown parameters. It is observed that the proposed EM
algorithm can be implemented very easily in practice. One data set has been analyzed
for illustrative purposes. It is observed that the proposed model and the EM algorithm
work quite well in practice.
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1 Introduction

The modeling and analysis of lifetime phenomenon play a prominent role in a wide
variety of scientific and technological fields. Recently, several new lifetime distribu-
tions have been proposed. Mudholkar and Srivastava [35] and Mudholkar et al. [36]
introduced a generalization of the Weibull distribution called generalized Weibull
(GW) distribution. The generalized exponential (GE) distribution presented by [19].
Nadarajah and Kotz [37] introduced four generalized (exponentiated) type distribu-
tions: the exponentiated gamma, exponentiated Weibull, exponentiated Gumbel and
the exponentiated Frechet distributions. Sarhan and Kundu [48] proposed the gener-
alized linear failure rate (GLFR) distribution and they explained that this distribution
can have increasing, decreasing, and bathtub-shaped hazard rate functions which are
quite desirable for data analysis purposes. Recently, Sarhan [47] proposed the general-
ized quadratic hazard rate (GQHR) distribution. This distribution is more general than
several well-known distributions such as GE, GLFR, and generalized Rayliegh (GR)
distributions. In addition, the GQHR distribution has an increasing, bathtub-shaped,
unimodal and inverted bathtub-shaped hazard rate functions.

A new generalization of quadratic hazard rate distribution called theKumuraswamy
quadratic hazard rate (KQHR) distribution was introduced by [15]. Another distribu-
tionwhich is called the betaQHRdistribution is investigated by [33]. Okasha et al. [40]
introduced the QHR-geometric distribution.

Several distributions have been proposed in the literature to model lifetime data
by compounding some useful lifetime distributions. Adamidis and Loukas [1] intro-
duced a two parameter distribution known as exponential-geometric (EG) distribution
by compounding an exponential distribution with a geometric distribution. Kundu and
Raqab [27] introduced the generalized Rayleigh distribution. Ku [29] and Tahmasbi
and Rezaei [51] introduced the exponential-Poisson (EP) and exponential-logarithmic
(EL) distributions, respectively. Recently, Chahkandi and Ganjali [12] proposed the
exponential power series (EPS) class of distributions, which contains as special cases
these distributions. Some other recent works are: exponentiated exponential-Poisson
(EEP) by [7]; Weibull-geometric (WG) by [8]; Weibull-power series (WPS) by [34];
complementary exponential power series by [16]; extended Weibull-power series
(EWPS) distribution by [49]; double boundedKumaraswamy power series distribution
by [9]; the Burr-XII power series distribution by [50]; the complementaryWeibull geo-
metric distribution by [52]; the Birinbaum-Sanders power series distribution by [11];
the complementary extended Weibull power series distribution by [14]; the Burr-XII
negative binomial distribution by [42]; the generalized linear failure rate-power series
(GLFRPS) distribution by [20]; the bivariate exponentiated extended Weibull family
of distributions by [43]; the quadratic hazard rate power series distribution by [45]; the
generalized modified Weibull power series distribution by [4]; and the power series
skew normal class of distributions by [44]; For compounding continuous distributions
with a discrete distribution, Nadarajah et al. [38] introduced a package Compounding
in R software (R Development Core Team, 2014). We are motivated to introduce our
new distribution for (i) the wide usage of the general class of quadratic hazard rate
distribution, (ii) the proposed model has some interesting physical interpretations as
well. Hence, it may be more flexible than the existing models and it will give the
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practitioner one more option to choose a model among the possible class of models
for analyzing data., (iii) the stochastic representation Y = min (X1, . . . , Xn), which
can arises in series systems with identical components in many industrial applications
and biological organisms.
The main purpose of this paper is to introduce GQHRPS distribution and study some
of its properties. This new model has the following distributions as special cases:
(i) the QHR, (ii) the generalized linear failure rate power series (GLFRPS), (iii) the
generalized Rayleigh power series and (iv) the generalized exponential power series
(GEPS) distributions.
First we derive the GQHRPS by compounding the GQHR distribution with the power
series class of distributions. We like to mention that the GQHR distribution has sev-
eral interesting properties. We obtain these properties and also provide the marginal
and conditional distributions of the GQHRPS distribution. The proposed class has five
unknown parameters. Themaximum likelihood estimators (MLEs) cannot be obtained
in closed form. TheMLEs can be obtained by solving five non-linear equations simul-
taneously. The standard Newton–Raphson algorithm may be used for this purpose,
but it requires a very good choice of the initial guesses of the five parameters. Other-
wise, it has the standard problem of converging to a local maximum rather the global
maximum. It is observed that the implementation of the proposed EM algorithm is
very simple in practice. We have analyzed one data set for illustrative purposes. The
performance is quite satisfactory.
The rest of the paper is organized as follows. In Sect. 2 we introduce the new class
of generalized quadratic hazard rate power series distributions. The density, survival,
failure rate, and moment generating functions as well as the moments, mean residual
life, mean past lifetime, quantiles, the stress–strength parameter and order statistics
are given in Sect. 3. In Sect. 4, we have discussed some of the cases and study some
of their distributional properties in details. Certain characterizations of GQHRPS dis-
tribution are presented in Sect. 5. Estimation of the parameters is discussed in Sect. 6.
The Standard errors of the estimates and simulations are obtained in Sects. 7 and
8, respectively. The application is considered in Sect. 9 to show the flexibility and
potentiality of the new distribution. Finally, some concluding remarks are presented
in Sect. 10.

2 The GQHRPS Distribution

The four-parameter distribution known as generalized quadratic hazard rate (GQHR)
distribution, was introduced by [47]. The cumulative distribution function (cdf) of the
GQHR distribution is given by

G(x;α, λ, β, γ ) = (1 − exp (−vx ))
γ x > 0, (1)

where α, β non-negative, γ positive, λ ≥ −2
√

αβ are parameters and vx = αx +
(λ/2)x2 + (β/3)x3.
Given N , let X1, . . . , XN be independent and identically distributed (i.i.d.) random
variables following a GQHR distribution with cdf (1). Here N is independent of X

′
i s
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Table 1 Useful quantities for some power series distributions

Distribution an A(θ) A′(θ) A′′(θ) A−1(θ) s

Poisson n!−1 eθ − 1 eθ eθ log(θ + 1) ∞
Geometric 1 θ(1 − θ)−1 (1 − θ)−2 2(1 − θ)−3 θ(1 + θ)−1 1

Logarithmic n−1 −log(1 − θ) (1 − θ)−1 (1 − θ)−2 1 − e−θ 1

Binomial
(m
n
)

(1 + θ)m − 1 m(1 + θ)m−1 m(m − 1)

(1 + θ)2−m
(θ − 1)

1
m − 1 ∞

Negative binomial
(n−1
m−1

)
θm

(1−θ)m
mθm−1

(1−θ)m+1
m(m+2θ−1)

θ2−m (1−θ)m+2
θ1/m

1 + θ1/m
1

and it is a member of the family of power series distribution, truncated at zero, with
the probability mass function (pmf)

P(N = n) = anθn

A(θ)
, n = 1, 2, . . . , (2)

where an ≥ 0 depends only on n, A(θ) = ∑∞
n=1 anθ

n , θ ∈ (0, s) (s can be +∞) is
such that A(θ) is finite and its first, second and third derivatives exist and are denoted
by A′(.), A′′(.) and A′′′(.). Table 1 shows some power series distributions (truncated at
zero) such as Poisson, geometric, logarithmic, binomial and negative binomial (with
m being the number of replicates) distributions.

