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Abstract
In this paper, a new family of distributions called the exponentiated generalized power
series family is proposed and studied. Statistical properties such as stochastic order,
quantile function, entropy, mean residual life and order statistics were derived. Bivari-
ate and multivariate extensions of the family was proposed. The method of maximum
likelihood estimation was proposed for the estimation of the parameters. Some special
distributions from the family were defined and their applications were demonstrated
with real data sets.

Keywords Exponentiated generalized · Power series · Bivariate · Multivariate ·
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1 Introduction

The development of generalized classes of distributions by researchers has become an
interesting area of research in recent time. Several generalized classes of distributions
have been proposed in statistical literature with the motivation of defining models
with different types of failure rates, construct heavy-tailed distributions for modeling
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different kinds of data sets, generate distributions with left skewed, right skewed,
symmetric, or reversed J shape and to consistently provide a reasonable parametric
fits to data sets. This is necessary because the nature of data arising from different
areas of study such as lifetime analysis, insurance, engineering, finance and biological
science among others require extended forms of the existing statistical distributions
before a better fit can be obtained.

Some of the generalized classes of distributions in literature includes: the
transmuted geometric-G family [1]; Kumaraswamy transmuted-G family [2]; beta
transmuted-H family [3]; generalized transmuted-G family [18]; transmuted expo-
nentiated generalized-G family [22]; Kumaraswamy family [10]; Weibull-G family
[9]; beta extended Weibull family [12]; exponentiated generalized class [11]; odd
generalized exponential family [21]; transformed-transformer (T–X) method [4];
exponentiated generalizedT–X method [16]; exponentiatedT–X method [5] and expo-
nentiated generalized exponential-X family [15].

This study proposes a new class of distributions called the exponentiated general-
ized power series (EGPS) family of distributions by compounding the exponentiated
generalized (EG) class of distributions and the power series (PS) family of distri-
butions. The rest of the paper is organized as follows: In Sect. 2, the cumulative
distribution function (CDF), probability density function (PDF), survival function and
hazard function of the EGPS family of distributions were defined. In Sect. 3, some
sub-classes of the new family were discussed. In Sect. 4, statistical properties of the
EGPS class were proposed using copula. In Sect. 7, special distributions from the
EGPS family were discussed. In Sect. 8, simulations was performed to examine the
finite sample properties of the estimators for the parameters of the special distribu-
tions. In Sect. 9, applications of the special distributions were demonstrated using real
data sets. Finally, the concluding remarks of the study were given in Sect. 10.

2 Exponentiated Generalized Power Series Family

Let N represent the number of independent subsystems of a system functioning at a
given time. Suppose that N has zero truncated PS distribution with probability mass
function given by

P(N � n) � anλn

C(λ)
, n � 1, 2, . . . , (1)

where an > 0,C(λ) � ∑∞
i�1 anλ

n and λ ∈ (0, s)(s can be∞) is chosen such thatC(λ)
is finite and its first, second and third derivatives are defined and shown byC

′
(·),C ′′

(·)
and C

′′′
(·). The PS family includes; binomial, Poisson, geometric and logarithmic

distributions. Detailed information of the PS family can be found in [17]. Suppose the
failure time of each subsystem follows the EG class of distributions with CDF given
by

Hc,d (x) �
(
1 − (1 − G(x ;ψ))d

)c
, x ∈ R, (2)
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Table 1 Useful quantities for some power series distributions

Distribution an C(λ) C
′
(λ) C

′′
(λ) C

′′′
(λ) s

Geometric 1 λ(1 − λ)−1 (1 − λ)2 2(1 − λ)−3 6(1 − λ)−4 1

Poisson 1
n! eλ − 1 eλ eλ eλ ∞

Logarithmic n−1 − log(1 − λ) (1 − λ)−1 (1 − λ)−2 2(1 − λ)−3 1

Binomial

(
m

n

)

(1 + λ)m − 1 m
(1+λ)1−m

m(m−1)
(1+λ)2−m

m(m−1)(m−2)
(1+λ)3−m ∞

where c, d > 0 are extra shape parameters, G(x ;ψ) is the baseline CDF depending
on parameter ψ and g(x ;ψ) is its corresponding density function. For simplicity,
G(x ;ψ) is written as G(x). If Tj is the failure time of the jth subsystem and X
represents the time to failure of the first out of the N operating subsystems such that
X � min(T1, T2, . . . , TN ). Then the conditional CDF of X given N is

F(x |N � n) � 1 − P(X > x |N )

� 1 − P(T1 > x, T2 > x, . . . TN > x)

� 1 − (1 − P(T1 ≤ x))n

� 1 −
[
1 −

(
1 − (1 − G(x))d

)c]n
. (3)

Hence, the marginal CDF of X is given by

F(x) �
∞∑

i�1

anλn

C(λ)

{

1 −
[
1 −

(
1 − (1 − G(x))d

)c]n
}

� 1 −
C
(
λ
[
1 − (

1 − (1 − G(x))d
)c

])

C(λ)
. (4)

The PDF is given by

f (x) � λcdg(x)(1 − G(x))d−1
(
1 − (1 − G(x))d

)c−1C
′(

λ
[
1 − (

1 − (1 − G(x))d
)c

])

C(λ)
.

(5)

Table 1 summarizes some particular cases of zero truncated PS distributions.
The survival function and the hazard rate function of the EGPS class of distributions

are respectively given by

S(x) �
C
(
λ
[
1 − (

1 − (1 − G(x))d
)c

])

C(λ)
, (6)
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and

τ (x) � λcdg(x)(1 − G(x))d−1
(
1 − (1 − G(x))d

)c−1C
′(

λ
[
1 − (

1 − (1 − G(x))d
)c

])

C
(
λ
[
1 − (

1 − (1 − G(x))d
)c

]) .

(7)

Remark 1 If X � max(T1, T2, . . . , TN ), then the CDF of the EGPS class is given by

F(x) �
C
(
λ
(
1 − (1 − G(x))d

)c
)

C(λ)
. (8)

Remark 2 If C(λ) � λ, then the EG class is a special case of the EGPS class.

