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Abstract A new generator of continuous distributions called Exponentiated Gener-
alized Marshall–Olkin-G family with three additional parameters is proposed. This
family of distribution contains several known distributions as sub models. The prob-
ability density function and cumulative distribution function are expressed as infinite
mixture of the Marshall–Olkin distribution. Important properties like quantile func-
tion, order statistics, moment generating function, probability weighted moments,
entropy and shapes are investigated. The maximum likelihood method to estimate
model parameters is presented. A simulation result to assess the performance of the
maximum likelihood estimation is briefly discussed. A distribution from this family
is compared with two sub models and some recently introduced lifetime models by
considering three real life data fitting applications.
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1 Introduction

In recent years, many different methods of generating new continuous distributions
by adding one or more parameters to the classical ones were developed and some new
families of distributions have been introduced in the statistical literature. The Mar-
shall–Olkin generated family by Marshall and Olkin [16], exponentiated generalized
class of distribution studied by Cordeiro et al. [4], exponentiated Marshall–Olkin-G
family Dias et al. [7], exponentiated generalized Half-logistic distribution by Thi-
ago et al. [22], Marshall–Olkin Kumaraswamy-G family by Handique et al. [12],
Kumaraswamy Marshall–Olkin-G family Alizadeh et al. [2], Kumaraswamy gen-
eralized Marshall–Olkin-G family by Chakraborty and Handique [6], generalized
Marshall–Olkin Kumaraswamy-G family by Chakraborty and Handique [5], beta
Marshall–Olkin-G family by Alizadeh et al. [3], beta generalized Marshall–Olkin-
G family by Handique and Chakraborty [9], beta generated Kumaraswamy-G family
by Handique et al. [13], beta generated Kumaraswamy Marshall–Olkin-G by Hand-
ique and Chakraborty [10] and beta generalized Marshall–Olkin Kumaraswamy-G by
Handique and Chakraborty [11] are some of the notable ones among others.

In this paper we introduce a new extension of Marshall–Olkin-G [MO-G(α, η)]
family of distribution by considering it as the baseline distribution in the exponen-
tiated generalized [E-G(a, b, η)] class of distribution studied by Cordeiro et al. [4].
We refer to this new family of distribution as the Exponentiated Generalized Marshal-
l–Olkin [EGMO-G(a, b, α, η) for short] which encompasses many known families of
distributions and study some of its general properties, parameter estimation and data
modelling applications. The cumulative distribution function (cdf), probability density
function (pdf), survival function (sf) and hazard rate function (hrf) of this proposed
family of distribution are respectively given by

FEGMO-G(x ; a, b, α, η) � [1 − [αḠ(x)/{1 − ᾱḠ(x)}]a ]b, (1)

f EGMO-G(x ; a, b, α, η) � abαag(x)Ḡ(x)a−1[{1 − ᾱḠ(x)}a − αa Ḡ(x)a ]b−1

[1 − ᾱḠ(x)]ab+1
, (2)

F̄EGMO-G(x ; a, b, α, η) � 1 − [1 − [αḠ(x)/{1 − ᾱḠ(x)}]a ]b (3)

and hrf hEGMO-G(x ; a, b, α, η) � abαag(x)Ḡ(x)a−1[{1 − ᾱḠ(x)}a − αa Ḡ(x)a ]b−1

[1 − ᾱḠ(x)]{[1 − ᾱḠ(x)]ab − [{1 − ᾱḠ(x)}a − αa Ḡ(x)a ]b} . (4)

where Ḡ(x) and g(x) is the baseline sf and pdf respectively and −∞ < x < ∞, α >

0, a > 0, b > 0 and η is the parameter vector of the baseline distribution.
For α � 1, we get back E-G(a, b, η), which in turn reduces to MO-G(α, η) when

a, b � 1.

1.1 Physical Basis of EGMO-G

For a and b are positive integers consider a parallel system comprising of b inde-
pendent components. Suppose that, each of this component again comprises of a
serially connected subcomponents which are identically independently distributed
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with cdf FMOG(x ;α, η). Let Xi1, Xi2, . . . , Xia denote the lifetimes of the subcompo-
nents within the jth component, j � 1, 2, . . . , b and X j denote the lifetime of the jth
component. Then for the lifetime of the system X we have

P(X ≤ x) � P(X1 ≤ x, X2 ≤ x, . . . , Xb ≤ x) � P(X1 ≤ x)b � [1 − P(X1 > x)]b

� [1 − P(X11 > x, X12 > x, . . . , X1a > x)]b

� [1 − P(X11 > x)a]b

� [1 − {1 − P(X11 ≤ x)}a]b � [1 − {1 − FMOG(x ;α, η)}a]b
� [1 − [αḠ(x)/{1 − ᾱḠ(x)}]a]b

This is the cdf of EGMO-G(a, b, α, η).
The primary motivation of proposed family is to derived a new extension of the

MO-G distribution by inducting three additional parameters with an aim of (1) bring in
more flexibility with respect to skewness, kurtosis, tail weight and length, (2) Covering
some important known distributions as particular and related cases and (3) Providing
significant improvement in data modelling.

The rest of this article is organized in five more Sections. In Sect. 2 some important
sub models are derived drop these words for the family. In the next section we discuss
few important general results of the proposed family. In Sect. 4 different methods of
estimation of parameters are presented. We present real life examples of comparative
data fitting in Sect. 5. The paper ends with concluding remarks in the final Section.