It is noticeable that the probability distributions of the form (2) have been considered
in [10,41]. For more properties of this class of distributions, see [39].

Now, let X(1) = min{X1, X2, . . . , XN }. The conditional cdf of X(1)|N = n is
given by

FX(1)|N=n(x)=1 − [
1 − G(x;α, λ, β, γ )

]n =1 − [
1 − (1 − exp (−vx ))

γ
]n

, x>0.

Observe that X(1)|N = n follows a KQHR distribution with parameters α, λ, β, γ ,
and n, which was defined by [15] and it is denoted by K QHR(α, λ, β, γ, n). The
marginal cdf of X(1)

F(x) = F(x;α, λ, β, γ, θ) =
∞∑

n=1

anθn

A(θ)

(
1 − [

1 − (1 − exp (−vx ))
γ
]n) (3)

= 1 − A
(
θ

[
1 − (1 − exp (−vx ))

γ
])

A(θ)
; x ≥ 0, (4)

defines the cdf of GQHRPS distribution. We denote a random variable X fol-
lowing the GQHRPS distribution with parameters α, λ, β, γ , and θ by X ∼
GQHRPS(α, λ, β, γ, θ).

This proposed class of distributions include lifetime distributions presented by
[47] (generalized quadratic hazard rate distribution), [31] (generalized exponential
power series distribution), Flores et al. [16] (complementary exponential power series
distribution), Harandi and Alamatsaz [20] (generalized linear failure rate power series
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distribution), and Okasha et al. [40] (quadratic hazard rate-geometric distribution)
among others.

3 Statistical and Reliability Properties

In this section we derive the probability density function (pdf), survival func-
tion, hazard rate function, reversed hazard rate function, mean residual life (MRL)
and mean past lifetime (MPL) functions. The pdf of a random variable X ∼
GQHRPS(α, λ, β, γ, θ) is given by

f (x) = f (x;α, λ, β, γ, θ)

= 1

A(θ)

× θγ v′(x) exp (−vx ) (1 − exp (−vx ))
γ−1

× A′ (θ
[
1 − (1 − exp (−vx ))

γ
])

. (5)

Proposition 3.1 The KQHR distribution with parameters α, λ, β, γ , and c is a limiting
distributionof theGQHRPSdistributionwhen θ →0+, where c=min{n ∈ N : an 	0}.
Proof

lim
θ→0+ F(x) = lim

θ→0+

{

1 − A
(
θ

[
1 − (1 − exp (−vx ))

γ
])

A(θ)

}

= 1 − lim
θ→0+

∑∞
n=c an

(
θ

[
1 − (1 − exp (−vx ))

γ
])n

∑∞
n=c anθ

n

= 1 − lim
θ→0+

[
1 − (1 − exp (−vx ))

γ
]c

1 + a−1
c

∑∞
n=c+1 anθ

n−c

+ a−1
c

∑∞
n=c+1 anθ

n−c
[
1 − (1 − exp (−vx ))

γ
]n

1 + a−1
c

∑∞
n=c+1 anθ

n−c

= 1 − [
1 − (1 − exp (−vx ))

γ
]c

.


�
Proposition 3.2 The pdf of GQHRPS distribution can be written as a mixture of the
density function of KQHR distribution with parameters α, λ, β, γ , and n.

Proof We know that A′(θ) = ∑∞
n=1 nanθ

n−1. Therefore by Eq. (5), we have

f (x) =
∞∑

n=1

1

A(θ)

× nanθ
nγ v′(x) exp (−vx ) (1 − exp (−vx ))

γ−1
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× [
1 − (1 − exp (−vx ))

γ
]n−1

=
∞∑

n=1

P(N = n)g(x;α, λ, β, γ, n),

where g(x;α, λ, β, γ, n) is the density function of K QHR(α, λ, β, γ, n) distribu-
tion. 
�

It is well-known that an important measure of aging is the hazard rate function,
defined as

h(x) = lim�x→0

P(X < x + �x |X > x)

�x
= f (x)

F(x)
.

The survival and hazard rate functions of GQHRPS distribution are given by

F(x) = F(x;α, λ, β, γ, θ) = A
(
θ

[
1 − (1 − exp (−vx ))

γ
])

A(θ)

and

h(x) = h(x;α, λ, β, γ, θ)

= 1

A
(
θ

[
1 − (1 − exp (−vx ))

γ
])

× θγ v′(x) exp (−vx ) (1 − exp (−vx ))
γ−1

× A′ (θ
[
1 − (1 − exp (−vx ))

γ
])

,

respectively.
Similarly, the reversed hazard rate function of GQHRPS distribution is given by

r(x) = r(x;α, λ, β, γ, θ)

= 1

A(θ) − A
(
θ

[
1 − (1 − exp (−vx ))

γ
])

× θγ v′(x) exp (−vx ) (1 − exp (−vx ))
γ−1

× A′ (θ
[
1 − (1 − exp (−vx ))

γ
])

.

An alternative aging measure, widely used in applications, is the mean residual life
(MRL) function, defined as

μ(x) = E(X − x |X > x) = 1

F(x)

∫ +∞

x
F(t)dt,

where E is the expectation operator.

Proposition 3.3 The MRL function of GQHRPS distribution is given by
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μ(x) = Tl,s,k,m,n

A
(
θ

[
1 − (1 − exp (−vx ))

γ
])

×
[
Γ (2k + 3m + 1, αsx)

(αs)2k+3m+1

]
.

where Γ (a, x) = ∫ ∞
x e−t ta−1dt and

Tl,s,k,m,n =
∞∑

n=1

∞∑

l=0

∞∑

s=0

∞∑

k=0

∞∑

m=0

anθnΓ (n + l)Γ (γ l + s)

Γ (n)l!Γ (γ l)s!

× (−1)k+msk+mλkβm

k!m!2k3m .