Proposition 1 The EG class is a limiting case of the EGPS class when λ → 0+.
Proof

lim
λ→0+

F(x) � 1 − lim
λ→0+

C
(
λ
[
1 − (

1 − (1 − G(x))d
)c

])

C(λ)

� 1 − lim
λ→0+

∑∞
n�1 anλ

n
[
1 − (

1 − (1 − G(x))d
)c

]n

∑∞
n�1 anλ

n
.

Applying L’Hôpital’s rule

lim
λ→0+

F(x) � 1 − lim
λ→0+

∑∞
n�1 nanλ

n−1
[
1 − (

1 − (1 − G(x))d
)c

]n

∑∞
n�1 nanλ

n−1

� 1 − lim
λ→0+

a1
[(
1 − (1 − G(x))d

)c
]
+
∑∞

n�2 nanλ
n−1

[
1 − (

1 − (1 − G(x))d
)c

]n

a1 +
∑∞

n�2 nanλ
n−1

�
(
1 − (1 − G(x))d

)c
.

Proposition 2 The exponentiated PS class is a limiting special case of the EGPS class
when d → 1.
Proof

lim
d→1

F(x) � 1 − lim
d→1

C
(
λ
[
1 − (

1 − (1 − G(x))d
)c

])

C(λ)

� 1 − C(λ(1 − G(x)c))

C(λ)
.

Lemma 1 The EGPS class density has a linear representation of the form

f (x) � cd
∞∑

j,k�0

n−1∑

i�0

ωi jk EN

[
g(x)G(x)k

]
, (9)
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where EN (·) is the expectation with respect to the random variable N and

ωi jk � (−1)i+ j+kΓ (n + 1)Γ (c(i + 1))Γ (d( j + 1))

i! j! k!Γ (n − i)Γ (c(i + 1) − j)Γ (d( j + 1) − k)
.

Proof The EGPS PDF can be written as

f (x) � cd
∞∑

n�1

P(N � n)ng(x)(1 − G(x))d−1
(
1 − (1 − G(x))d−1

)c−1[
1 −

(
1 − (1 − G(x))d

)c]n−1
.

For a real non-integer η > 0, a series representation for (1 − z)η−1, for |z| < 1 is

(1 − z)η−1 �
∞∑

i�0

(−1)iΓ (η)

i!Γ (η − i)
zi . (10)

Using the series expansion in Eq. (10) thrice and the fact that 0 ≤ 1 − G(x) ≤ 1,
yields

f (x) � cd
∞∑

j,k�0

n−1∑

i�0

ωi jk EN

[
g(x)G(x)k

]
.

The linear representation of the density functionmakes it easy to study the statistical
properties of the EGPS class. Alternatively it can be written in terms of the exp-G
function as

f (x) � cd
∞∑

j,k�0

n−1∑

i�0

ω∗
i jk EN [ϕk+1], (11)

where ω∗
i jk � ωi jk

(k+1) and ϕk+1 � (k + 1)g(x)G(x)k is the exp-G density with power
parameter k + 1.

3 Sub-Families

In this section, a number of sub-families of the EGPS family were discussed. These
include: EG Poisson (EGP), EG binomial (EGB), EG geometric (EGG) and logarith-
mic (EGL) classes of distributions.
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3.1 Exponentiated Generalized Poisson Class

The zero truncated Poisson distribution is a special case of PS distributionwith an � 1
n!

and C(λ) � eλ − 1, (λ > 0). Using the CDF in Eq. (4), the CDF and PDF of the EGP
class of distributions are respectively given by

F(x) � eλ − e
λ
[
1−(

1−(1−G(x))d
)c

]

eλ − 1
, (12)

and

f (x) � λcdg(x)(1 − G(x))d−1
(
1 − (1 − G(x))d

)c−1 e
λ
[
1−(

1−(1−G(x))d
)c

]

eλ − 1
. (13)

3.2 Exponentiated Generalized Binomial Class

The zero truncated binomial distribution is a special case of PS distribution an �
(
m

n

)

and C(λ) � (1 + λ)m − 1, (λ > 0), where m(n ≤ m) is the number of replicas and is
a positive integer. The CDF of the EGB class of distributions are respectively

F(x) � 1 −
[
1 + λ

[
1 − (

1 − (1 − G(x))d
)c

]]m − 1

(1 + λ)m − 1
, (14)

and

f (x) � mλcdg(x)(1 − G(x))d−1
(
1 − (1 − G(x))d

)c−1

[
1 + λ

[
1 − (

1 − (1 − g(x))d
)c

]]m−1

(
(1 + λ)m − 1

) .

(15)

The EGP class is a limiting case of the EGB class if mλ → θ > 0, when m → ∞.

3.3 Exponentiated Generalized Geometric Class

The zero truncated geometric distribution is a special case of PS distributions with
an � 1 and C(λ) � λ

1−λ
, (0 < λ < 1). The CDF and PDF of the EGG class of

distributions are respectively given by

F(x) � 1 −
(1 − λ)

[
1 − (

1 − (1 − G(x))d
)c

]

1 − λ
[
1 − (

1 − (1 − G(x))d
)c

] , (16)
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and

f (x) � (1 − λ)cdg(x)(1 − G(x))d−1
(
1 − (1 − G(x))d

)c−1

[
1 − λ

[
1 − (

1 − (1 − G(x))d
)c

]]2 . (17)

3.4 Exponentiated Generalized Logarithmic Class

The zero truncated logarithmic distribution is another special case of thePSdistribution
with an � 1

n and C(λ) � − log(1 − λ), (0 < λ < 1). The CDF and PDF of the EGL
class are respectively given by

F(x) � 1 −
log

[
1 − λ

[
1 − (

1 − (1 − G(x))d
)c

]]

log(1 − λ)
, (18)

and

f (x) � λcdg(x)(1 − G(x))d−1
(
1 − (1 − G(x))d

)c−1

log(1 − λ)
[
λ
[
1 − (

1 − (1 − G(x))d
)c

]
− 1

] . (19)

4 Statistical Properties

In this section, the statistical properties of the EGPS class of distributions were
discussed. These include: the quantile function, moment, moment generating func-
tion, incomplete moment, mean residual life, stochastic property, reliability, Shannon
entropy and order statistics.