2 Special Models and Shapes of the Density and Hazard Function

In this section we provide some special cases of the EGMO-G(a, b, α, η) family of
distributions of namely (a) EGMO-E(a, b, α, λ), (b) EGMO-W(a, b, α, β, γ ) and (c)
EGMO-L(a, b, α, β, γ ) by taking Exponential (λ), Weibull (β, γ ) and Lomax (β, γ )
as the base line G and plotted the pdf and hrf for some choices of the parameters to
study the variety of shapes assumed by the family.

2.1 The EGMO-Exponential (EGMO-E) Distribution

Let the base line distribution be exponential with parameter λ > 0, g(x) � λe−λx and
G(x) � 1− e−λx , x > 0, then for the EGMO-E(a, b, α, λ) model we get the pdf, cdf
and hrf respectively as

f EGMO-E(x ; a, b, α, λ) � abαaλ(e−λx )a[{1 − ᾱe−λx }a − αa(e−λx )a]b−1

[1 − ᾱe−λx ]ab+1
,

FEGMO-E(x ; a, b, α, λ) � [1 − [αe−λx/{1 − ᾱe−λx }]a]b and

hEGMO-E(x ; a, b, α, λ) � abαaλ(e−λx )a[{1 − ᾱe−λx }a − αa(e−λx )a]b−1

[1 − ᾱe−λx ]{[1 − ᾱe−λx ]ab − [{1 − ᾱe−λx }a − αa(e−λx )a]b} .
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2.2 The EGMO-Weibull (EGMO-W) Distribution

Taking the Weibull distribution [23] with parameters β > 0 and γ > 0 having pdf
and cdf g(x) � γβxβ−1e−γ xβ

and G(x) � 1 − e−γ xβ
, x > 0 respectively we get the

pdf, cdf and hrf of EGMO-W(a, b, α, β, γ ) distribution respectively as

f EGMO-W(x ; a, b, α, β, γ ) � abαaγβxβ−1(e−γ xβ
)a [{1 − ᾱe−γ xβ }a − αa (e−γ xβ

)a ]b−1

[1 − ᾱe−γ xβ ]ab+1
,

FEGMO-W(x ; a, b, α, β, γ ) � [1 − [αe−γ xβ
/{1 − ᾱe−γ xβ }]a ]b and

hEGMO-W(x ; a, b, α, β, γ ) � abαaγβxβ−1(e−γ xβ
)a [{1 − ᾱe−γ xβ }a − αa (e−γ xβ

)a ]b−1

[1 − ᾱe−γ xβ ][(1 − ᾱe−γ xβ )ab − {(1 − ᾱe−γ xβ )a − αa (e−γ xβ )a}b]
.

2.3 The EGMO-Lomax (EGMO-L) Distribution

Considering the Lomax distribution [15] with pdf and cdf given by g(x) � (β/γ )[1 +
(x/γ )]−(β+1) and G(x) � 1 − [1 + (x/γ )]−β, x > 0, β > 0 and γ > 0 the pdf, cdf
and hrf of EGMO-L(a, b, α, β, γ ) distribution are respectively given by

f EGMO-L(x ; a, b, α, β, γ ) � abαa(β/γ )[1 + (x/γ )]−(aβ+1)

[1 − ᾱ{[1 + (x/γ )]−β}]ab+1 × [{1 − ᾱ[1 + (x/γ )]−β}a

− αa[1 + (x/γ )]−βa]b−1,

FEGMO-L(x ; a, b, α, β, γ ) � [1 − [α[1 + (x/γ )]−β/{1 − ᾱ[1 + (x/γ )]−β}]a]b and

hEGMO-L(x ; a, b, α, β, γ ) � abαa(β/γ )[1 + (x/γ )]−(β+1){[1 + (x/γ )]−β}a−1

[1 − ᾱ[1 + (x/γ )]−β ]
(
[1 − ᾱ[1 + (x/γ )]−β ]ab

× [{1 − ᾱ{[1 + (x/γ )]−β}}a − αa[1 + (x/γ )]−βa]b−1

−[{1 − ᾱ[1 + (x/γ )]−β}a − αa[1 + (x/γ )]−βa]b}) .

From the plots in Figs. 1 and 2 it can be seen that the family is very flexible and
can offer different types of shapes for density and hazard like increasing, decreasing,
right skewed, including bathtub shape for hazard.

Fig. 1 Density plots of a EGMO-E, b EGMO-W and c EGMO-L
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Fig. 2 Hazard plots of a EGMO-E, b EGMO-W and c EGMO-L

3 Mathematical and Statistical Properties

3.1 Linear Representation in Terms of Exponentiated-MO-G(α, η)

We consider the binomial expansion

(1 − z)c �
∞∑

k�0

(−1)k
(
c
k

)
zk, (5)

which holds for any integer c and |z| < 1. Using expansion (5) in Eq. (1), for
α ∈ (0, 1), we can express the EGMO-G(a, b, α, η) cdf as

FEGMO-G(x ; a, b, α, η) � [1 − [αḠ(x)/{1 − ᾱḠ(x)}]a]b

�
∞∑

m�0

(−1)m
(
b
m

)
F̄MO-G(x ;α, η)am

�
∞∑

m�0

(−1)m
(
b
m

) ∞∑

j�0

(−1) j
(
am
j

)
FMO-G(x ;α, η) j

�
∞∑

j�0

ω′
j F

MO-G(x ;α, η) j (6)

By differentiating (6), we obtain

f EGMO-G(x ; a, b, α, η) � f MO-G(x ;α)
∞∑

j�0

ω j F
MO(x ;α, η) j−1 (7)

�
∞∑

j�0

ω′
j
d

dx
FMO-G(x ;α, η) j (8)

where ω′
j � ∑∞

m�0 (−1) j+m
(
b
m

) (
ma
j

)
and ω j � jω′

j .
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Equations (6) and (8) reveal that the cdf and pdf of EGMO-G(a, b, α, η) are linear
combination of corresponding functions of exponentiated-MO-G(α, η).