Proof See the “Appendix”. 
�
The MPL function or mean waiting time function is a well-known reliability mea-

sure that has applications in many disciplines such as reliability theory and actuarial
studies. The MPL function of a random variable X is defined by

M(x) = 1

F(x)

∫ x

0
F(t)dt, x > 0.

As mentioned in [40], the MPL is a dual property of the MRL. The MPL function
could be of ineterest for describing different maintenance strategies. Chandra and
Roy [13] showed that theMPL function cannot decrease on (0, 1). Other interpretation,
properties and applications of theMPL function can be found in [2,3,22,25,26] and the
references therein. The next proposition provides the MPL of GQHRPS distribution.

Proposition 3.4 The MPL of GQHRPS distribution is given by

M(x) = A(θ)

A(θ) − A
(
θ

[
1 − (1 − exp (−vx ))

γ
])

×
[
x − Tl,s,k,m,n

A(θ)

γ (2k + 3m + 1, sαx)

(sα)2k+3m+1

]
,

where γ (a, x) = ∫ x
0 e−t ta−1dt.

Proof See the “Appendix”. 
�

3.1 Moments andMoment Generating Function

Let Y be a random variable following the KQHR distribution with parameters
α, λ, β, γ and n. Elbatal and Butt [15] obtained the moment generating function (mgf)
of the random variable Y as follows

κY (t) = Wi, j,k,m

[
αΓ (2k + 3m + 1)

[α( j + 1) − t]2k+3m+1
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+ λ
Γ (2k + 3m + 2)

[α( j + 1) − t]2k+3m+2

+β
Γ (2k + 3m + 3)

[α( j + 1) − t]2k+3m+3

]
,

where

Wi, j,k,m =
∞∑

i= j=k=m=0

(−1)i+ j+k+m
(
n − 1

i

)

×
(

γ (i + 1) − 1

j

)
λkβm( j + 1)k+m

2kmmk!m! .

CombiningEq. (6) and Proposition (3.2) yields themgf of theGQHRPSdistribution

κX (t) =
∞∑

n=1

anθn

A(θ)

×Wi, j,k,m

[
αΓ (2k + 3m + 1)

[α( j + 1) − t]2k+3m+1

+ λ
Γ (2k + 3m + 2)

[α( j + 1) − t]2k+3m+2

+β
Γ (2k + 3m + 3)

[α( j + 1) − t]2k+3m+3

]
. (6)

The r -th moment of the KQHR distribution with parameters α, λ, β, γ and n is given
by

E(Xr ) = Wi, j,k,m

[
αΓ (r + 2k + 3m + 1)

[α( j + 1)]r+2k+3m+1

+ λ
Γ (r + 2k + 3m + 2)

[α( j + 1)]r+2k+3m+2

+β
Γ (r + 2k + 3m + 3)

[α( j + 1)]r+2k+3m+3

]
,

(see [15]). Thus, the r -th moment of the GQHRPS distribution is given by

μr =
∞∑

n=1

anθn

A(θ)

×Wi, j,k,m

[
αΓ (r + 2k + 3m + 1)

[α( j + 1)]r+2k+3m+1

+ λ
Γ (r + 2k + 3m + 2)

[α( j + 1)]r+2k+3m+2

+β
Γ (r + 2k + 3m + 3)

[α( j + 1)]r+2k+3m+3

]
. (7)
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Based on Eq. (7), the measures of variation, skewness and kurtosis of GQHRPS
distribution can be obtained via the following relations:

CVGQHRPS =
√

μ2

μ1
− 1,

SKGQHRPS = μ3 − 3μ1μ2 + 2μ3
1

[μ2 − μ2
1]3/2

,

KGQHRPS = μ4 − 4μ1μ3 + 6μ2
1μ2 − 3μ4

1

[μ2 − μ2
1]2

.

3.2 Order Statistics

Let X1, . . . , Xn be a random sample from a GQHRPS distribution and Xi :n , i =
1, 2, . . . , n, denote its i-th order statistics. The pdf of Xi :n is given by

fi :n(x) = 1

B(i, n − i + 1)
f (x)[F(x)]i−1[F(x)]n−i , (8)

where f , F , and F are the pdf, cdf, and survival function of GQHRPS distribution,
respectively. Equation (8) can be written in the following forms

fi :n(x) = 1

B(i, n − i + 1)

n−i∑

k=0

(
n − i

k

)
(−1)k f (x)[F(x)]k+i−1 (9)

or

fi :n(x) = 1

B(i, n − i + 1)

i−1∑

k=0

(
i − 1

k

)
(−1)k f (x)[F(x)]k+n−i . (10)

In view of the fact that

f (x)[F(x)]k+i−1 = 1

k + i

d

dx
[F(x)]k+i ,

the cdf of fi :n(x) denoted by Fi :n(x), becomes

Fi :n(x) = 1 − 1

B(i, n − i + 1)

n−i∑

k=0

(n−i
k

)
(−1)k

k + i
[F(x)]k+i

= 1 − 1

B(i, n − i + 1)

n−i∑

k=0

(n−i
k

)
(−1)k

k + i
[

1 − A
(
θ

[
1 − (1 − exp (−vx ))

γ
])

A(θ)

]k+i

.
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An alternative expression for Fi :n(x), using Equation (10), is

Fi :n(x) = 1 − 1

B(i, n − i + 1)

×
i−1∑

k=0

(i−1
k

)
(−1)k

k + n − i + 1
[F(x)]k+n−i+1

= 1 − 1

B(i, n − i + 1)

i−1∑

k=0

(i−1
k

)
(−1)k

k + n − i + 1

×
[
A

(
θ

[
1 − (1 − exp (−vx ))

γ
])

A(θ)

]k+n−i+1

The Gauss hypergeometric function 2F1(a, b : c; z) is the particular case of general-
ized hypergeometric function and is defined by

2F1(a, b : c; z) =
∞∑

k=0

(a)k(b)k
(c)k

zk

k! ,

where (a)m = Γ (a + m)

Γ (a)
is the Pochhammer symbol with the convention that (0)0 =

1. The next proposition states Fi :n(x) in terms of Gauss hypergeometric function.

Proposition 3.5 For all 1 ≤ i ≤ n and x ≥ 0,

Fi :n(x) =
(
n

i

)
Bi

2F1(−n + i, i : i + 1; B)

is a polynomial in B, where

B = 1 − A
(
θ

[
1 − (1 − exp (−vx ))

γ
])

A(θ)
.

