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Abstract Tuberculosis (TB) and HIV have been closely linked since the emergence
of AIDS; TB enhances HIV replication by accelerating the natural evolution of HIV
infection which is the leading cause of sickness and death of peoples living with
HIV/AIDS. To improve their life the co-infected patients are started to take antiretro-
viral treatment as patient started to take ART it is common to measure CD4 and
other clinical outcomes which is correlated with survival time. However, the separate
analysis of such data does not handle the association between the longitudinal mea-
sured out come and time-to-event where the joint modeling does to obtain valid and
efficient survival time. Joint modeling of longitudinally measured CD4 and time-to
death to understand their association. Furthermore, the study identifies factors affect-
ing the mean change in square root CD4 measurement over time and risk factors for
the survival time of HIV/TB co-infected patients. The study consists of 254 HIV/TB
co-infected patients who were 18years old or older and who were on antiretroviral
treatment follow up fromfirst February 2009 to fist July 2014 in JimmaUniversity Spe-
cialized Hospital, West Ethiopia. First, data were analyzed using linear mixed model
and survival models separately. After having appropriate separate models using Akaki
information criteria, different joint models employed with different random effects
longitudinal model and different shared parameters association structure of survival
model and comparedwith deviance information criteria score. The linear mixedmodel
showed functional status, weight, linear time and quadratic time effects have signifi-
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cant effect on the mean change of CD4 measurement over time. The Cox and Weibull
survival model showed base line weight, baseline smoking, separated marital status
group and base line functional status have significant effect on hazard function of the
survival time whereas the joint model showed subject specific base line value; sub-
ject specific linear and quadratic slopes of CD4 measurement of were significantly
associated with the survival time of co-infected patient at 5% significance levels.
The longitudinally measured CD4 count measurement marker process is significantly
associated with time to death and subject specific quadratic slope growth of CD4mea-
surement, base line clinical stage IV and smoking is the high risk factors that lower
the survival time of HIV/TB co-infected patients. Since the longitudinally measured
CD4 measurement is correlated with survival time joint modeling are used to handle
the associations between these two processes to obtain valid and efficient survival
time.

Keywords Survival analysis · Longitudinal analysis · Cox PH · Linear mixed model ·
Joint modeling · HIV–TB

1 Introduction

HIV/AIDS and tuberculosis co-infection present special challenges to the expansion
and effectiveness of directly observed treatment short-course programs and the Stop
TB Strategy. TB accounts for one-quarter of AIDS deaths worldwide and is one of the
most common causes of morbidity in people living with HIV and AIDS. Currently,
approximately 34 million people are infected with HIV, and at least one-third of them
are also infected with TB [1].

Globally the number of TB patients who had been diagnosed with HIV status
reached 2.1 million in 2010, equivalent to 34% of notified cases of TB. Of the 8.8
million incident cases globally an estimated 1.1 million (13%) were found to be co-
infected with HIV [2]. Overall, the African region accounted for a staggering 82%
of all new TB cases co-infected with HIV. Among the TB patients 46% of them are
those living with HIV globally and 42% TB patients in the African region were living
with HIV in 2010. Among the PLWHA enrolled in HIV care worldwide in 2010 the
treatment success and death rates reported for HIV positive TB cases in 2009 were 72
and 20% respectively [2].

HIV infection is now the most common predictor of TB incidence and the other
way round, TB is a common infection in sub-Saharan Africa. Thus, these countries
continue taking the leading position in HIV/TB morbidity and mortality rate, where
the TB epidemic is primarily driven by HIV infection. Ethiopia is one among these
countries most heavily affected by HIV and TB co-infection [3–5].

Among 76 thousand TB was the causes of deaths in Ethiopia 30% were among
HIV positive patients. However, WHO recommends different collaborative activities
for HIV/TB co-infections where one is initiation of antiretroviral therapy in order to
reduce the risks of death and HIV-related morbidities, or in improvement of quality
of people living with HIV [6].
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1.1 Joint Modeling Approaches

A common objective in longitudinal studies is to characterize the relationship between
a longitudinal response process and time-to-event. Considerable recent interest has
focused on so called joint models, where models for the event time distribution and
longitudinal data are taken to depend on a common set of latent random effects. In the
literature, precise statement of the underlying assumptions typically made for these
models has been rare [7].