4.1 Quantile Function

Thequantile function is anotherwayof describing thedistributionof a randomvariable.
It plays a key role when simulating random numbers from a distribution and it provides
an alternative means for describing the shapes of a distribution.

Proposition 3 The quantile function of the EGPS class is given by

QF (u) � G−1

⎧
⎪⎪⎨

⎪⎪⎩

1 −
⎡

⎣1 −
(

1 − C−1((1 − u)C(λ))

λ

) 1
c

⎤

⎦

1
d

⎫
⎪⎪⎬

⎪⎪⎭

, (20)

where u ∈ [0, 1] and C−1(·) is the inverse of C(·).
Proof By definition, the quantile function is given by F(xu) � P(X ≤ xu) � u. Thus,
setting QF (u) � xu in Eq. (4) and solving for it yields the quantile function of the
EGPS class.
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The median of the EGPS class is obtained by substituting u � 0.5 into Eq. (20).

4.2 Moment, Generating Function and Incomplete Moment

In this subsection, the moment, moment generating function (MGF) and incomplete
moment were presented.

Proposition 4 The rth non-central moment of the EGPS class is given by

μ
′
r � cd

∞∑

j,k�0

n−1∑

i�0

ωi jk EN

⎡

⎣

∞∫

−∞
xr g(x)G(x)kdx

⎤

⎦, r � 1, 2, . . . . (21)

Proof By definition, the rth non-central moment is given by

μ
′
r �

∞∫

−∞
xr f (x)dx .

Substituting the linear representation of the density function into the definition and
simplifying yields the non-central moment.

Alternatively, the moment can be expressed in terms of the quantile function of the
baseline. Let G(x) � u, then

μ
′
r � cd

∞∑

j,k�0

n−1∑

i�0

ωi jk EN

⎡

⎣

1∫

0

QG(u)
r ukdu

⎤

⎦. (22)

Proposition 5 The MGF of EGPS class of distributions is given by

MX (t) � cd
∞∑

j,k�0

n−1∑

i�0

ωi jk EN

⎡

⎣

∞∫

−∞
etx g(x)G(x)kdx

⎤

⎦. (23)

Proof The proof ofMGFdirectly follows from the definitionMX (t) �
∞∫

−∞
etx f (x)dx .

In terms of the quantile function of the baseline, the MGF is given by

MX (t) � cd
∞∑

j,k�0

n−1∑

i�0

ωi jk EN

⎡

⎣

1∫

0

etQG (u)ukdu

⎤

⎦. (24)

123



Annals of Data Science (2019) 6(3):463–489 471

Proposition 6 The rth incomplete moment of the EGPS class of distributions is given
by

Mr (t) � cd
∞∑

j,k�0

n−1∑

i�0

ωi jk EN

⎡

⎣

t∫

−∞
xr g(x)G(x)kdx

⎤

⎦, r � 1, 2 . . . . (25)

Proof The proof can easily be obtained from the definition Mr (t) � ∫ t
−∞ xr f (x)dx .

Letting u � G(x), the incomplete moment can be expressed in terms of the baseline
quantile function as

Mr (t) � cd
∞∑

j,k�0

n−1∑

i�0

ωi jk EN

⎡

⎣

G(t)∫

0

QG (u)
r ukdu

⎤

⎦. (26)

Using the power series expansion of the quantile function of the baseline as
QG(u) � ∑∞

h�0 ehu
h , where eh(h � 0, 1, . . .) are suitably chosen real numbers

that depend on the parameters of the G(x) distribution.

(QG(u))
r �

( ∞∑

h�0

ehu
h

)r

�
∞∑

h�0

e
′
r ,hu

h,

where e
′
r ,h � (he0)−1 ∑h

z�1 [z(r + 1) − h]eze
′
r ,h−z, e

′
r ,0 � (e0)h and r (r ≥ 1) is a

positive integer. For more details on quantile power series expansion see [13]. The
incomplete moment can now be expressed as

Mr (t) � cd
∞∑

j,k�0

n−1∑

i�0

ωi jk EN

⎡

⎣
∞∑

h�0

e
′
r ,h

G(t)∫

0

uk+hdu

⎤

⎦

� cd
∞∑

j,k�0

n−1∑

i�0

ωi jk EN

[ ∞∑

h�0

e
′
r ,hG(t)k+h+1

k + h + 1

]

.

4.3 Residual andMean Residual Life

A system’s residual lifetime when it is still operating at time t , is Xt � X − t |X > t
which has the PDF

f (x ; t) � f (x)

1 − F(t)

� λcdg(x)(1 − G(x))d−1
(
1 − (1 − G(x))d

)c−1C
′(

λ
[
1 − (

1 − (1 − G(x))d
)c

])

C
(
λ
[
1 − (

1 − (1 − G(x))d
)c

]) .
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Proposition 7 The mean residual life of Xt is given by

m(t) � 1

1 − F(t)

⎡

⎣μ − cd
∞∑

j,k�0

n−1∑

i�0

ωi jk EN

[ ∞∑

h�0

ehG(t)k+h+1

k + h + 1

]⎤

⎦ − t, (27)

where μ � μ
′
1 is the mean and eh(h � 0, 1, . . .) are suitably chosen real numbers

that depend on the parameters of the G(x) distribution.

Proof The mean residual life is defined as

m(t) � E[X − t |X > t] �

∞∫
t
(x − t) f (x)dx

1 − F(t)
�

μ
′
1 −

t∫

−∞
x f (x)dx

1 − F(t)
− t . (28)

The integral
∫ t
−∞ x f (x)dx is the first incomplete moment. Thus substituting the

first incomplete moment into Eq. (28) yields the mean residual life.