3.2 Quantile Function and Related Results

Inverting the cdf we get

x � G−1
[
1 − {1 − FEGMO-G(x ; a, b, α, η)1/b}1/a

α + ᾱ{1 − FEGMO-G(x ; a, b, α, η)1/b}1/a
]

.

Using this formula we can generate a random number x from EGMO-G(a, b, α, η)
given a uniform random number u as

x � G−1[1 − {(1 − u1/b)1/a/(α + ᾱ(1 − u1/b)1/a)}].

The pth quantile xp for EGMO-G(a, b, α, η) can be easily seen as

xp � G−1[1 − {(1 − p1/b)1/a/(α + ᾱ(1 − p1/b)1/a)}],

hence the median is given by

x0.5 � G−1[1 − {(1 − 0.51/b)1/a/(α + ᾱ(1 − 0.51/b)1/a)}]

The Bowley skewness [14] measures and Moors kurtosis [17] measure are robust
and less sensitive to outliers and exist even for distributions without moments. For
EGMO-G(a, b, α, η) family these measures are given by

B � x(3/4) + x(1/4) − 2x(1/2)
x(3/4) − x(1/4)

and M � x(3/8) − x(1/8) + x(7/8) − x(5/8)
x(6/8) − x(2/8)

For example, whenG is taken as the exponential distribution with parameter λ > 0,
the pth quantile is given by −(1/λ) log[1 − p]. Therefore, the pth quantile xp, of
EGMO-E(a, b, α, λ) is obtained as

xp � −1

λ
log[1 − [1 − {(1 − u1/b)1/a/(α + ᾱ(1 − u1/b)1/a)}]]

3.2.1 Plots of the Bowley Skewness and Moors Kurtosis

From the Figs. 3 and 4 it is easily seen that the flexibility of both the skewness and
kurtosis are controlled by the additional parameters a, b and α.

3.3 Distribution of Order Statistics

Suppose X1, X2, . . . , Xn is a random sample from any distribution belonging
EGMO-G(a, b, α, η) family. Let Xr :n denote the rth order statistics. The pdf of Xr :n
can be expressed as
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Fig. 3 Bowley skewness of EGMO-E distribution in (i) and (ii) as a function of a when α � 1.5, λ � 1 for
some values b > 1 and b < 1 respectively and in (iii) and (iv) as a function of a when b � 0.6, λ � 1 for
some values α > 1 and α < 1 respectively

Fig. 4 Moors Kurtosis of EGMO-E distribution in (i) and (ii) as a function of a when α � 1.5, λ � 5.5 for
some values b > 1 and b < 1 respectively and in (iii) and (iv) as a function of a when b � 1.6, λ � 1 for
some values α > 1 and α < 1 respectively

fr :n(x) � n!

(r − 1)! (n − r )!

n−r∑

j�0

(−1) j
(
n − r

j

)
f EGMO-G(x ; a, b, α, η)FEGMO-G(x ; a, b, α, η) j+r−1

Now using the general expansions of the EGMO-G(a, b, α, η) pdf and cdf in Sect.
3.1 we get the pdf of the rth order statistics for of the EGMO-G(a, b, α, η) as

fr :n(x) � n!

(r − 1)! (n − r )!

n−r∑

j�0

(−1) j
(
n − r

j

)
f MO-G(x ;α, η)

∞∑

k�0

ωk F
MO-G(x ;α, η)k−1

×
[ ∞∑

l�0

ω′
l F

MO-G(x ;α, η)l
] j+r−1

where ωk and ω′
l are defined Sect. 3.1.

Now

[ ∞∑

l�0

ω′
l F

MO-G(x ;α, η)l
] j+r−1

�
∞∑

l�0

d j+r−1,l F
MO-G(x ;α, η)l

where d j+r−1,l � 1
lω′

0

∑l
c�1 [c( j + r ) − k]ω′

ld j+r−1,l−c [19].
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Therefore the pdf of the rth order statistic of EGMO-G(a, b, α, η) distribution can
be expressed as

fr :n(x) � n!

(r − 1)! (n − r )!

n−r∑

j�0

(−1) j
(
n − r

j

)
f MO-G(x ;α, η)

∞∑

k�0

ωk F
MO-G(x ;α, η)k−1

×
∞∑

l�0

d j+r−1,l F
MO-G(x ;α, η)l

� n!

(r − 1)! (n − r )!

n−r∑

j�0

(−1) j
(
n − r

j

)

×
⎡

⎣ f MO-G(x ;α, η)
∞∑

k,l�0

ωkd j+r−1,l F
MO-G(x ;α, η)k+l−1

⎤

⎦

� f MO-G(x ;α, η)
∞∑

k,l�0

λk,l F
MO-G(x ;α, η)k+l−1 (9)

where λk,l � n!
(r−1)!(n−r )!