Moreover, Fn:n(x) = Bn

Proof See the “Appendix”. 
�
Expressions for moments of the i th order statistics Xi :n , i = 1, 2, . . . , n, with cdf
Fi :n(x) can be obtained using a result of [6] as follows:

E(Xr
i :n) = r

n∑

k=n−i+1

(−1)k−n+i−1
(
k − 1

n − i

)(
n

k

)

∫ ∞

0
xr−1[F(x)]kdx,
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= r
n∑

k=n−i+1

(−1)k−n+i−1

Ak(θ)

(
k − 1

n − i

)(
n

k

)

∫ ∞

0
xr−1 [

A
(
θ

[
1 − (1 − exp (−vx ))

γ
])]k

dx,

for r = 1, 2, . . . and i = 1, 2, . . . , n. An application of the first moment of order
statistics can be considered in calculating the L-moments which are in fact the linear
combination of the expected order statistics, See [21] for details.

By inserting the pdf and cdf of GQHRG distribution into Eq. (10), we obtain the
pdf of the i-th order statistics of GQHRG distribution as follows:

fi :n(x) = 1

B(i, n − i + 1)

∞∑

j=0

i−1∑

k=0

(
i − 1

k

)

× (−1)k
Γ (k + n − i + j + 2)

Γ (k + n − i + 2) j !
× B (1 − θ)k+n−i+1θ j Ak+n−i+ j ,

where B and A are defined as above. By definition of density function of KQHR
distribution in [15], the pdf of the i-th order statistics of GQHRG distribution can be
written as

fi :n(x) = 1

B(i, n − i + 1)

∞∑

j=0

i−1∑

k=0

(
i − 1

k

)

× (−1)k
(k+n−i+ j

j

)

k + n − i + 1
(1 − θ)k+n−i+1θ j

× fK QHR(x;α, λ, β, γ, k + n − i + j + 1),

where fK QHR is the density function of KQHR distribution. As we see, the pdf of
order statistics of GQHRG distribution can be expressed as a linear combination of the
pdf of KQHR distribution. Therefore, some properties of the i-th order statistic, such
as the mgf and moments, can be obtained directly from those of KQHR distribution.
Foe example, the moments of the i-th order statistic of GQHRG distribution are given
by

E(Xr
i :n) = 1

B(i, n − i + 1)

×
∞∑

j=0

i−1∑

k=0

(−1)k
(
i − 1

k

)

×
(k+n−i+ j

j

)

k + n − i + 1
(1 − θ)k+n−i+1θ j
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×W ∗
i, j,k,m

[
αΓ (r + 2k + 3m + 1)

[α( j + 1)]r+2k+3m+1

+ λ
Γ (r + 2k + 3m + 2)

[α( j + 1)]r+2k+3m+2

+β
Γ (r + 2k + 3m + 3)

[α( j + 1)]r+2k+3m+3

]
,

for r = 1, 2, . . ., where

W ∗
i, j,k,m =

∞∑

i= j=k=m=0

(−1)i+ j+k+m
(
k + n − i + j

i

)

(
γ (i + 1) − 1

j

)
λkβm( j + 1)k+m

2kmmk!m! .

3.3 Stress–Strength Parameter of the QHRG Distribution

The stress–strength parameter R = P(X > Y ) is a measure of component reliability
and its estimation problem when X and Y are independent and follow a specified
distribution has been discussed widely in the literature. Let X be the random variable
of the strength of a component which is subjected to a random stress Y . The component
fails whenever X < Y and there is no failure when X > Y . Here, we obtain an
expression for the stress–strength parameter of the QHRG distribution.

Let X ∼ QHRG(α, λ, β, θ1) and Y ∼ QHRG(α, λ, β, θ2) be independent ran-
dom variables. The stress–strength parameter is defined as

R = P(Y < X) =
∫ ∞

0
fX (x) fY (x)dx

=
∫ ∞

0

(1 − θ1)v
′
x exp(−vx )

[1 − θ1 exp(−vx )]2
× 1 − exp(−vx )

1 − θ2 exp(−vx )
dx,

Changing the variable u = exp(−vx ), we obtain

R =
∫ ∞

0

(1 − θ1)(1 − u)

[1 − θ1u]2[1 − θ2u]du

= (1 − θ1)

[
E

θ21
ln |1 − θ1| − G

θ2
ln |1 − θ2| + Fθ1 + E

θ1 − θ21

]

,

where E = θ22 (θ2 − 1)

θ22 − 2θ21 + θ1
, F = θ22 − 2θ21 − θ1θ2 + 2θ1

θ22 − 2θ21 + θ1
, and G = θ1θ2 − θ1

θ22 − 2θ21 + θ1
.
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Fig. 1 Probability density function of the generalized quadratic hazard rate Poisson (first), generalized
quadratic hazard rate geometric (second), generalized quadratic hazard rate logarithmic (third) and gener-
alized quadratic hazard rate negative binomial (forth) distributions

4 Special Cases of the GQHRPS Distribution

In this section,we studybasic distributional properties of the generalizedquadratic haz-
ard rate-geometric (GQHRG), generalized quadratic hazard rate-Poisson (GQHRP),
generalized quadratic hazard rate-logarithmic (GQHRL), generalized quadratic haz-
ard rate-binomial (GQHRB) and generalized quadratic hazard rate-negative binomial
(GQHRNB) distributions as special cases of GQHRPS distribution. In addition,
expressions for the pdf and moments of order statistics as well as the stress–strength
parameter of the QHRG distribution are obtained. First, to illustrate the flexibility of
the distributions, plots of the density and hazard rate functions are presented in Figs. 1
and 2 for some selected values of parameters.

Using Table 1 and some equations in Sect. 2, basic distributional properties of
the five special distributions of GQHRPS model are immediately obtained. Table 2
contains the survival function, pdf, hazard rate, MRL, and MPL functions of the
GQHRG, GQHRP, GQHRL, GQHRB, and GQHRNB distributions.

where A = [
1 − (1 − exp (−vx ))

γ
]
, B = γ v′(x) exp (−vx ) (1 − exp (−vx ))

γ−1 ,

B(x) = Γ (2k + 3q + 1, αsx)

(αs)2k+3q+1 ,

T (x) = γ (2k + 3q + 1, sαx)

(sα)2k+3q+1 ,
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Fig. 2 Hazard rate function of the generalized quadratic hazard rate Poisson (first), generalized quadratic
hazard rate geometric (second), generalized quadratic hazard rate logarithmic (third) and generalized
quadratic hazard rate negative binomial (forth) distributions

and

Vl,s,k,q,n =
∞∑

n=1

∞∑

l=0

∞∑

s=0

∞∑

k=0

∞∑

q=0

θnΓ (n + l)Γ (γ l + s)

Γ (n)l!Γ (γ l)s!
(−1)k+qsk+qλkβq

k!q!2k3q .

5 Characterizations

This section is devoted to certain characterizations of GQHRPS distribution. These
characterizations are based on: (i) a simple relation between two truncated moments
and (ii) the hazard function. One of the advantages of the characterization (i) is that
the cdf is not required to have a closed form.

We present our characterizations (i)–(ii) in two subsections.