It is commonly found in the collection of medical longitudinal data that both
repeated measures and time-to-event data are collected where both types of data are
associated through unobserved random effects. Due to the association exists between
these two process the joint models were developed to enable a more accurate method
to model both processes simultaneously. Whereas the independent modeling of the
longitudinal and time-to- event data can cause biased estimates [8,9,19].

Often the longitudinal studies produce two types of outcome, namely a set of lon-
gitudinal out come and the time-to-event of interest, such as death, development of
a disease or dropout from the study. Two typical examples of this setting are HIV
and cancer studies. In case of HIV patients who have been infected are monitored
until they develop AIDS or die, and they are regularly measured for the condition
of the immune system using markers such as the CD4 lymphocyte count or the
estimated viral load. Similarly in cancer studies the event outcome is the death or
metastasis and patients also provide longitudinal measurements of antibody levels
or of other markers of carcinogenesis, such as the PSA levels for prostate cancer
[11].

The joint modeling enables the simultaneous study of a longitudinal marker and
a correlated time-to-event. The shared random-effect in the joint modeling define a
mixed model for the longitudinal marker and a survival model for the time-to-event
including characteristics of the mixed model as covariates received the main interest.
Indeed, they extend naturally the survival model with time-dependent covariates and
offer a flexible framework to explore the link between a longitudinal biomarker and a
risk of event [12].

Joint modeling often assumes a proportional hazards model for the time to event
and a linear mixed-effects model for the longitudinal data. Under this framework,
different approaches have been proposed in the literature including some likelihood
basedmethods with an assumption on the distribution of the random effects and that of
the measurement errorsWulfsohn and Tsiatis [13] and Tsiatis et al. [14] also proposed
a two-stage approach in which, based on an approximation to the hazard function
for the event times, the usual partial likelihood for the Cox model can be used. In
this approach, the observed covariate history is estimated using empirical Bayees
methodology, which requires fitting as many mixed effects models as there are event
times in the data set.

The approach that this study used to build a joint model is simultaneously modeling
the longitudinal CD4 measurements and the time-to-death processes by linking those
using shared random effects parameter model. In the proposed model, to characterize
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the longitudinal CD4 measurements a linear mixed effects model that incorporates
patient specific CD4 intercept and slopes is used for the longitudinal sub-model while
Cox PH model is used to describe the time-to-death survival data for the survival
sub-model. Then, the two sub-models are linked through shared parameters [15], with
different forms, since these random effects characterize the subject specific longitudi-
nal process. Because, the standard maximum likelihood method involves integrating
out the shared parameters from the log-likelihood function which is difficult when
dealing with high dimensional variables [16], a Bayesian estimation procedure and a
Markov chain Monte Carlo (MCMC) algorithm is used to fit the joint model. At last,
the convergence of the Gibbs sampler is monitored by examining time series plots of
the parameters over iteration.

2 Materials and Methods

2.1 Data Source

The data for the study was obtained from Jimma University Specialized Hospital
from HIV and TB outpatient Clinic, South West of Ethiopia. All HIV/TB co-infected
patients who were 18years old and above taking ART at any time in between first
February 2009 to first July 2014 having at least one CD4 count measurement were
eligible for the analysis. Therefore, among 856 total co-infected patients during the
time period 254 who fulfill the eligibility criteria were considered.

2.2 Variables of the Study

The two outcome variables considered for the study were the survival outcome which
was time to death measured from the time of co-infection to death or censored in
month. However, time to death were censored for those co-infected patients who were
lost the follow, transferred to another Hospital and did not died at first July 2014 (at end
of the study). Hence, the longitudinal outcomewas CD4measurement counts per mm3

of blood which was measured within 6months interval which act as bio marker for
co-infected patients.In general the independent covariates considered for the separate
longitudinal and survival modeling as well for the joint modeling are listed in the
following Table 1 below.