∑n−r
j�0 (−1) j

(
n − r

j

)
ωkd j+r−1,l , d j+r−1,l �

1
lω′

0

∑l
c�1 [c( j + r ) − k]ω′

l d j+r−1 , l−c, ωk and ω′
l defined in above.

3.4 Probability Weighted Moment

The probability weighted moments (PWMs), first proposed by Greenwood et al. [8],
are expectations of certain functions of a random variable whose mean exists. The
(p, q, r )th PWM of X is having cdf F(x) defined by

Γp,q,r �
∞∫

−∞
x p[F(x)]q [1 − F(x)]r f (x)dx

From Eq. (7) the sth moment of X can be expressed as

E(Xs) �
+∞∫

−∞
xs f MO-G(x ;α, η)

∞∑

j�0

ω j F
MO-G(x ;α, η) j−1dx

�
∞∑

j�0

ω j

+∞∫

−∞
xs FMO-G(x ;α, η) j−1 f MO-G(x ;α, η)dx

�
∞∑

j�0

ω jΓ
MO-G
s, j−1,0
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where �MO-G
p,q,r �

∞∫
−∞

x p{FMO-G(x ;α, η)}q{F̄MO-G(x ;α, η)}r [ f MO-G(x ;α, η)]dx is

the PWM of MO-G(α, η) distribution.
Proceeding as above we can derive sth moment of the rth order statistic Xr :n , on

using Eq. (9) as E(Xs
r,n) � ∑∞

k,l�0 λk,lΓ
MO-G
sk+l−1,0, where ω j and λk,l are defined in

Sect. 3.1 and 3.2.

3.5 Moment Generating Function (mgf)

The mgf of EGMO-G(a, b, α, η) family can be easily expressed in terms of those of
the exponentiated MO-G(α, η) distribution using the results of Sect. 3.1. For example,
using Eq. (8), it can be seen that

MX (s) � E[esx ] �
∞∫

−∞
esx f EGMO-G(x ; a, b, α, η)dx

�
∞∫

−∞
est

∞∑

j�0

ω′
j
d

dx
FMO-G(x ;α, η) j dx

�
∞∑

j�0

ω′
j

∞∫

−∞
esx

d

dx
FMO-G(x ;α, η) j dx �

∞∑

j�0

ω j MX (s),

where ω j is define in Sect. 3.1 and X has exponentiated MO-G(α, η) distribution.

3.6 Rényi Entropy

The entropy of a random variable is a measure of uncertainty. The Rényi entropy is
defined as IR(δ) � (1 − δ)−1 log

(∫ ∞
−∞ f (t)δdt

)
(for details, see [21]), where δ > 0

and δ �� 1. Using expansion given in Eq. (5) in Eq. (2) we can write for α ∈ (0, 1)

f EGMO-G(x)δ � {ab[F̄MO-G(x ;α, η)]a−1[1 − {F̄MO(x ;α, η)}a ]b−1 fMO-G(x ;α, η)}δ

� (ab)δ fMO-G(x ;α, η)δ
∞∑

j,k�0

(−1) j+k
(

δ(b − 1)

j

) (
a ( j + δ) − δ

k

)

{FMO-G(x ;α, η)}k

Thus for α ∈ (0, 1), the Rényi entropy of EGMO-G(a, b, α, η) can be obtained as

IR(δ) � (1 − δ)−1 log

⎛

⎝
∞∑

j,k�0

ξ j,k

∞∫

−∞

[
αg(x)

[1 − ᾱḠ(x)]2

]δ [
G(x)

{1 − ᾱḠ(x)}
]k

dx

⎞

⎠ ,

where ξ j,k � (ab)δ(−1) j+k
(

δ(b − 1)
j

) (
a ( j + δ) − δ

k

)
.
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3.7 Shapes

The shapes of the pdf and hrf can be described analytically. The critical points of the pdf
of the EGMO-G family are the roots of the equation: d

dx log[ f
EGMO-G(x ; a, b, α, η)] �

0

⇒ g′(x)
g(x)

+ (1 − a)
g(x)

Ḡ(x)
+ (b − 1)

a(1 − ᾱḠ(x))a−1ᾱg(x) + aαaḠ(x)a−1g(x)

{1 − ᾱḠ(x)}a − αaḠ(x)a

− (ab + 1)
ᾱg(x)

1 − ᾱḠ(x)
� 0 (10)

The critical point of the hrf of the EGMO-G family the roots of the equation:
d
dx log[h

EGMO-G(x ; a, b, α, η)] � 0

⇒ g′(x)
g(x)

+ (1 − a)
g(x)

Ḡ(x)
+ (b − 1)

a(1 − ᾱḠ(x))a−1ᾱg(x) + aαa Ḡ(x)a−1g(x)

{1 − ᾱḠ(x)}a − αa Ḡ(x)a
− ᾱg(x)

1 − ᾱḠ(x)

− ab[1 − ᾱḠ(x)]ab − {[{1 − ᾱḠ(x)}a − αa Ḡ(x)a ]b−1a(1 − ᾱḠ(x))a−1ᾱg(x) + aαa Ḡ(x)a−1g(x)}
[1 − ᾱḠ(x)]ab − [{1 − ᾱḠ(x)}a − αa Ḡ(x)a ]b

� 0

(11)

There may be more than one root Eqs. (10) and (11). If x �
x0 is a root of the (10) then it corresponds to a local maximum, a
local minimum or a point of inflexion depending on whether ψ(x0) <

0, ψ(x0) < 0 or ψ(x0) � 0 and similarly for (11) ω(x0) < 0, ω(x0) <

0 or ω(x0) � 0 where ψ(x) � (d2/dx2) log[ f EGMO-G(x ; a, b, α, η)] and ω(x) �
(d2/dx2) log[hEGMO-G(x ; a, b, α, η)].