5.1 Characterizations in Terms of the Ratio of Two TruncatedMoments

In this subsection we present characterizations of GQHRPS distribution in terms of
a simple relationship between two truncated moments. This characterization result
employs a theorem due to [17], see Theorem 1 of “Appendix A”. Note that the result
holds also when the interval H is not closed. Moreover, as mentioned above, it could
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Table 2 Survival, pdf, hazard rate, MRL, and MPL functions of special distributions of GQHRPS model

Distribution Survival function pdf Hazard rate function

GQHRG
(1 − θ)A

1 − θ A

(1 − θ)B

(1 − θ A)2
B

A(1 − θ A)

GQHRP
exp{θ A} − 1

eθ − 1

θB exp{θ A}
eθ − 1

θB exp{θ A}
exp{θ A} − 1

GQHRL
log(1 − θ A)

log(1 − θ)
− θB

(1 − θ A) log(1 − θ)
− θB

(1 − θ A) log(1 − θ A)

GQHRB
(θ A + 1)m − 1

(1 + θ)m − 1

mθB(1 + θ A)m−1

(θ + 1)m − 1

mθB(1 + θ A)m−1

(1 + θ A)m − 1

GQHRNB
(1 − θ)m Am

(1 − θ A)m
m(1 − θ)m BAm−1

(1 − θ A)m+1
mB

A(1 − θ A)

Distribution MRL function MPL function

GQHRG
(1 − θ A)Vl,s,k,q,n

θ A
B(x)

[
xθ/(1 − θ) − Vl,s,k,q,nT (x)

]

θ/(1 − θ) − θ A/(1 − θ A)

GQHRP
Vl,s,k,q,n

n! exp{θ A} − 1
B(x)

[
x(eθ − 1) − Vl,s,k,q,nT (x)/n!

]

(eθ − 1) − (eθ A − 1)

GQHRL − Vl,s,k,q,n

n ln(1 − θ A)
B(x)

[−x ln(1 − θ) − Vl,s,k,q,nT (x)/n
]

ln(1 − θ A) − ln(1 − θ)

GQHRB

(m
n
)
Vl,s,k,q,n

(1 − θ A)m − 1
B(x)

[
x((1 − θ)m − 1) − Vl,s,k,q,nT (x)/

(m
n
)]

((1 − θ)m − 1) − ((1 − θ A)m − 1)

GQHRNB

(n−1
m−1

)
Vl,s,k,q,n(1 − θ A)m

θm Am
B(x)

[
x(θm/(1 − θ)m) − Vl,s,k,q,nT (x)/

(n−1
m−1

)]

(θm/(1 − θ)m ) − (Amθm/(1 − θ A)m )

also be applied when the cdf F does not have a closed form. As shown in [18], this
characterization is stable in the sense of weak convergence.

Proposition 5.1 Let X : Ω → (0,∞) be a continuous random variable and let
q1 (x) = {

A′ (θ
[
1 − (1 − exp (−υx ))

γ
])}−1

and q2 (x) = q1 (x) (1 − exp (−υx ))
γ

for x > 0. The random variable X has pdf (2.5) if and only if the function η defined
in Theorem 1 has the form

η (x) = 1

2

{
1 + (1 − exp (−υx ))

γ
}
, x > 0.

Proof Let X be a random variable with pdf (2.5), then

(1 − F (x)) E [q1 (x) | X ≥ x] = θ

A (θ)

{
1 − (1 − exp (−υx ))

γ
}
, x > 0,

and

(1 − F (x)) E [q2 (x) | X ≥ x] = θ

2A (θ)

{
1 − (1 − exp (−υx ))

2γ
}

, x > 0,
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and finally

η (x) q1 (x) − q2 (x) = 1

2
q1 (x)

{
1 − (1 − exp (−υx ))

γ
}

> 0, f or x > 0.

Conversely, if η is given as above, then

s′ (x) = η′ (x) q1 (x)

η (x) q1 (x) − q2 (x)
= γ υ ′

x exp (−υx ) (1 − exp (−υx ))
γ−1

1 − (1 − exp (−υx ))
γ x > 0,

and hence

s (x) = − log
{
1 − (1 − exp (−υx ))

γ
}
, x > 0.

Now, in view of Theorem 1, X has density (2.5) . 
�

Corollary 5.1 Let X : Ω → (0,∞) be a continuous random variable and let q1 (x)
be as in Proposition 5.1. The pdf of X is (2.5) if and only if there exist functions q2
and η defined in Theorem 1 satisfying the differential equation

η′ (x) q1 (x)

η (x) q1 (x) − q2 (x)
= γ υ ′

x exp (−υx ) (1 − exp (−υx ))
γ−1

1 − (1 − exp (−υx ))
γ , x > 0.

The general solution of the differential equation in 5.1 is

η (x) = {
1 − (1 − exp (−υx ))

γ
}−1

[− ∫
γ υ ′

x exp (−υx ) (1 − exp (−υx ))
γ−1 ×

(q1 (x))−1 q2 (x) + D

]
,

where D is a constant. Note that a set of functions satisfying the above differential
equation is given in 5.1 with D = 1

2 . However, it should be also noted that there are
other triplets (q1, q2, η) satisfying the conditions of Theorem 1.

5.2 Characterization Based on Hazard Function

It is known that the hazard function, hF , of a twice differentiable distribution function,
F , satisfies the first order differential equation

f ′(x)
f (x)

= h′
F (x)

hF (x)
− hF (x).

For many univariate continuous distributions, this is the only characterization
available in terms of the hazard function. The following characterization establish
a non-trivial characterization of GQHRPS distribution which is not of the above triv-
ial form.
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Proposition 5.2 Let X : Ω → (0,∞) be a continuous random variable. The pdf of X
is (2.5) if and only if its hazard function hF (x) satisfies the differential equation

h′
F (x)+υ ′

xhF (x) = θγ exp (−υx )

× d

dx

{
υ ′
x (1−exp (−υx ))

γ−1 A′ (θ
[
1−(1−exp (−υx ))

γ
])

A
(
θ

[
1−(1−exp (−υx ))

γ
])

}

,

x > 0.

Proof If X has pdf (3.3), then clearly the above differential equation holds. Now, this
differential equation holds, then

d

dx
{exp (υx ) hF (x)}

= θγ
d

dx

{
υ ′
x (1 − exp (−υx ))

γ−1 A′ (θ
[
1 − (1 − exp (−υx ))

γ
])

A
(
θ

[
1 − (1 − exp (−υx ))

γ
])

}

,

x > 0 , from which, we obtain

hF (x)= υ ′
x exp (−υx ) (1−exp (−υx ))

γ−1 A′ (θ
[
1−(1−exp (−υx ))

γ
])

A
(
θ

[
1−(1−exp (−υx ))

γ
]) , x>0,

which is the hazard function of GQHRPS distribution. 
�
Remark 5.1 For γ = 1 , we have a simpler differential equation in terms of the hazard
function

h′
F (x) + υ ′

xhF (x) = θ exp (−υx )
d

dx

{
υ ′
x A

′ (θ exp (−υx ))

A (θ exp (−υx ))

}
, x > 0.