Notice thatWHOClinical Stage which is classified into four; I, II, III and IV; where
Stage I indicates asymptomatic disease, Stage II indicates mild disease, Stage III indi-
cates advanced disease and Stage IV indicates severe disease. Hence disease severity
increases from Stage I to Stage IV. Functional Status of the patients is also categor-
ical covariate with three categories: Working, Ambulatory and Bedridden. Working
patients are those patients who can able to work day to day while ambulatory patients
are those patients who can able to work some time but bedridden patients cannot able
to work due to the infectious disease.
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Table 1 List of covariates used in the separate and joint modeling

Variable name Values of the variable Type

Age Years (baseline) Continuous

Marital status Single, married, separated, widowed, divorced Categorical

Residence Rural, urban Categorical

Educational level Not educated, primary, secondary, tertiary Categorical

Working time Part timer, working full time, unemployed Categorical

Use of alcohol Use, do not use Categorical

Smoking Smoker, nonsmoker Categorical

Use of soft drug Use, do not use Categorical

Type of TB Pulmonary TB, extra pulmonary TB Categorical

Clinical stage Stage-I, Stage-II, Stage-III, Stage-IV Categorical

Functional status Working, ambulatory, bed ridden Categorical

Religion Muslim, orthodox, protestant Categorical

Sex Female, male Categorical

Censoring status of patients Censored, Died Categorical

2.3 Model Specification

2.3.1 Linear Mixed Modeling

Longitudinal outcomes may arise in two common situations; one is when the mea-
surements taken from the same subject at different times and the other is when the
measurements taken on related subjects (clusters) in both cases measurements are
likely to be correlated. The linear mixed model (LMM) is used to model longitudi-
nal outcomes by accounting with and between subject sources of variations. This is
due to the measurement taken from the same subject at different time points or the
measurements taken from the same clusters are likely to be correlated.

In this study before the joint modeling to have an appropriate longitudinal sub-
model for the longitudinally measured square root of CD4 the LMM were employed
to identify the covariates that have significant effects on the mean change of square
root of CD4 measurements over time. Therefore, the longitudinal data modeling was
begins with exploratory data analysis to determine the mean change of square root
transformed CD4 measurement over time. Let yi1, yi2, âĂę, yin were the square root
of CD4 measurement measured at time ti1, ti2, âĂę., tin the linear mixed model of the
data which is proposed by Laird and Ware [17] is expressed as:

yi = XT (t)β + ZT
i (t)bi + εi

yi = μi (t) + U1i (t) + εi
(1)

where yi is the ni × 1 vector of observed response values, β is the p × 1 vector of
fixed-effects parameters, X(t) is the ni × p observed design matrix corresponding to
the fixed-effects, bi is the q × 1 vector of random-effects parameters, Zi is the ni × q
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observed design matrix corresponding to the random-effects, and εi is the n j × 1
vector of residuals for the response. The corresponding assumptions for model (1) are
b j ∼ Nq(0,D) and εi ∼ N (0, �); whereD and � are the variance-covariance matrix
for bi and εi for outcome variable respectively.

In this model, μi (t) = XT(t)β represent is the mean square root of CD4 mea-
surement and U1i (t) = ZT

i (t)bi incorporates the random effects part which is the
true individual level CD4 measurement trajectories after they have been adjusted for
the overall mean. Here, in mixed effects models, random effects bi is introduced for
each subject to incorporate the correlation between the repeated measurements within
subject and it facilitates the subject specific inference whereas represents the between
sources of variations.

2.3.2 Survival Data Modeling

Survival models are seeks to explain how the risk, or hazard, of an event occurring
at a given time is affected by covariates of theoretical interest. Hazard function of
survival model is used to explain the probability that an individual will experience an
event. This study also considered different Survival models to explain how the risk,
or hazard, of death occurring at a given time is affected by covariates of theoretical
interest in the study area.