4.4 Stochastic Ordering Property

Stochastic ordering is the common way of showing ordering mechanism in lifetime
distribution. A random variable X1 is said to be greater than a random variable X2 in

likelihood ratio order if
fX1 (x)
fX2 (x)

is an increasing function of x .

Proposition 8 Let X1 ∼ EGPS(x ; c, d, λ,ψ) and X2 ∼ EG(x ; c, d,ψ), then X2 is
greater than X1 in likelihood ratio order (X1 ≤lr X2) provided λ > 0.
Proof

fX1 (x)

fX2 (x)
�

λC
′(

λ
[
1 − (

1 − (1 − G(x))d
)c

])

C(λ)
,

which is decreasing in x provided λ > 0.

FromProposition 8, it can be considered that the hazard rate order, the usual stochas-
tic order and the mean residual life order between X1 and X2 hold.

4.5 Stress-Strength Reliability

Reliability plays a useful role in the analysis of stress-strength of models. If X1 is the
strength of a component and X2 is the stress, then the component fails when X1 ≤ X2.
The estimate of the reliability of the component R is P(X2 < X1).
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Proposition 9 If X1 ∼ EGPS(x ; c, d, λ,ψ) and X2 ∼ EGPS(x ; c, d, λ,ψ), then
reliability is given by

R � 1 −
∞∑

j,k�0

n−1∑

i�0

ωi jk EN

⎡

⎣

1∫

0

uk
C
(
λ
[
1 − (

1 − (1 − G(x))d
)c

])

C(λ)
du

⎤

⎦. (29)

Proof The reliability is defined as

R �
∞∫

−∞
f (x)F(x)dx

� 1−
∞∫

−∞
f (x)S(x)dx

� 1−
∞∑

j,k�0

n−1∑

i�0

ωi jk EN

⎡

⎣

∞∫

−∞
g(x)G(x)k S(x)dx

⎤

⎦.

Letting G(x) � u yields

R � 1 −
∞∑

j,k�0

n−1∑

i�0

ωi jk EN

⎡

⎣

1∫

0

uk
C
(
λ
[
1 − (

1 − (1 − u)d
)c

])

C(λ)
du

⎤

⎦.

4.6 Shannon Entropy

The entropy of a randomvariable is ameasure of variation or uncertainty of the random
variable. The Shannon entropy of a random variable X with PDF f (x) is given by
ηX � E{− log f (x)} [19].

Proposition 10 The Shannon entropy of the EGPS class random variable is given by

ηX � − log

(
cdλ

C(λ)

)

− E
[
log g(X )

]
+ (1 − d)δ1 + (1 − c)δ2 − E

[
logC

′(
λ
[
1 − Hc,d (X )

])]
,

(30)

where Hc,d (x) is the CDF of the EG class,

δ1 � −cd
∞∑

j,k�0

n−1∑

i�0

ωi jk EN

⎡

⎣
∞∑

q�1

1

q(k + q + 1)

⎤

⎦,

and
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δ2 � −cd
∞∑

j,k�0

n−1∑

i�0

ωi jk EN

⎡

⎢
⎢
⎢
⎢
⎣

∞∑

s�0

∞∑

q�1

(−1)s
(
dq

s

)

q(k + q + 1)

⎤

⎥
⎥
⎥
⎥
⎦

.

Proof By definition

ηX � − log

(
cdλ

C(λ)

)

− E
[
log g(X )

]
+ (1 − d)E

[
log(1 − G(X ))

]
+ (1 − c)E

[
log(1 − (1 − G(x))d )c

]

− E
[
logC

′ (
λ
[
1 − Hc,d (X )

])]
. (31)

Let δ1 � E
[
log(1 − G(X ))

]
and δ2 � E

[
log

(
1 − (

1 − (1 − G(X ))d
)c

)]
. Using

the identity log(1 − z) � −∑∞
q�1

zq
q , |z| < 1, yields

log(1 − G(x)) � −
∞∑

q�1

G(x)q

q
,

log
(
1 − (1 − G(x))d

)
� −

∞∑

s�0

∞∑

q�1

(−1)s
(
dq

s

)

G(x)s

q
.

Putting G(x) � u and taking the expectation with respect to the random variable
X , give the value of δ1 and δ2 after some algebraic manipulation.

4.7 Order Statistics

Let X1, X2, . . . , Xn be a random sample of size n from EGPS, then the PDF of the
pth order statistic, say X p:n is given by

f p:n(x) � 1

B(p, n − p + 1)
[F(x)]p−1[1 − F(x)]n−p f (x),

where F(x) and f (x) are the CDF and PDF of the EGPS class of distributions respec-
tively, and B(·, ·) is the beta function. Thus,

f p:n(x) � n! f (x)

(p − 1)! (n − p)!

⎡

⎣1 −
C
(
λ
[
1 − (

1 − (1 − G(x))d
)c

])

C(λ)

⎤

⎦

p−1

×
⎡

⎣
C
(
λ
[
1 − (

1 − (1 − G(x))d
)c

])

C(λ)

⎤

⎦

n−p

. (32)
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5 Parameter Estimation

Different methods for parameter estimation exist in literature but the maximum likeli-
hood approach is the most commonly used. The maximum likelihood estimators have
several desirable properties and can be used for constructing confidence intervals and
regions. Thus, in this study, the maximum likelihood method was employed for the
estimation of the parameters of the EGPS distribution. Let X1, X2, . . . , Xn be a ran-
dom sample of size n from the EGPS distribution. Let zi � 1 − G(xi ;ψ), then the
log-likelihood is given by


 � n log(λcd) +
n∑

i�1

log g(xi ;ψ) + (d − 1)
n∑

i�1

log(zi ) + (c − 1)
n∑

i�1

log(1 − zdi ) − n logC(λ)

+
n∑

i�1

logC
′(

λ
[
1 −

(
1 − zdi

)c])
. (33)