6 Parameters Estimation via the EM Algorithm and Simulation
Studies

In this section, we compute maximum likelihood estimates (MLE) of the parameters
via the EM algorithm. The EM algorithm is a method for computing MLE when some
of the variables havemissing values. The EMalgorithm is an iterative procedure which
consists of two steps. In the E step, we compute expectation of the log-likelihood of
complete data, which contains observed and unobserved data, given observed data. In
the M step, MLEs values updates by maximizing the obtained function in the E step.
This iteration process is repeated until convergence.

In this paper, we assume that N is a missing variable and denote it by Z and
we define a hypothetical complete data distribution with a joint probability density
function in the form

g(x, z;Θ) = azθ z

A(θ)
×zγ ν′

x exp (−νx )(1−exp (−νx ))
γ−1[1−(1−exp (−νx ))

γ ]z−1,
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where Θ = (α, λ, β, γ, θ) denotes the set of parameters. In the (t + 1)th iteration
of the EM algorithm, E(Z |X ,Θ) is evaluated at Θ(t) where Θ(t) denotes the value
of Θ obtained in the t-th iteration of the EM algorithm. So, we need to obtain the
conditional distribution of Z given X . We have

g(z|x) = azθ z−1z[1 − (1 − exp (−νx ))
γ ]z−1

A′(θ [1 − (1 − exp (−νx ))γ ]) .

So,

a = E(Z |X ,Θ)

= 1

A′(θ [1 − (1 − exp (−νx ))γ ])
∞∑

z=1

azz
2(θ [1 − (1 − exp (−νx ))

γ ])z−1

= 1 + θ [1 − (1 − exp (−νx ))
γ ]A′′(θ [1 − (1 − exp (−νx ))

γ ])
A′(θ [1 − (1 − exp (−νx ))γ ])

since A′(θ) + θ A′′(θ) = ∑∞
z=1 z

2azθ z−1.
The conditional expectation of the complete data log-likelihood given observed data
is

E(ln L(Θ; x, z|x)) ∝
n∑

i=1

ai ln(θ) − n ln(A(θ)) + n ln(γ ) +
n∑

i=1

ln(ν′
xi ) −

n∑

i=1

νxi

+
n∑

i=1

(γ − 1) ln(1 − exp (−νxi ))

+
n∑

i=1

(ai − 1) ln[1 − (1 − exp (−νxi ))
γ ].

In the M step, by differentiation E(ln L(Θ; x, z|x)) with respect to θ , we obtain the
following recursive equation

θ̂ (t+1) = A(θ̂ (t+1))

nA′(θ̂ (t+1))

n∑

i=1

a(t)
i

By taking differentiation with respect to the γ , we have γ = h(γ ) where

h(γ ) = n

[
n∑

i=1

(ai − 1)
(1 − exp (−νxi ))

γ ln(1 − exp (−νxi ))

1 − (1 − exp (−νxi ))
γ

−
n∑

i=1

ln(1 − exp (−νxi ))

]−1
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We solve this equation with a simple iteration method as Kundu and Gupta [28].
Starting with an initial guess γ (0), then γ (1) = h(γ (0)), similarly, γ (2) = h(γ (1)) and
so on. Continue the process until the convergence is obtained.
α is the solution of the following equation

∂

∂α
E(ln L(Θ; x, z|x))

=
n∑

i=1

1

ν′
xi

+
n∑

i=1

(γ − 1)xi exp(−νxi )

1 − exp(−νxi )
−

n∑

i=1

xi −
n∑

i=1

xi A
(1)
i = 0,

where A(1)
i = (ai − 1)γ exp(−νxi ) × (1−exp(−νxi ))

γ−1

1−(1−exp(−νxi ))
γ .

Unfortunately, there is no closed form solution. We have employed the Newton–
Raphson method to compute the solution. Using this method, the following recursive
equation can be found

α(t+1) = α(t) −
∂
∂α

E(ln L(Θ; x, z|x))
∂2

∂α2 E(ln L(Θ; x, z|x))
,

where

∂2

∂α2 E(ln L(Θ; x, z|x)) = −
n∑

i=1

1

(ν′
xi )

2 −
n∑

i=1

(γ − 1)x2i exp(−νxi )

(1 − exp(−νxi ))
2 −

n∑

i=1

x2i A
(2)
i

where A(2)
i = (ai −1)γ exp(−νxi )(1− exp(−νxi ))

γ−2

[
(1−exp(−νxi ))

γ +γ exp(−νxi )−1

]

(1−(1−exp(−νxi ))
γ )2

.

Similarly, the λ(t+1) is obtained by the following equations

∂

∂λ
E(ln L(Θ; x, z|x))

=
n∑

i=1

xi
ν′
xi

+
n∑

i=1

(γ − 1)
x2i
2

× exp(−νxi )

1 − exp(−νxi )
−

n∑

i=1

x2i
2

−
n∑

i=1

x2i
2
A(1)
i

and

∂2

∂λ2
E(ln L(Θ; x, z|x))

= −
n∑

i=1

x2i
(ν′

xi )
2 −

n∑

i=1

(γ − 1)

(
x2i
2

)2

× exp(−νxi )

(1 − exp(−νxi ))
2 −

n∑

i=1

(
x2i
2

)2

A(2)
i

Analogously to the previous paragraph, the following relationships can be obtained
for computing β(t+1)
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∂

∂β
E(ln L(Θ; x, z|x)) =

n∑

i=1

x2i
ν′
xi

+
n∑

i=1

(γ − 1)
x3i
3

× exp(−νxi )

1 − exp(−νxi )
−

n∑

i=1

x3i
3

−
n∑

i=1

x3i
3
A(1)
i

and

∂2

∂β2 E(ln L(Θ; x, z|x)) = −
n∑

i=1

(x2i )
2

(ν′
xi )

2 −
n∑

i=1

(γ − 1)

(
x3i
3

)2

× exp(−νxi )

(1 − exp(−νxi ))
2 −

n∑

i=1

(
x3i
3

)2

A(2)
i

It worth be noted that, in all of above equalities, in the (t + 1)-th iteration of the EM
algorithm, except the parameter that is being estimated, for other parameters we used
their estimated values from the t-th iteration of the EM algorithm.