We have illustrated the application of the above results graphically for EGMO-
E by considering same set of values of the parameters for which we have plotted
its pdfs in Fig. 1a. It can be seen that except for the yellow coloured all the other
curves of (d/dx) log[ f EGMO-E(x)] cuts the horizontal axis (form Fig. 5a) and ψ(x) �
(d2/dx2) log[ f EGMO-E(x)] < 0 (see Fig. 5b) i.e. the corresponding pdfs f EGMO-E(x)
are log-concave and unimodal. The exception of yellow coloured curve is because the
corresponding pdf f EGMO-E(x) is a decreasing function (see Fig. 1a) with maximum
at zero. Similar conclusion can be drawn for the plots of (d/dx) log[hEGMO-E(x)] and
ω(x) � (d2/dx2) log[hEGMO-E(x)] < 0 (see Fig. 6a, b).

4 Estimation

In this section, parameters estimation of the EGMO-G(a, b, α, η) distribution is pre-
sented using the maximum likelihood method.

4.1 Maximum Likelihood Estimation

The model parameters of the EGMO-G(a, b, α, η) distribution can be estimated by
maximum likelihood. Let X � (x1, x2, . . . , xr )′ be a random sample of size r
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Fig. 5 1st and 2nd derivative of the log of density function of the EGMO-E

Fig. 6 1st and 2nd derivative of the log of hazard function of the EGMO-E

from EGMO-G(a, b, α, η) with parameter vector ϑ � (a, b, α, ηT )′, where η �
(η1, η2, . . . , ηq )′ corresponds to the parameter(s) of the baseline distribution G. Then
the log-likelihood function is given by

� � �(ϑ) � r log(ab) + ra log(α) +
r∑

i�1

log[g(xi , η)] + (a − 1)
r∑

i�1

log[Ḡ(xi , η)]

+ (b − 1)
r∑

i�1

log[{1 − ᾱḠ(xi , η)}a] − αaḠ(xi , η)
a]
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This log-likelihood function can not be solved analytically because of its complex
form but it can be maximized numerically by employing global optimization methods
in R.

By taking the partial derivatives of the log-likelihood functionwith respect to a, b, α
and η components of the score vector Uϑ � (Ua,Ub,Uα,UηT )

T can be obtained as
follows:

Ua � ∂�

∂a
� r

a
+ r log(α) +

r∑

i�1

log[Ḡ(xi , η)] + (b − 1)

×
r∑

i�1

{1 − ᾱḠ(xi , η)}a log[1 − ᾱḠ(xi , η)] − [αḠ(xi , η)]a log[αḠ(xi , η)]

{1 − ᾱḠ(xi , η)}a − [αḠ(xi , η)]a

− b
r∑

i�1

log[1 − ᾱḠ(xi , η)]

Ub � ∂�

∂b
� r

b
+

r∑

i�1

log[{1 − ᾱḠ(xi , η)}a] − αaḠ(xi , η)
a] − a

r∑

i�1

log[1 − ᾱḠ(xi , η)]

Uα � ∂�

∂α
� r

α
+ (b − 1)

r∑

i�1

a{1 − ᾱḠ(xi , η)}a−1Ḡ(xi , η) − aαa−1Ḡ(xi , η)a

{1 − ᾱḠ(xi , η)}a − [αḠ(xi , η)]a

− (ab + 1)
r∑

i�1

Ḡ(xi , η)

1 − ᾱḠ(xi , η)

Uη � ∂�

∂η
�

n∑

i�1

g(η)(xi , η)

g(xi , η)
+ (a − 1)

n∑

i�1

G(η)(xi , η)

G(xi , η)

+ (b − 1)
r∑

i�1

a{1 − ᾱḠ(xi , η)}a−1Ḡ(η)(xi , η) − αaḠ(xi , η)a−1Ḡ(η)(xi , η)

{1 − ᾱḠ(xi , η)}a − [αḠ(xi , η)]a

− (ab + 1)
r∑

i�1

ᾱḠ(β)(xi , η)

1 − ᾱḠ(xi , η)

4.1.1 Asymptotic Standard Error for the MLEs

For large sample the standard error for the MLE of jth parameter ϑ j is approximated
by

√
v̂ j j , where ν̂ j j � (V̂n) � I−1

n (ϑ̂), where În(ϑ̂) � (Îi j ) is the observed Fisher’s
information matrix defined as Îi j ≈ (−∂2�(ϑ)/∂ϑi∂ϑ j )ϑ�ϑ̂

, i, j � 1, 2, . . . , 3 + q.