Taking the partial derivatives of the log-likelihood function with respect to the
parameters yields the following score functions:

∂


∂λ
� n

λ
− nC

′
(λ)

C(λ)
+

n∑

i�1

[1 − (1 − zdi )
c]C

′′
(λ[1 − (1 − zdi )

c])

C ′ (λ[1 − (1 − zdi )
c])

, (34)

∂


∂c
� n

c
+

n∑

i�1

log(1 − zdi ) −
n∑

i�1

λ(1 − zdi )
c log(1 − zdi )C

′′
(λ[1 − (1 − zdi )

c])

C ′ (λ[1 − (1 − zdi )
c])

, (35)

∂


∂d
� n

d
+

n∑

i�1

log(zi ) − (c − 1)
n∑

i�1

zdi log(zi )

1 − zdi
+

n∑

i�1

λc(1 − zdi )
c−1zdi log(zi )C

′′
(λ[1 − (1 − zdi )

c])

C ′ (λ[1 − (1 − zdi )
c])

,

(36)

∂


∂ψ
�

n∑

i�1

g
′
(xi ;ψ)

g(xi ;ψ)
− (d − 1)

n∑

i�1

G
′
(xi ;ψ)

zi
+ (c − 1)

n∑

i�1

dzd−1
i G

′
(xi ;ψ)

1 − zdi

−
n∑

i�1

λcdzd−1
i (1 − zdi )

c−1G
′
(xi ;ψ)C

′′
(λ[1 − (1 − zdi )

c])

C ′ (λ[1 − (1 − zdi )
c])

, (37)

where g
′
(xi ;ψ) � ∂g(xi ;ψ)

∂ψ
and G

′
(xi ;ψ) � ∂G(xi ;ψ)

∂ψ
. The score functions do not

have close form, thus it is more convenient to solve them using nonlinear optimization
techniques such as the quasi-Newton algorithm. For the purpose of interval estimation
of the parameters, a p×p observed informationmatrix can be obtained as J (ϑ) � ∂2


∂q∂r
(for q, r � λ, c, d,ψ), whose elements can be computed numerically. Under the usual

regularity conditions as n → ∞, the distribution of ϑ̂ � (̂λ, ĉ, d̂, ψ̂T )T approximately
converges to a multivariate normal Np(0, J (ϑ̂)−1) distribution. J (ϑ̂) is the observed
information matrix evaluated at ϑ̂ . The asymptotic normal distribution is useful for
constructing approximate 100(1−α)%confidence intervals,whereα is the significance
level.
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6 Extension via Copula

In this section, bivariate and multivariate extensions of the EGPS class of distri-
butions were proposed using Clayton copula. Consider a random pair (X1, X2), a
copula C∗ associated with the pair is simply a joint distribution of the random vector
(FX1 (x1), FX2 (x2)). Suppose that FX1 (x1) and FX2 (x2) are the marginal CDFs of the
random variables X1 and X2 respectively and C∗ is the copula associated to (X1, X2).
Sklar [20] established that the joint CDF FX1X2 (x1, x2) of the pair (X1, X2) is given
by

FX1X2 (x1, x2) � C∗(FX1 (x1), FX2 (x2)).

Suppose (X1, X2) follows bivariate EGPS random variables with marginal distri-
butions FX1 (x1) and FX2 (x2). Let the copula associated to (X1, X2) belong to Clayton
copula family given by

C∗(z1, z2) � [z−θ
1 + z−θ

2 − 1]
−1
θ , θ ≥ 0.

The joint CDF FX1X2 (x1, x2), of the bivariate EGPS class is given by

FX1X2 (x1, x2)

�
{[

1 − C(λ1[1 − (1 − (1 − G(x1;ψ1))
d1 )c1 ])

C(λ1)

]−θ

+

[

1 − C(λ2[1 − (1 − (1 − G(x2;ψ2))
d2 )c2 ])

C(λ2)

]−θ

− 1

}−1
θ

, (38)

where λ1, λ2, c1, c2, d1, d2,ψ1 and ψ2 describe the marginal parameters while θ is
the Clayton copula parameter. A p-dimensional multivariate extension from the above
is given by

FX1X2...X p (x1, x2, . . . , xp) �
{ p∑

i�1

[

1 − C(λi [1 − (1 − (1 − G(xi ;ψ i ))
di )ci ])

C(λi )

]

− p + 1

}−1
θ

.

(39)

7 Special Distribution

In this section, four special distributions were presented. These include EGP inverse
exponential (EGPIE) distribution, EGB inverse exponential (EGBIE) distribution,
EGG inverse exponential (EGGIE) distribution and EGL inverse exponential (EGLIE)
distribution. Suppose the baseline distribution follows an inverse exponential distri-
bution with CDF G(x) � e−γ x−1

, γ > 0, x > 0. The densities, hazard rate functions
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and quantiles of the EGPIE, EGBIE, EGGIE and EGLIE distributions are defined as
follows:

7.1 EGPIE Distribution

The density function of the EGPIE distribution is obtained by substituting the baseline
CDF and its corresponding PDF into Eq. (13). Thus, the PDF of EGPIE distribution
is given by

f (x) � λγ cdx−2e−γ x−1
(
1 − e−γ x−1

)d−1
(

1 −
(
1 − e−γ x−1

)d
)c−1 eλ[1−(1−(1−e−γ x−1

)d )c]

eλ − 1
,

λ, γ , c, d > 0, x > 0. (40)

The corresponding hazard rate function is given by

τ (x) � λγ cdx−2e−γ x−1
(
1 − e−γ x−1

)d−1
(

1 −
(
1 − e−γ x−1

)d
)c−1 eλ[1−(1−(1−e−γ x−1

)d )c]

eλ[1−(1−(1−e−γ x−1 )d )c] − 1
,

λ, γ , c, d > 0, x > 0. (41)

Figure 1 displays the plots of the density and hazard rate function of the EGPIE
distribution. From thefigure, the density exhibit right skewed shapewith varied degrees
of kurtosis and an approximately symmetric shape. The hazard rate function shows
an upside down bathtub shapes.