The most commonly used semi-parametric survival model which do not requires
the distributional assumption of the survival time is Cox proportional hazard model
proposed by Cox [18] which expresses the hazard of an event at time t as:

λi (t) = λ0(t)exp(WT γ ) (2)

where W is the matrix of baseline covariates which may or may not have the same
element with linear mixed effects covariates X(t), γ is the vector of parameters and
the term λ0(t)is the baseline hazard where the effects of covariates are zero. The only
assumption of this model is that the hazards ratioψ = λi (t)

λ j (t)
does not change over time

(i.e., proportional hazards).
In addition to Cox PH model different parametric survival models are also consid-

ered for the study by assuming different parametric distribution for the time to death to
have an appropriate survival model for the co-infected patients. However, the hazard
model for the parametric model is also same to the Cox PH but the only difference is
that the baseline hazard for the parametric survival model is modeled parametrically
which have a specified parametric time distribution. In case if the proportional haz-
ard survival model is no longer valid an alternative method modeling survival data is
accelerated failure time (AFT) model which is express as:

log(T ) = WT γ + σζi (3)

where ζi ∼ F and F is parametric error distribution and σ is scale parameter. The pro-
portional hazardmodel of theWeibull in our cases were obtained AFTmodel using the

relation betweenweibull PHandWeibullAFTwhich is expressed as: λ̂ = exp
( − γ̂0
scale

)
,
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α̂ = 1
scale , γ̂ = − γ̂AFT

Scale and where their standard error for the estimated parameters
was obtained by using delta methods for the construction confidence interval. Here,
λ̂, α̂ and γ̂ represents the scale, shape and estimated coefficient of the covariates of
Weibull PH model respectively.

2.4 The Joint Modeling Structure

Recently, joint modeling research has expanded very rapidly in Biostatistics and med-
ical research. This is due to model enables the simultaneous study of a longitudinal
marker and a correlated time-to-event.

The main aim of this study was also to relate longitudinally measured CD4
biomarker with time to death for HIV/TB co-infected patient to understand the associ-
ation between the two processes. Therefore, after having appropriate separate models
the longitudinal sub-model have the same specification as the separate linear mixed
model (1). The survival sub-model includes shared parameter association function
to the specified Cox PH model (2). This shared association parameter associates the
longitudinally measured CD4 measurement random effects with time-to-death of co-
infected patients which can be expressed as follows.

λi (t/W) = λ0(t)exp
(
WT γ + U2i (t)

)
(4)

where λ0(t) is the base line hazards rate, U2i (t) defines the nature association struc-
ture of the shared parameters between the two processes which have a multivariate
distribution function. The three association structure values of U2i (t) considered for
this study were U2i (t) = αTmi (t), U2i (t) = αTbi and U2i (t) = αT (βb + bi ). Here,
the values of mi (t) denotes current underlying value of the longitudinally measured
CD4 measurement marker processes at the same time point; α measures the strength
of association vectors between two processes; bi is random effect parameters of the
longitudinal part and βb is fixed effect parameters corresponding to the random effects.
Finally, DIC score of the fitted association structure of the model was considered to
have the appropriate joint model.

2.4.1 Joint Model Estimation Methods

Given the random effects, the longitudinal process is assumed to be independent
from the event time. Let �1 and �2 be the vector of parameters defined in linear
mixed model and survival model respectively. Assuming the independence between
the longitudinal and the survival processes conditionally to the random effects their
joint density function is expressed as:

f (Y,T, δ/�1,�2) =
∫

fY (Yi/�1, ηi ) fT (T, δ/�2, ηi )dηi (5)

where their joint log likely hood function is expressed as:

123



666 Ann. Data. Sci. (2018) 5(4):659–678

l(Y,T, δ/�1,�2) = log

(
N∏
i=1

∫
fY (Yi/�1, ηi

)
λ(T/Yi )