4.2 Simulation Study

Here, we examine the performance of the maximum likelihood method for estimating
the EGMO-E parameters by using the Monte Carlo simulation study with 10,000
replications. We calculate the average of estimated parameters, bias and mean square
errors (MSE).
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Table 1 Means, standard error estimates, Biases and RMSEs of â, b̂, α̂ and λ̂ for the EGMO-Exponential
model with true values a � 0.5, b � 1.5, α � 0.8 and λ � 0.3

n Parameter Mean Biases Standard error MSE

100 a 0.2925 −0.2075 0.3036 0.1352

b 1.4134 −0.0866 0.3477 0.1284

α 0.8517 0.0517 0.1835 0.0363

λ 0.7457 0.4457 0.3336 0.3100

200 a 0.3076 −0.1924 0.2814 0.1162

b 1.4303 −0.0697 0.2074 0.0479

α 0.8076 0.0076 0.0802 0.0065

λ 0.6725 0.3725 0.2820 0.2183

300 a 0.3036 −0.1964 0.2598 0.1061

b 1.4407 −0.0593 0.1635 0.0302

α 0.7968 −0.0032 0.0538 0.0029

λ 0.6475 0.3475 0.2502 0.1833

500 a 0.3106 −0.1894 0.2439 0.0954

b 1.4427 −0.0573 0.1213 0.0180

α 0.7909 −0.0091 0.0305 0.0010

λ 0.6071 0.3071 0.2189 0.1422

• Data is generated using the inversion of cdf given in Sect. 3.2.
• (0.5, 1.5, 0.8 and0.3) are taken as the true parameter valuesa, b, α and λ. Simulation
is conducted for the sample sizes n � 100, 200, 300 and 500.

The numerical results of theMonte Carlos simulation study are given in the Table 1.
We evaluate the average of estimated parameters, bias, standard error and mean square
errors (MSE). Based on these results we can conclude that, the biases and MSE
decreases as the sample size increases.

5 Real Life Applications

Here we consider modelling of the three real life data sets, two positively skewed
and other negatively skewed to illustrate the suitability of the EGMO-G(a, b, α, η)
distribution in comparison to some existing distributions by estimating the parame-
ters through numerical maximization of log-likelihood functions taking exponential
distribution as the base line G.

Wehave compared theEGMO-E(a, b, α, λ) distributionwith someof its submodels
namely the Marshall Olkin-exponential [MO-E(α,λ)], Exponentiated generalized-
exponential [EG-E(a, b, λ)] and exponential [E(λ)] distributions, and also with useful
lifetime model moment exponential [ME(β)], exponentiated moment exponential
[E-ME(α, β)], exponentiated exponential [E-E(β, λ)], beta exponential [B-E(α, β, λ)]
distributions for all three data sets.
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The best model is chosen as the one having lowest AIC (Akaike Information Cri-
terion), BIC (Bayesian Information Criterion), CAIC (Consistent Akaike Information
Criterion) and HQIC (Hannan–Quinn Information Criterion). It may be noted that
AIC � 2k − 2l; BIC � k log(n)− 2l; CAIC � AIC + (2k(k + 1))/(n − k − 1); and
HQIC � 2k log[log(n)] − 2l, where k is the number of parameters in the statistical
model, n the sample size and l is the maximized value of the log-likelihood func-
tion under the considered model. Moreover the Anderson–Darling (A), Cramer–von
Mises (W) and Kolmogorov–Smirnov (K–S) statistics are also used to compare the
fitted models.

5.1 Likelihood Ratio Test for Nested Models

The EGMO-E(a, b, α, λ) distribution reduces to E(λ) when a, b, α � 1 toMO-E(α,λ)
when a, b � 1 and to EG-E(a, b, λ) if α � 1.

Here we have employed likelihood ratio criterion to test the following hypotheses:

1. H0: a, b, α � 1, that is the sample is from E(λ)
H1: a �� 1, b �� 1, α �� 1, that is the sample is EGMO-E(a, b, α, λ)

2. H0: a, b � 1, that is the sample is from MO-E(α,λ)
H1: a �� 1, b �� 1, that is the sample is EGMO-E(a, b, α, λ).

3. H0: α � 1, that is the sample is from EG-E(a, b, λ)
H1: α �� 1, that is the sample is EGMO-E(a, b, α, λ).

The likelihood ratio test statistic is given by LR�−2 ln(L(ϑ̂∗; x)/L(ϑ̂, x)), where
ϑ̂∗ is the restricted ML estimates under the null hypothesis H0 and ϑ̂ is the
unrestricted ML estimates under the alternative hypothesis H1. Under the null
hypothesis H0 the LR criterion follows Chi square distribution with degrees of
freedom (df) (d falt − d fnull ). The null hypothesis is rejected for p value less than
0.05.

First data set is about 346 nicotine measurements of cigarettes (http://www.ftc.g
ov/reports/tobacco or http://pw1.netcom.com/rdavis2/smoke.html). Second data set
consists of 153 observations, of which 85 are classified as failed windshields, and
the remaining 68 are service times of windshields that had not failed at the time of
observation is taken from Murthy et al. [18]. Third data set consists of 63 obser-
vations about strengths of 1.5 cm glass fibres are taken from Smith and Naylor
[20].