7 Standard Errors of the Estimates

The inverse of the observed information matrix I(Θ̂; x) can be used for approximating
the asymptotic covariance matrix of the ML estimator. A few methods for computing
I(Θ̂; x)when the EMalgorithm is carried out are proposed in some researches. Among
these, some methods are provided by Louis [30], Meng and Rubin [32], Baker [5]
and Jamshidian and Jennrich [23,24]. In here, we used Supplemented EM (SEM)
algorithm that introduced by Meng and Rubin [32]. The most important feature of
the SEM method is that related calculation can be readily done by using only the EM
code. Meng and Rubin [32] show that

I(Θ̂; x)−1 = I−1
com(Θ̂; x) + ΔV,

where ΔV = (Id − J(Θ̂))−1J(Θ̂)I−1
com(Θ̂; x), Icom(Θ̂; x) = −E( ∂2

∂Θ∂Θ ′ log L(Θ; x,
z)|x), Id denotes the d × d identity matrix and J(Θ̂) = ∂

∂Θ
M(Θ̂) where M(Θ) is

the EM map defined as Θ(t+1) = M(Θ(t)) and J(Θ̂) is referred as the matrix rate of
convergence. They showed that J(Θ̂) can be approximated by using the EM code.

In our model, the (i, j)th element of the symmetric matrix Icom(Θ̂; x), i, j = 1, 2,
is denoted by Icom(θ̂i ; θ̂ j ) and can be obtained as follows

Icom(α, α) = −
n∑

i=1

1

(ν′
xi )

2 −
n∑

i=1

(γ − 1)x2i × exp(−νxi )

(1 − exp(−νxi ))
2 −

n∑

i=1

x2i A
(2)
i

Icom(λ, λ) = −
n∑

i=1

x2i
(ν′

xi )
2 −

n∑

i=1

(γ − 1)

(
x2i
2

)2
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× exp(−νxi )

(1 − exp(−νxi ))
2 −

n∑

i=1

(
x2i
2

)2

A(2)
i

Icom(β, β) = −
n∑

i=1

(x2i )
2

(ν′
xi )

2 −
n∑

i=1

(γ − 1)

(
x3i
3

)2

× exp(−νxi )

(1 − exp(−νxi ))
2 −

n∑

i=1

(
x3i
3

)2

A(2)
i

Icom(γ, γ ) = −n

γ 2 −
n∑

i=1

(ai − 1)(1 − exp (−νxi ))
γ
( ln(1 − exp (−νxi ))

1 − (1 − exp (−νxi ))
γ

)2

Icom(θ, θ) = −∑n
i=1 ai
θ2

− n
A′′(θ)

A(θ)
+ n

A′(θ)2

A(θ)2

Icom(θ, α) = Icom(θ, λ) = Icom(θ, β) = Icom(θ, γ ) = 0

Icom(γ, α) =
n∑

i=1

xi

{
exp (−νxi )

1 − exp (−νxi )
− (ai − 1)A(3)

i

}

Icom(γ, λ) =
n∑

i=1

x2i
2

{
exp (−νxi )

1 − exp (−νxi )
− (ai − 1)A(3)

i

}

Icom(γ, β) =
n∑

i=1

x3i
3

{
exp (−νxi )

1 − exp (−νxi )
− (ai − 1)A(3)

i

}

Icom(α, λ) = −
n∑

i=1

xi
(ν′

xi )
2 −

n∑

i=1

(γ − 1)
x3i
2

× exp(−νxi )

(1 − exp(−νxi ))
2 −

n∑

i=1

x3i
2
A(2)
i

Icom(α, β) = −
n∑

i=1

x2i
(ν′

xi )
2 −

n∑

i=1

(γ − 1)
x4i
3

× exp(−νxi )

(1 − exp(−νxi ))
2 −

n∑

i=1

x4i
3
A(2)
i

Icom(λ, β) = −
n∑

i=1

x3i
(ν′

xi )
2 −

n∑

i=1

(γ − 1)
x5i
6

× exp(−νxi )

(1 − exp(−νxi ))
2 −

n∑

i=1

x5i
6
A(2)
i

where A(3)
i = exp (−νxi )(1−exp (−νxi ))

γ−1

(
1−(1−exp (−νxi ))

γ

)2

[
ln(1−exp (−νxi ))

γ +1−(1−exp (−νxi ))
γ
]
.

A(2)
i , A(3)

i and all of the parameters in the above equalities are computed in Θ̂ .

8 Simulation Study

To illustrate the performance and the accuracy of the EM algorithm in estimating the
model parameters we performed a simulation study. To investigate the effect of the
sample size we consider n = 35, 50 and 100. In each replication, a random sample
of size n is drawn from the GQHRP , GQHRL and GQHRG distributions. The
true values of the parameters, that we use in the simulation, are given in Table 3 For
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Table 4 Time between failures (thousands of hours) of secondary reactor pumps data presented

2.160 0.746 0.402 0.954 0.491 6.560 4.992 0.347

0.150 0.358 0.101 1.359 3.465 1.060 0.614 1.921

4.082 0.199 0.605 0.273 0.070 0.062 5.320

Table 5 Descriptive statistics for the times between successive failures (in thousands of hours) of secondary
reactor pumps

Mean Median SD Variance Skewness Kurtosis

1.5779 0.6140 1.9307 0.1136 3.7275 3.5445

each n, we simulate 500 random data sets from the proposed model. For each data
set, the model parameters are estimated via the EM algorithm. We calculate means
and standard deviations of the obtained estimates from 500 replications and these are
given in Table 3 The results given in this table are shown that the differences between
the average estimates and the true values are almost small and also we can see that by
increasing the sample size, standard deviations of parameters are reduced. So, overall,
the obtained results are satisfactory.

9 Real Data Analysis

The data set given by [46] on the represent the times between successive failures (in
thousands of hours) in events of secondary reactor pumps. The data are presented in
Table 4. Table 5 gives some statistic measures for these data, which indicate that the
empirical distribution is skewed to the left and platykurtic. The MLEs of the param-
eters along with the standard errors (SE) of the estimates, AIC (Akaike Information
Criterion), BIC (Bayesian information criterion), and AICc are displayed in Table 6
for this data set and the following distributions (BGG and TGG). The BetaGeneralized
Gamma distribution (BGG) is given by the PDF

f (x) = 1

B(α, λ)
ga,ν,pG

α−1
a,ν,p(1 − G)λ−1 (11)

where

Ga,ν,p(x) = γ (ν, [x/a]p)
Γ (ν)

and

ga,ν,p(x) = | p |
aΓ (ν)

( x
a

)ν p−1
exp

[
−

( x
a

)p]
.
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Here p is not zero and the other parameters are positive. The Transmuted Generalized
Gamma (TGG) distribution is given by the PDF

f (x) = px pν−1 exp{−(x/a)p}
a pνΓ (ν)

[
1 + λ − 2λ

γ [ν, (x/a)p

Γ (ν)

]
(12)

for p > 0, | λ |≤ 1, a > 0 and ν > 0. The MLEs , the value of the Akaike information
criterion (AIC), the value of the Bayesian information criterion (BIC) and the second-
order AIC (AICc) for goodness of fit are reported in Table 5 for each of the fitted
distributions.