δi S(T/Yi ) f (ηi )dηi

(6)

where λ(T/Yi ) is the survival hazard function S(T/Yi ) = ∫ t
0 λ(U/Yi )dU is the

survival function and fY and f (ηi ) represents the density function for the longi-
tudinal and shared parameters respectively. However, the computation of the above
joint likelihood can be highly intensive. Therefore, Bayesian approach using Markov
chain Monte Carlo (MCMC) algorithm was considered for the computation of the
model parameters. Under Bayesian approach, model parameters are treated as ran-
dom variables and assigns probability to each, which is the major difference to the
likelihood approach. Therefore, the estimation and inference of the parameters were
based on posterior distribution which was obtained based on Bayesian theorem which
expressed as:

f (θ/y) = f (y/θ) f (θ)

f (y)
= f (y/θ) f (θ)∫

f (y/θ) f (θ)dθ
� f (y/θ) f (θ) (7)

where f (θ/y) is is the posterior probability distribution of θ , f (y/θ) is the likelihood
function and f (θ) is the prior probability distribution of θ In our case all the stan-
dard prior distribution for all parameters which was aided by Rizopoulos [19] for the
JMbayes package was considered.

2.5 Model Selection Techniques

Tohave an appropriate separate longitudinal and survivalmodelAkaki information cri-
teria (AIC) proposed byAkaike [20] andBayesian information criteria (BIC) proposed
by Schwarz [21] of the model which can be expresses as follows were considered.

AIC = − 2logLik + 2npar (8)

BIC = − 2loglik + 2npar × ln(N ) (9)

where log Lik is the log likelihood function, npar is the number of parameter in the
model and N is total number of observation considered to estimate the model. The
model with smaller values of AIC and BIC values is considered as an appropriate
model.

As explained under joint model selection techniques the joint model estimation was
based on the Bayesian approach. Therefore, to have an appropriate joint model the
deviance information criterion (DIC) which is proposed by Spiegelhalter et al. [22]
which based on the posterior distribution of the deviance statistic was considered.
where the values of DIC is expressed as:

D(θ) = − 2log( f (y|θ)) + 2log(h(y)) (10)
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where f (y|θ) is the likelihood function for the observed data vector y given the
parameter vector θ , and h(y) is some standardizing function of the data alone. In this
approach, the fit of amodel is summarized by the posterior expectation of the deviance,
D̄ = Eθ |y[D], while the complexity of a model is captured by the effective number
of parameters, pD. Where pD is expressed as:

pD = Eθ/y[D] − D(Eθ/y[θ ]) = D̄ − D (11)

That is the expected deviance minus the deviance evaluated at the posterior expecta-
tions. The DIC is then defined analogously to the AIC as the expected deviance plus
the effective number of parameters, i.e.

DIC = D̄ + pD (12)

Since small values of D̄ indicate good fit while small values of pD indicate a parsi-
monious model, small values of the sum (DIC) indicate preferred model.

3 Results

3.1 Descriptive Results

Among the total co-infected patients during the time period 83 (32.67%) were died
whereas 171 (67.33%) were censored co-infected patients. The estimated average age
of died co-infected patients were estimated 32.72years with standard deviation value
of 9.44years while the estimated average age of censored patients were 31.98years
with standard deviation of 8.54years.

Some of demographic information and some basic base line covariate from the
co-infected patients were presented on Table 2 below. Regarding sex of co-infected
patients 139 (54.80%) were males and 47 (56.60%) death were also occurred in male
group in comparison with female group. More than half 147 (57.90%) of the co-
infected patients belongs to orthodox religious group wereas 18 (6.70%) belongs to
protestant religious group.Of the total deaths in religious group categories 49 (59.00%)
of deathswere occurred in orthodox religious groupwereas 4 (4.8%)of deaths occurred
in protestant religious group in comparison with Muslim religious group.

When we look at the educational level category of the co-infected patients larger
number 109 (42.90%) were attended their primary education while only 17 (6.70%)
attended their tertiary education. The Table 2 also shows among the deaths occurred
in marital status categories 31 (37.30%) occurred in married group whereas 3 (3.60%)
in widowed marital status group in comparison with other marital status groups.