Fig. 1 Plots of EGPIE a PDF and b hazard rate function
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Fig. 2 Plots of EGBIE a PDF and b hazard rate function

The quantile function of the EGPIE distribution is given by

Q(u) �

⎧
⎪⎪⎨

⎪⎪⎩

−1

γ
log

⎡

⎢
⎢
⎣1 −

⎡

⎣1 −
(

1 − log(eλ − u(eλ − 1))

λ

) 1
c

⎤

⎦

1
d

⎤

⎥
⎥
⎦

⎫
⎪⎪⎬

⎪⎪⎭

−1

. (42)

7.2 EGBIE Distribution

Using Eq. (15), the PDF of EGBIE distribution is given by

f (x) � mλγ cdx−2e−γ x−1
(
1 − e−γ x−1

)d−1
(

1 −
(
1 − e−γ x−1

)d
)c−1 [1 + λ[1 − (1 − (1 − e−γ x−1

)d )c]]m−1

(1 + λ)m − 1
,

λ, γ , c, d > 0, x > 0. (43)

The corresponding hazard rate function is given by

τ (x) � mλγ cdx−2e−γ x−1
(
1 − e−γ x−1

)d−1
(

1 −
(
1 − e−γ x−1

)d
)c−1 [1 + λ[1 − (1 − (1 − e−γ x−1

)d )c]]m−1

[1 + λ[1 − (1 − (1 − e−γ x−1 )d )c]]m − 1
,

λ, γ , c, d > 0, x > 0. (44)

The plots of the density and hazard rate functions of the EGNIE distribution form �
5 are shown in Fig. 2. The density function exhibits right skewed and approximately
symmetric shapes. The hazard rate function exhibits an upside down bathtub shapes
and an upside down bathtub shape followed by a bathtub and then upside down bathtub
shape.
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Fig. 3 Plots of EGGIE a PDF and b hazard rate function

The quantile function of the EGBIE distribution is given by

Q(u) �

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−1

γ
log

⎡

⎢
⎢
⎢
⎢
⎣
1 −

⎡

⎢
⎢
⎣1 −

⎛

⎝1 − (((1 + λ)m − 1)(1 − u) + 1)
1
m − 1

λ

⎞

⎠

1
c

⎤

⎥
⎥
⎦

1
d

⎤

⎥
⎥
⎥
⎥
⎦

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

−1

(45)

7.3 EGGIE Distribution

From Eq. (17), the PDF of EGGIE distribution is given by

f (x) � (1 − λ)γ cdx−2e−γ x−1
(1 − e−γ x−1

)d−1(1 − (1 − e−γ x−1
)d )c−1

[1 − λ[1 − (1 − (1 − e−γ x−1 )d )c]]2
, 0 < λ < 1, γ , c, d > 0, x > 0.

(46)

The associated hazard rate function is given by

τ (x) � γ cdx−2e−γ x−1
(1 − e−γ x−1

)d−1(1 − (1 − e−γ x−1
)d )c−1

[1 − (1 − (1 − e−γ x−1 )d )c][1 − λ[1 − (1 − (1 − e−γ x−1 )d )c]]
, 0 < λ < 1, γ , c, d > 0, x > 0.

(47)

The density and hazard rate function plots of the EGGIE distribution are displayed
in Fig. 3. The density and hazard rate function exhibits similar shapes like that of the
EGBIE distribution.
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Fig. 4 Plots of EGLIE a PDF and b hazard rate function

The quantile function of the EGGIE distribution is given by

Q(u) �

⎧
⎪⎪⎨

⎪⎪⎩

−1

γ
log

⎡

⎢
⎢
⎣1 −

⎛

⎝1 −
(
u(1 − λ)

1 − uλ

) 1
c

⎞

⎠

1
d

⎤

⎥
⎥
⎦

⎫
⎪⎪⎬

⎪⎪⎭

−1

. (48)

7.4 EGLIE Distribution

From Eq. (19), the PDF of EGLIE distribution is given by

f (x) � λγ cdx−2e−γ x−1
(1 − e−γ x−1

)d−1(1 − (1 − e−γ x−1
)d )c−1

log[1 − λ][λ[1 − (1 − (1 − e−γ x−1 )d )c] − 1]
, 0 < λ < 1, γ , c, d > 0, x > 0. (49)

The corresponding hazard rate function is given by

τ (x) � λγ cdx−2e−γ x−1
(1 − e−γ x−1

)d−1(1 − (1 − e−γ x−1
)d )c−1

log[1 − λ[1 − (1 − (1 − e−γ x−1 )d )c]][λ[1 − (1 − (1 − e−γ x−1 )d )c] − 1]
,

0 < λ < 1, γ , c, d > 0, x > 0. (50)

Figure 4 shows the density and hazard rate function of the EGLIE distribution. The
density exhibits approximately symmetric shapes with different degrees of kurtosis.
The hazard rate function shows upside down bathtub shapes.
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Table 2 Monte Carlo simulation results: AE and RMSE for EGPIE and EGBIE distributions