In data modelling applications, information about the shape of the hazard func-
tion can help us in deciding a particular model. To meet this objective, the
concept of total time on test (TTT) plot was proposed by Aarset [1]. The TTT

is drawn by plotting T (i/n) �
{(∑i

r�1 y(r )
)
+ (n − i)y(i)

}/ ∑n
r�1 y(r ) where,

i � 1, 2, . . . , n and y(r )(r � 1, 2, . . . , n) are the order statistics of the sample,
against i/n. The hazard of the given data set is constant, decreasing and increas-
ing depending on the shape of the TTT plot being a straight diagonal line, is
of convex shape and concave shape respectively. The TTT plots for the data sets
considered here are presented Fig. 7 indicate that the all the three data sets have
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Fig. 7 TTT-plots for the a Data set I, b Data set II and c Data set III

Table 2 Descriptive Statistics for the data set I, II and III

Data sets Minimum Mean Median s.d. Skewness Kurtosis 1st qu. 3rd qu. Maximum

I 0.100 0.853 0.900 0.334 0.171 0.296 0.600 1.100 2.000

II 0.040 2.563 2.385 1.113 0.085 −0.689 1.866 3.376 4.663

III 0.550 1.507 1.590 0.324 −0.879 0.800 1.375 1.685 2.240

increasing hazard rate. We have also presented the descriptive statistics of the data
sets in Table 2 and findings of the data fitting for set-I, II and III Tables 3, 4,
5, 6, 7 and 8 respectively.

For the data sets I, II and III, the MLEs of the parameters with their standard
errors for all the competing models are respectively presented in the Tables 3, 5,
and 7 while corresponding AIC, BIC, CAIC, HQIC, A, W, KS and LR statistic with
p value are shown in Tables 4, 6 and 8. For the all data sets, it is evident that the
EGMO-E distribution is the best model with lowest AIC, BIC, CAIC, HQIC, A, W
and highest p value of K–S statistic. Moreover the LR tests reject the two sub mod-
els in favour of the EGMO-E distribution. Therefore we may conclude that it is a
better model than the sub models MO-E, EG-E, E and also useful lifetime models
like moment exponential (ME), exponentiated moment exponential (E-ME), expo-
nentiated exponential (E-E), beta exponential (B-E) distributions for all three data
sets.

Also plots of fitted densities with histogram of the observed data in Figs. 8a, 9a,
10a and cdf of the best fitted distribution with ogive of observed data in Figs. 8b,
9b, 10b for the data sets I, II and III respectively show the adequacy of the proposed
distributions for all the observed data sets.

6 Conclusions

In this paper, a new G family extension of the Marshall–Olkin is proposed with more
flexibility to analyze real life data. We study some of its statistical and mathemati-
cal properties including estimation of the model parameters by maximum likelihood
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Table 3 MLEs, standard error’s and confidence interval (in parentheses) values for the data set I

Models â b̂ α̂ β̂ λ̂

E(λ) – – – – 1.173
(0.063)
(1.05, 1.29)

MO-E(α, λ) – – 75.241
(18.053)
(39.86, 110.62)

– 4.701
(0.254)
(4.20, 5.19)

EG-E(a, b, λ) 0.828
(0.089)
(0.65, 1.00)

5.527
(0.514)
(4.52, 6.53)

– – 3.292
(1.067)
(1.20, 5.38)

ME(β) – – – 0.406
(0.016)
(0.37, 0.44)

–

E-ME(α, β) – – 2.574
(0.229)
(2.13, 3.02)

0.284
(0.012)
(0.26, 0.31)

–

E-E(β, λ) – – – 5.526
(0.414)
(4.71, 6.34)

2.726
(0.128)
(2.48, 2.98)

B-E(α, β, λ) – – 4.922
(0.364)
(4.21, 5.64)

17.433
(8.216)
(1.33, 33.54)

0.298
(0.128)
(0.05, 0.55)

EGMO-
E(a, b, α, λ)

6.124
(2.349)
(1.52, 10.72)

2.159
(0.202)
(1.76, 2.55)

22.869
(5.637)
(11.82, 33.92)

– 1.999
(0.076)
(1.85, 2.15)

Table 4 AIC, BIC, CAIC, HQIC, A, W, KS (p value) and L-R (p value) values for the data set I

Models AIC BIC CAIC HQIC A W KS (p value) L-R (p value)

E(λ) 583.66 587.51 583.67 585.20 58.38 11.79 0.24
(0.17)

368.84
(0.004)

MO-E(α, λ) 229.62 237.32 229.65 232.68 9.84 1.87 0.28
(0.08)

12.80
(0.002)

EG-
E(a, b, λ)

304.44 315.99 304.51 309.06 9.41 1.60 0.22
(0.23)

85.62
(0.0006)

ME(β) 388.70 392.55 388.71 390.24 32.38 6.48 0.23
(0.22)

–

E-ME(α, β) 290.62 298.32 290.65 293.70 8.48 1.46 0.24
(0.20)

–

E-E(β, λ) 302.44 310.14 302.47 305.52 9.42 1.59 0.22
(0.23)

–

B-E(α, β, λ) 276.04 287.59 276.11 280.66 6.48 1.09 0.24
(0.16)

–

EGMO-
E(a, b, α, λ)

220.82 236.22 220.94 226.98 2.46 0.37 0.22
(0.25)

–
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Table 5 MLEs, standard error’s and confidence interval (in parentheses) values for the data set II

Models â b̂ α̂ β̂ λ̂

E(λ) – – – – 0.390
(0.042)
(0.31, 0.47)

MO-E(α, λ) – – 36.582
(15.776)
(5.66, 67.50)

– 1.319
(0.149)
(1.03, 1.61)

EG-E(a, b, λ) 1.473
(0.163)
(1.15, 1.79)