Among the base line clinical stage categories, 8 (3.20 %) were at Stage I, 23
(8.70%) were at Stage II, 124 (48.80%) were at Stage III and the rest 99 (39.30%)
were Stage IV. Whereas, among total deaths occurred in these category groups,39
(47.00%) were occurred in both clinical Stage III and IV in comparison with clinical
Stage I and II at baseline. Of the functional status categories, 103 (40.50%) were able
to work; 126 (49.60%) were at ambulatory and 25 (9.90 %) were at bedridden funct
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Table 2 Demographic and clinical characteristics of the study patients

Variable Categories Total n (%) Censoring status

Censored Died

Religion Muslim 89 (35.30) 59 (34.90) 30 (36.10)

Orthodox 147 (57.90) 98 (57.40) 49 (59.00)

Protestant 18 (6.70) 14 (7.70) 4 (4.80)

Education Not educated 58 (22.60) 37 (21.30) 21 (25.30)

Primary 109 (42.90) 77 (45.00) 32 (38.60)

Secondary 70 (27.80) 45 (26.70) 25 (30.10)

Tertiary 17 (6.70) 12 (7.10) 5 (6.00)

Marital status Divorced 21 (8.30) 13 (7.70) 8 (9.60)

Married 112 (44.00) 81 (47.30) 31 (37.30)

Separated 26 (10.30) 10 (5.90) 16 (19.30)

Single 74 (29.00) 49 (28.40) 25 (30.10)

Widowed 21 (8.30) 18 (10.70) 3 (3.60)

Residence Rural 37 (14.30) 26 (14.80) 11 (13.30)

Urban 217 (85.70) 145 (85.20) 72 (86.70)

Soft drugs use NO 120 (47.20) 93 (54.40) 27 (32.50)

YES 134 (52.80) 78 (45.60) 56 (67.50)

Smoking NO 192 (75.80) 140 (82.20) 52 (62.70)

YES 62 (24.20) 31 (17.80) 31 (37.30)

Use of alcohol NO 157 (61.90) 116 (68.00) 41 (49.40)

YES 97 (38.10) 55 (32.00) 42 (50.60)

Working time Not working 18 (7.10) 13 (7.70) 5 (6.00)

Part timer 8 (3.20) 5 (3.00) 3 (3.60)

Unemployed 17 (63.50) 105 (61.50) 56 (67.50)

Working full time 67 (26.20) 48 (27.80) 19 (22.90)

Functional status Ambulatory 126 (49.60) 78 (45.60) 48 (57.80)

Bed ridden 25 (9.90) 10 (5.90) 15 (18.10)

Working 103 (40.50) 83 (48.50) 20 (24.10)

Type of TB Extra Pulmonary 122 (48.00) 83 (48.50) 39 (47.00)

Pulmonary 132 (52.00) 88 (51.50) 44 (53.00)

WHO Clinical stage Stage I 8 (3.20) 7 (4.10) 1 (1.20)

Stage II 23 (8.70) 19 (10.70) 4 (4.80)

Stage III 124 (48.80) 85 (49.70) 39 (47.00)

Stage IV 99 (39.30) 60 (35.50) 39 (47.00)

Sex Female 115 (45.20) 79 (46.20) 36 (43.40)

Male 139 (54.80) 92 (53.80) 47 (56.60)

ional status. of the total deaths occurred in this category groups 48(57.80%) were
occurred in ambulatory whereas 20 (24.10%) were occurred in working functional
status categories.
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Table 3 Mean and standard deviation (SD) of weight and square root of CD4 measurement with censoring
status of patients

Measurement time 0 6 12 18 24 30 36 42 48

Sample sizes 254 156 134 105 65 43 23 9 3

Died

Mean 10.62 14.29 17.58 18.24 18.91 19.79 20.18 19.81 −
SD 5.42 6.26 4.66 4.98 3.22 5.24 2.71 2.98 −
Censored

Mean 12.57 16.45 18.27 19.62 19.45 20.63 18.69 17.15 14.82

SD 5.21 5.05 4.85 5.04 5.33 5.61 5.60 3.34 1.18

The longitudinal outcomewas the square root ofCD4cellsmeasurement permm3 of
blood which was measured approximately every 6months. To handle the longitudinal
outcome with linear mixed model the square root transformed value were checked for
normality and it has the following descriptive summary result on Table 3 at each time
of measurement.