λ c d γ n Parameter EGPIE EGBIE

AE RMSE AE RMSE

0.8 0.5 0.2 0.3 25 λ 0.692 0.313 0.638 0.325

c 0.450 0.097 0.438 0.109

d 0.219 0.065 0.236 0.077

γ 0.370 0.091 0.368 0.091

50 λ 0.654 0.337 0.635 0.311

c 0.448 0.088 0.434 0.103

d 0.214 0.054 0.229 0.067

γ 0.364 0.087 0.367 0.089

75 λ 0.628 0.354 0.638 0.300

c 0.445 0.085 0.440 0.102

d 0.213 0.049 0.228 0.064

γ 0.360 0.084 0.360 0.087

100 λ 0.609 0.363 0.638 0.295

c 0.444 0.308 0.438 0.101

d 0.211 0.043 0.227 0.306

γ 0.357 0.081 0.360 0.086

0.1 0.9 0.1 0.5 25 λ 0.156 0.094 0.131 0.083

c 0.873 0.129 0.885 0.121

d 0.121 0.032 0.120 0.033

γ 0.587 0.095 0.585 0.095

50 λ 0.153 0.092 0.113 0.077

c 0.902 0.100 0.898 0.105

d 0.119 0.027 0.118 0.026

γ 0.582 0.089 0.580 0.089

75 λ 0.143 0.091 0.102 0.074

c 0.909 0.089 0.904 0.089

d 0.117 0.022 0.117 0.023

γ 0.579 0.086 0.576 0.084

100 λ 0.140 0.091 0.091 0.073

c 0.910 0.082 0.901 0.085

d 0.116 0.020 0.117 0.021

γ 0.574 0.082 0.572 0.081

The quantile function of the EGLIE distribution is given by

Q(u) �

⎧
⎪⎪⎨

⎪⎪⎩

−1

γ
log

⎡

⎢
⎢
⎣1 −

⎛

⎝1 −
(

1 − 1 − (1 − λ)1−u

λ

) 1
c

⎞

⎠

1
d

⎤

⎥
⎥
⎦

⎫
⎪⎪⎬

⎪⎪⎭

−1

. (51)
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Table 3 Monte Carlo simulation results: AE and RMSE for EGGIE and EGLIE distributions

λ c d γ n Parameter EGGIE EGLIE

AE RMSE AE RMSE

0.8 0.5 0.2 0.3 25 λ 0.817 0.099 0.771 0.144

c 0.556 0.083 0.508 0.080

d 0.174 0.047 0.218 0.080

γ 0.282 0.039 0.318 0.078

50 λ 0.834 0.072 0.784 0.101

c 0.558 0.078 0.505 0.073

d 0.175 0.043 0.215 0.071

γ 0.285 0.031 0.316 0.068

75 λ 0.834 0.068 0.780 0.092

c 0.554 0.075 0.502 0.073

d 0.175 0.042 0.219 0.069

γ 0.285 0.029 0.311 0.062

100 λ 0.835 0.065 0.779 0.081

c 0.552 0.072 0.503 0.073

d 0.175 0.040 0.220 0.065

γ 0.285 0.030 0.308 0.060

0.1 0.9 0.1 0.5 25 λ 0.087 0.161 0.073 0.138

c 0.939 0.112 0.936 0.113

d 0.121 0.035 0.122 0.035

γ 0.561 0.100 0.560 0.100

50 λ 0.066 0.139 0.066 0.133

c 0.933 0.100 0.933 0.097

d 0.119 0.028 0.119 0.027

γ 0.559 0.090 0.562 0.088

75 λ 0.053 0.123 0.055 0.121

c 0.926 0.090 0.926 0.090

d 0.118 0.024 0.118 0.024

γ 0.555 0.081 0.555 0.082

100 λ 0.043 0.118 0.045 0.114

c 0.923 0.085 0.924 0.085

d 0.117 0.022 0.117 0.022

γ 0.553 0.076 0.554 0.076

8 Monte Carlo Simulation

In this section, Monte Carlo simulations were performed to examine the finite sample
properties of the maximum likelihood estimators for the parameters of the EGPIE,
EGBIE, EGGIE and EGLIE distributions. For the case of the EGBIE distribution,
m � 5 was used during the simulation. The simulation steps are as follows
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Table 4 Failure times of Kevlar 49/epoxy strands with pressure at 90%

0.01 0.01 0.02 0.02 0.02 0.03 0.03 0.04 0.05 0.06 0.07 0.07

0.08 0.09 0.09 0.10 0.10 0.11 0.11 0.12 0.13 0.18 0.19 0.20

0.23 0.24 0.24 0.29 0.34 0.35 0.36 0.38 0.40 0.42 0.43 0.52

0.54 0.56 0.60 0.60 0.63 0.65 0.67 0.68 0.72 0.72 0.72 0.73

0.79 0.79 0.80 0.80 0.83 0.85 0.90 0.92 0.95 0.99 1.00 1.01

1.02 1.03 1.05 1.10 1.10 1.11 1.15 1.18 1.20 1.29 1.31 1.33

1.34 1.40 1.43 1.45 1.50 1.51 1.52 1.53 1.54 1.54 1.55 1.58

1.60 1.63 1.64 1.80 1.80 1.81 2.02 2.05 2.14 2.17 2.33 3.03

3.03 3.34 4.20 4.69 7.89

Table 5 Maximum likelihood estimates of parameters and standard errors

Model λ̂ ĉ d̂ γ̂

EGPIE 26.062
(0.009)

7.320
(1.770)

0.175
(0.019)

0.002
(0.002)

EGBIE 11.644
(1.925 × 10−5)

8.862
(1.136 × 10−4)

0.313
(2.141 × 10−2)

0.003
(8.755 × 10−5)

EGGIE 0.664
(2.412 × 10−1)

20.525
(4.798 × 10−3)

0.498
(1.360 × 10−1)

0.002
(9.954 × 10−4)

EGLIE 0.018
(5.004 × 10−1)

19.277
(3.845 × 10−3)

0.616
(6.431 × 10−2)

0.002
(6.301 × 10−4)

Table 6 Log-likelihood, goodness-of-fit statistics and information criteria

Model 
 AIC AICc BIC K–S W*

EGPIE −116.660 241.314 241.946 251.774 0.182 0.738

EGBIE −122.930 253.868 254.500 264.328 0.195 0.926

EGGIE −140.090 288.170 288.802 298.631 0.237 1.386

EGLIE −134.010 276.025 276.657 286.486 0.203 1.211

The bold values means best based on the model selection technique

1. Specify the values of the parameters λ, c, d, γ and the sample size n.
2. Generate random samples of size n � 25, 50, 75, 100 from EGPIE, EGBIE,

EGGIE and EGLIE distributions using their respective quantiles.
3. Find the maximum likelihood estimates of the parameters.
4. Repeat steps 2–3 for N � 1500 times.
5. Calculate the average estimates (AE) and root mean square error (RMSE) for the

estimators of the parameters of the distributions.