3.594
(0.614)
(2.39, 4.79)

– – 0.573
(0.094)
(0.39, 0.76)

ME(β) – – – 1.281
(0.098)
(1.09, 1.47)

–

E-ME(α, β) – – 1.723
(0.285)
(1.16, 2.28)

1.001
(0.093)
(0.82, 1.18)

–

E-E(β, λ) – – – 3.596
(0.614)
(2.39, 4.79)

0.759
(0.076)
(0.61, 0.91)

B-E(α, β, λ) – – 3.521
(0.518)
(2.51, 4.54)

18.649
(3.131)
(12.51, 24.78)

0.069
(0.066)
(0, 0.19)

EGMO-
E(a, b, α, λ)

7.073
(23.194)
(0, 52.53)

1.300
(0.596)
(0.13, 2.47)

43.006
(74.833)
(0, 189.68)

– 0.743
(0.531)
(0, 1.78)

Table 6 AIC, BIC, CAIC, HQIC, A, W, KS (p value) and L-R (p value) values for the data set II

Models AIC BIC CAIC HQIC A W KS (p value) L-R (p value)

E(λ) 331.96 334.40 332.00 332.94 11.79 2.36 0.31
(0.002)

75.78
(0.003)

MO-E(α, λ) 266.12 271.00 266.27 268.08 1.91 0.37 0.13
(0.09)

7.94
(0.02)

EG-
E(a, b, λ)

286.78 296.10 287.07 291.72 4.65 0.89 0.20
(0.002)

28.60
(0.003)

ME(β) 291.52 293.96 291.57 292.50 4.67 0.82 0.19
(0.003)

–

E-ME(α, β) 283.58 288.46 283.73 285.54 1.81 0.25 0.13
(0.11)

–

E-E(β, λ) 286.78 291.66 286.93 288.74 2.04 0.28 0.14
(0.09)

–

B-E(α, β, λ) 282.84 290.16 283.14 285.78 1.22 0.11 0.09
(0.38)

–

EGMO-
E(a, b, α, λ)

262.19 271.94 262.69 266.10 0.59 0.08 0.07
(0.75)

–
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Table 7 MLEs, standard error’s and confidence interval (in parentheses) values for the data set III

Models â b̂ α̂ β̂ λ̂

E(λ) – – – – 0.663
(0.083)
(0.50, 0.83)

MO-E(α, λ) – – 168.723
(57.271)
(56.47, 280.97)

– 3.531
(0.235)
(3.07, 3.99)

EG-E(a, b, λ) 0.175
(0.817)
(0, 1.78)

31.347
(9.517)
(12.69, 50.00)

– – 14.909
(69.554)
(0, 151.23)

ME(β) – – – 0.753
(0.067)
(0.62, 0.88)

–

E-ME(α, β) – – 12.925
(3.641)
(5.79, 20.06)

0.313
(0.025)
(0.26, 0.36)

–

E-E(β, λ) – – – 31.351
(9.518)
(12.69, 50.01)

2.661
(0.237)
(2.19, 3.13)

B-E(α, β, λ) – – 30.764
(9.469)
(12.20, 49.32)

17.750
(3.136)
(11.03, 23.89)

0.306
(0.017)
(0.27, 0.34)

EGMO-
E(a, b, α, λ)

5.768
(3.920)
(0, 13.45)

2.324
(0.841)
(0.68, 3.97)

197.889
(160.139)
(0, 511.76)

– 2.614
(0.588)
(1.46, 3.78)

Table 8 AIC, BIC, CAIC, HQIC, A, W, KS (p value) and L-R (p value) values for the data set III

Models AIC BIC CAIC HQIC A W KS (p value) L-R (p value)

E(λ) 179.66 181.80 179.73 180.50 18.41 3.86 0.39
(0.008)

147.02
(0.008)

MO-E(α, λ) 55.36 59.65 55.56 57.05 4.35 0.85 0.16
(0.17)

20.72
(0.02)

EG-
E(a, b, λ)

68.76 75.18 69.16 71.28 4.32 0.79 0.15
(0.22)

32.12
(0.0005)

ME(β) 134.64 136.78 134.71 135.48 13.17 2.63 0.31
(0.0001)

–

E-ME(α, β) 64.16 68.44 64.36 65.84 4.10 0.75 0.14
(0.24)

–

E-E(β, λ) 66.76 71.04 66.96 68.44 4.33 0.79 0.15
(0.22)

–

B-E(α, β, λ) 54.12 60.54 54.53 56.64 3.08 0.56 0.13
(0.32)

–

EGMO-
E(a, b, α, λ)

38.63 47.21 39.32 42.00 1.27 0.21 0.08
(0.86)

–
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Fig. 8 a Observed histogram and fitted densities of the EGMO-E distribution and other competitive models.
b Estimated cdf of the EGMO-E model and the empirical cdf for the data set I

Fig. 9 a Observed histogram and fitted densities of the EGMO-E distribution and other competitive models.
b Estimated cdf of the EGMO-E model and the empirical cdf for the data set II

method. New distribution applied to three real data sets provides better fit than its sub
model and some other recently introduced distributions. It is therefore a useful new
contribution to the pool of existing extensions of Marshall–Olkin models.
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Fig. 10 aObservedhistogramandfitted densities of theEGMO-Edistribution andother competitivemodels.
b Estimated cdf of the EGMO-E model and the empirical cdf for the data set III
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