Based on the AIC and BIC andAICc statistics, we see that four of the fitted general-
ized quadratic hazard rate power series distribution perform better than the generalized
quadratic hazard rate binomial distribution. The generalized quadratic hazard rate log-
arithmic distribution gives the best fit with the smallest values for AIC, BIC and AICc
and p value = 0.9989. The generalized quadratic hazard rate geometric with p value = 1
gives the second smallest values for AIC , BIC and AICc . The generalized quadratic
hazard rate Poisson with p value = 1 gives the third smallest values for AIC, BIC
and AICc. The generalized quadratic hazard rate negative binomial distribution with
p value = 0.9985, m = 3 gives the forth smallest values for AIC, BIC and AICc. The
Transmuted Generalized Gamma distribution gives the worst fit with the largest values
for AIC, BIC and AICc. The Beta Generalized Gamma distribution gives the second
worst fit with the second largest values for AIC, BIC and AICc.

10 Concluding Remarks

In this paper we have introduced the new class of lifetime distributions. It contains
a number of known special submodels such as generalized exponential power series,
generalized linear failure rate power series, quadratic hazard rate geometric distribu-
tions, among others. We think the formulas derived are manageable by using modern
computer resources with analytic and numerical capabilities. The proposed model has
enough flexibility that can be used quite effectively for modelling lifetime data. The
generation of random samples from proposed distribution is very simple, and therefore
Monte Carlo simulation can be performed very easily for different statistical inference
purpose. Maximum likelihood estimates of the new model are discussed. Analyses of
one real data set indicate the good performance and usefulness of the new model.

Acknowledgements We are thankful to the Editor-in-Chief, Associate Editor and the anonymous reviewers
for their careful reading of our manuscript and their many insightful comments and suggestions.

Appendix A

Theorem 1 Let (Ω,F ,P) be a given probability space and let H = [a, b] be an
interval for some d < b (a = −∞, b = ∞ might as well be allowed) . Let X : Ω →
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H be a continuous random variable with the distribution function F and let q1 and
q2 be two real functions defined on H such that

E [q2 (X) | X ≥ x] = E [q1 (X) | X ≥ x] η (x) , x ∈ H ,

is defined with some real function η. Assume that q1, q2 ∈ C1 (H), η ∈ C2 (H) and
F is twice continuously differentiable and strictly monotone function on the set H .
Finally, assume that the equation ηq1 = q2 has no real solution in the interior of H .
Then F is uniquely determined by the functions q1, q2 and η , particularly

F (x) =
∫ x

a
C

∣∣∣∣
η′ (u)

η (u) q1 (u) − q2 (u)

∣∣∣∣ exp (−s (u)) du ,

where the function s is a solution of the differential equation s′ = η′ q1
ηq1−q2

and C is

the normalization constant, such that
∫
H dF = 1.

Proof of Proposition 3.3 From definition of MRL and Eq. (3), we have

μ(x) = μ(x;α, λ, β, γ, θ)

= 1

A
(
θ

[
1 − (1 − exp (−vx ))

γ
])

×
∫ ∞

x
A

(
θ

[
1 − (1 − exp (−vt ))

γ
])
dt

= 1

A
(
θ

[
1 − (1 − exp (−vx ))

γ
])

×
∞∑

n=1

anθ
n
[∫ ∞

x

[
1 − (1 − exp (−vx ))

γ
]n

dt

]
,

where vt = αt + (λ/2)t2 + (β/3)t3. Using the series expansion

(1 − z)−k =
∞∑

i=0

Γ (k + i)

Γ (k)i ! ; k > 0, |z| < 1,

it follows that

μ(x) = 1

A
(
θ

[
1 − (1 − exp (−vx ))

γ
])

×
∞∑

n=1

∞∑

l=0

∞∑

s=0

anθnΓ (n + l)Γ (γ l + s)

Γ (n)l!Γ (γ l)s!

×
∫ ∞

x
exp (−svt )dt
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= 1

A
(
θ

[
1 − (1 − exp (−vx ))

γ
])

×
∞∑

n=1

∞∑

l=0

∞∑

s=0

∞∑

k=0

∞∑

m=0

anθnΓ (n + l)Γ (γ l + s)

Γ (n)l!Γ (γ l)s!

× (−1)k+msk+mλkβm

k!m!2k3m
×

∫ ∞

x
t2k+3m exp {−sαt}dt

= Tl,s,k,m,n

A
(
θ

[
1 − (1 − exp (−vx ))

γ
])

×
[
Γ (2k + 3m + 1, αsx)

(αs)2k+3m+1

]
.

Proof of Proposition 3.4. TheMPL of a random variable X with GQHRPS distribution
is given by

M(x) = M(x;α, λ, β, γ, θ)

= K × [x −
∫ x

0

A(θ [1 − (1 − exp (−vt ))
γ ])

A(θ)
dt]

= K × [x − 1

A(θ)

∞∑

n=1

anθ
n

×
∫ x

0
[1 − (1 − exp (−vt ))

γ ]ndt]

= K × [x − 1

A(θ)

∞∑

n=1

∞∑

l=0

anθnΓ (n + l)

Γ (n)l!

×
∫ x

0
(1 − exp (−vt ))

lγ dt]

= K × [x − 1

A(θ)

∞∑

n=1

∞∑

l=s=k=m=0

× anθnΓ (n + l)Γ (lγ + s)

Γ (n)Γ (lγ )s!l!
(−1)k+msk+mλkβm

k!m!2k3m
×

∫ x

0
t2k+3m exp {−sαt}dt]

= K ×
[
x − Tl,s,k,m,n

A(θ)

γ (2k + 3m + 1, sαx)

(sα)2k+3m+1

]
,

where K = A(θ)

A(θ) − A
(
θ

[
1 − (1 − exp (−vx ))

γ
]) .
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Proof of Proposition 3.5. Follows by noting that

Fi :n(x) = 1 − 1

B(i, n − i + 1)
n−i∑

k=0

(n−i
k

)
(−1)k

k + i
Bk+i

= Bi

B(i, n − i + 1)

n−i∑

k=0

(i − n)kΓ (k + i)

Γ (k + i + 1)

Bk

k!

= Bi

i B(i, n − i + 1)

n−i∑

k=0

(i − n)k(i)k
(i + 1)k

Bk

k!

= BiΓ (n + 1)

Γ (i + 1)B(i, n − i + 1) 2
F1(−n + i, i : i + 1; B)

= Bin!
i !(n − i)! 2F1(−n + i, i : i + 1; B).

The Gauss hypergeometric function reduces to 1 when i = n, therefore Fn:n(x) = Bn .
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