As can be observed from Table 3 the square root of CD4 measurement by the cen-
soring status of the patients, the censored patients have an increasing mean square
root of CD4 count up to 30months and started to decreases after 30months. However,
even if the square root of CD4 measurement have an increasing values up 24months it
decreased at month of 30 and become decreases after 30months for died patients.The
variation of the measurement for censored patients there was no this much big mea-
surement variation among the patients between the measurement time up to 30months
and it has decreasing value after 30months.

3.2 Separate Longitudinal Analysis

Before the joint modeling it is important to explore the appropriate linear mixed
model that predicts the mean change of CD4 measurements over time. Therefore, the
longitudinal analysis of CD4measurement started after exploratory analysis of square
root transformed CD4 with checking the normality assumption as follows.

3.2.1 Exploring Individual Profile and the Mean Structure Over Time

To understand the association between the CD4 measurement and time individual
profile plots were employed. To explore the mean change of square root of CD4
measurement over time loess smoothing techniques over individual profile plots were
used since we have unbalanced longitudinal data (Fig. 1).

As indicated on the plots the individual profile plots suggested that there was within
and between variations of change in square root CD4 measurements over time. How-
ever, the red line which shows the mean structure of CD4 count measurement over
timewith loess smoothing techniques suggested that the non linear change of themean
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Fig. 1 Individual profile plot and the evolution of mean structure of CD4 overtime

square root of CD4 measurement over time. Therefore, it is an important to consider
the linear and quadratic time effects in the linear mixed model.

3.2.2 Linear Mixed Model Results

After having appropriate fixed effects of the model using linear model stepwise auto-
matic variables selection with explored time effects as factors that predict the CD4
measurement. After having the appropriate fixed effects the linear mixed model was
fitted with different random effects to have an appropriate random effect for the linear
mixed model.

As can be observed from the AIC and BIC of the summary of Table 4 model seven
linear mixed models were explored. The fitted summary result of Table 4 indicates the
quadratic random effects to the model worsen the model since it have large AIC and
BIC values than the remaining model, but when we look at the improvement of the
model with quadratic random effects with inclusion of linear time effects and random
intercepts separately to the model there was an improvement of the model since they
have lower AIC and BIC values. Finally we reached on the appropriate linear mixed
which have minimumAIC and BIC values than the remaining model with considering
random intercept, linear and quadratic time effects for the linear mixed model that
appropriately predicts the mean change of CD4 measurements over time.

The fitted result of linear mixed model of Table 5 indicates at base line the CD4
measurement of working functional status group were 2.633 greater and bedridden
functional status patients group was 3.174 lower CD4 measurements in comparison
with ambulatory functional status group. Furthermore, the model showed with unit
increase in weight of the patients increases the mean square root CD4 measurements
by 0.063204454 and linear time also have positive effects where as the quadratic time
effects have negative effects on themean change of square roots ofCD4measurements.
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Table 4 Linear mixed model comparison with different random effects

Random effects AIC BIC

Random intercept 4593.5800 4686.6115

Random linear slope 4790.3252 4883.3560

Random intercept and linear slope 4579.8185 4682.1531

Random quadratic slope only 4855.5364 4948.5673

Random intercept and quadratic slope 4596.1601 4698.4950

Random linear and quadratic slopes 4738.0072 4840.3416

Random intercept; linear and quadratic slope 4545.2743 4661.5631

Table 5 The linear mixed model results

Fixed effects Estimated coeff 95% CIs

Intercept 8.6409 [6.5098, 10.7719]*

Time 0.6368 [0.5272, 0.7465]*

Functional status

Bed ridden − 3.1745 [−5.3001, −1.0489]*

Working 2.6337 [1.3308, 3.9366]*

Alcohol user − 0.7797 [−1.9352, 0.3759]

Weight 0.0632 [0.0212, 0.1052]*

Time2 − 0.0121 [−0.0148, −0.0095]*

Time: bed ridden − 0.1068 [−0.4668, 0.2532]

Time: working − 0.2597 [−0.4089, −0.1104]*

Bed ridden: Time2 0.00467 [−0.0057, 0.0150]

Working: Time2 0.0059 [0.0023, 0.0095]*

Random effects

σb0 4.2594 [3.7849, 4.79343]

σb1 0.3404 [0.2746, 0.422]

σb2 0.0064 [0.0048, 0.0086]

Between subject error

σε 2.6271 [2.4421, 2.8261]

AIC = 4497.6390

*Indicates significance covariate at 5% level of significance

However, the linear and quadratic mean change of square root of CD4 measurements
differs by the functional status of the patients.