Table 2 shows the simulation results for the EGPIE and EGBIE distributions
whereas Table 3 displays that of the EGGIE and EGLIE distributions. From both
tables it can be seen that the AE of the parameters were quite close to the actual values
of the parameters. The RMSEs of the parameters were smaller and decay towards zero
as the sample size increases.
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Fig. 5 Empirical and fitted density and CDF plots of Kevlar data

9 Applications

The applications of the EGPIE, EGBIE (with m � 5), EGGIE and EGLIE distribu-
tions were demonstrated in this section using real data sets. The performance of the
distributions with regards to providing reasonable parametric fit to the data sets were
compared using the Kolmogorov–Smirnov (K–S) statistic, Cramér-von (W*) misses
distance values, Akaike information criterion (AIC), corrected Akaike information
criterion (AICc), and Bayesian information criterion (BIC). The maximum likelihood
estimates for the parameters of the models were estimated by maximizing the log-
likelihood functions of the models via the subroutine mle2 using the bbmle package
in R [8]. This was carried out using a wide range of initial values. The process often
results into more than onemaximum, hence in such situation, the maximum likelihood
estimates corresponding to the largest maxima was chosen.

9.1 First Data Set

The data set comprises 101 observations corresponding to the failure time in hours of
Kevlar 49/epoxy strands with pressure at 90%. The data set displayed in Table 4 can
be found in [7, 6].

Table 5 displays the maximum likelihood estimates of the parameters of the fitted
distributions with their corresponding standard errors in brackets. The parameters of
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Fig. 6 P–P plots of the fitted distributions

Table 7 Egypt tax data in 1000 million Egyptian pounds

5.9 20.4 14.9 16.2 17.2 7.8 6.1 9.2 10.2 9.6 13.3 8.5

21.6 18.5 5.1 6.7 17 8.6 9.7 39.2 35.7 15.7 9.7 10

4.1 36 8.5 8 9.2 26.2 21.9 16.7 21.3 35.4 14.3 8.5

10.6 19.1 20.5 7.1 7.7 18.1 16.5 11.9 7 8.6 12.5 10.3

11.2 6.1 8.4 11 11.6 11.9 5.2 6.8 8.9 7.1 10.8

the EGPIE and EGGIE distributions were all significant at the 5% level with the
exception of the parameter γ for the two distributions. The parameters of the EGBIE
distribution were all significant at the 5% level. The EGLIE distribution parameters
were all significant at the 5% level with the exception of the parameter λ.

The EGPIE distribution provides a better fit to the data set compared to the other
models. From Table 6, the EGPIE distribution has the highest log-likelihood and the
smallest K–S, W*, AIC, AICc and BIC values compared to the other fitted models.

The plots of the empirical density, the fitted densities, the empirical CDF and the
CDF of the fitted distributions are shown in Fig. 5. It is obvious the EGPIE distribution
provides a better fit to the data compared to the other fitted models.

123



486 Annals of Data Science (2019) 6(3):463–489

Table 8 Maximum likelihood estimates of parameters and standard errors

Model λ̂ ĉ d̂ γ̂

EGPIE 9.221
(13.530)

0.259
(0.027)

0.426
(2.377)

102.807
(0.439)

EGBIE 16.148
(75.694)

0.236
(0.027)

1.533
(2.021)

101.286
(5.312)

EGGIE 0.345
(1.493)

2.407
(9.371)

3.563
(2.911)

14.277
(42.500)

EGLIE 0.614
(0.737)

2.715
(2.461)

3.455
(1.158)

13.333
(9.358)

Table 9 Log-likelihood, goodness-of-fit statistics and information criteria

Model 
 AIC AICc BIC K–S W*

EGPIE −189.020 386.035 386.776 394.345 0.065 0.062

EGBIE −188.950 385.893 386.634 394.203 0.082 0.075

EGGIE −188.360 384.720 385.461 393.030 0.211 0.047

EGLIE −188.330 384.658 385.398 392.968 0.070 0.039

The bold values means best based on the model selection technique

Fig. 7 Empirical and fitted density and CDF plots of tax data
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Fig. 8 P–P plots of the fitted distributions for tax data

In addition, the P–P plots in Fig. 6 shows that the EGPIE and EGBIE distribu-
tions provide a more reasonable fit to the data compared to the EGGIE and EGLIE
distributions.

9.2 Second Data Set

The data set comprises monthly actual taxes revenue in Egypt from January 2006 to
November 2010 in 1000 million Egyptian pounds. The data can be found in [14] and
are given in Table 7.

The maximum likelihood estimates with their corresponding standard errors in
brackets for the fitted distributions are given in Table 8.

The EGLIE distribution provides a better fit to the tax data as compared to the other
fitted distributions. With the exception of the K–S, all other model selection technique
selected the EGLIE distribution as the best distribution for the tax data as shown in
Table 9.

Figure 7 displays the plots of the empirical density, the fitted distributions, the
empirical CDF and the CDF of the fitted distributions for the tax data.
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The P–P plots for the fitted distributions are given in Fig. 8. From Fig. 8, it can be
seen that the EGLIE distribution provides a more reasonable parametric fit to the tax
data.

10 Conclusion

This study proposed and studied the properties of the EGPS family of distributions.
Various statistical properties such as the quantile function, moment, moment generat-
ing function, incomplete moment, reliability, residual life, mean residual life, Shannon
entropy and order statistics were derived. The method of maximum likelihood esti-
mation was proposed for the estimation of the parameters of the family. Bivariate and
multivariate extensions of the family was proposed using the Clayton copula. Some
special distributions were defined and Monte Carlo simulations were performed to
investigate the finite sample properties of the estimators for the parameters of the
special distributions. The results of the simulation revealed the parameters of the dis-
tributions were stable with regards to the estimation techniques. Finally, applications
of the special distributions were illustrated using real data sets.
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