3.3 Separate Survival Model Results

After having the appropriate linear mixed model for the CD4 measurement the next
step is to determine the appropriate survival model that predicts time to death of the

123



672 Ann. Data. Sci. (2018) 5(4):659–678

Table 6 Survival model comparison

Survival models Null model Full model

Log likelihood AIC log likelihood AIC

Cox PH −408.9211 817.8418 372.5981 769.1962

Weibull −723.3663 1450.7310 − 685.6893 1398.3770

Log normal −724.5754 1451.1492 − 686.1967 1400.3925

Exponential −728.0028 1458.0045 − 686.2761 1399.5534

Log-logistic −723.8480 1450.8961 − 686.4150 1400.8301

patients for the joint modeling. Therefore, regardless of survival time distribution
using stepAIC automatic variable selection smoking status, base line weight, and
baseline functional status, type of TB, baseline WHO clinical stage and marital status
were extracted to be included in the survival model among the candidate variable
considered on Table one.

To have an appropriate survival model all survival models were compared using
AIC and BIC of the models. As displayed on Table 6 the null model was the model
fitted without covariate whereas the full model was the model with all covariates
considered for the model. However, when compare the models using their AIC and
BIC values among the parametric models Weibull have smaller AIC and BIC values
than the remaining parametric models and we considered this model as appropriate
to represent the parametric survival model. However, when we compare the Weibul
with the semi-parametric model (Cox PH) model the Cox PH has lowest AIC and BIC
value than the parametric survival model. Therefore, the semi-parametric survival
model was the preferred model to model time-to-death of co-infected patients in the
study area (Tables 7, 8).

3.3.1 The Fitted Cox PH and Weibull PH Models

As can be observed from the fitted survival Cox and Weibull PH models the base line
weight, working functional status groups in comparison with ambulatory functional
status groups have negative effect on the hazard rate of survival time. However, the
hazard rate was higher in bed ridden functional status group, smokers group, separated
marital status group in comparison ambulatory functional status group, none smoker
group and divorcedmarital status group respectively. Furthermore, the estimated shape
parameter for the Weibull = 0.9074 which is less than one shows that the death rate
from co-infection was decreasing over time.

3.4 Joint Model Results

After having appropriate separate models that predicts the mean change of CD4 mea-
surements over time and time to death of co-infected patients the next step is to explore
an appropriate joint model that associates the longitudinally measured CD4 biomarker
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Table 7 The fitted Cox and Weibull PH results

Covariate Cox PH Weibull PH

Estimated values 95% CIs Estimated value 95% CIs

Clinical stages

Stage II 0.3042 [−1.9743, 2.5827] 0.3261 [−1.9013, 2.5534]

Stage III 1.0891 [−0.931847, 3.1099] 0.9759 [−1.0370, 2.9889]

Stage IV 1.7188 [−0.3434, 3.7811] 1.6337 [−0.4284, 3.6959]

Pulmonary TB 0.5713 [−0.0845, 1.2271] 0.5849 [−0.0829, 1.2530]

Weight − 0.0411 [−0.0662, −0.0160]* − 0.0423 [−0.0671, −0.0174]*

Functional status

Bed ridden 0.6804 [0.0319, 1.3289]* 0.7090 [0.06459, 1.3534]*

Working − 0.9296 [−1.4898, −0.3694]* − 0.9660 [−1.5375, −0.3945]*

Smoker 0.7792 [0.2617, 1.2966]* 0.8061 [0.2722, 1.3399]*

Marital status

Married 0.1360 [−0.7131, 0.9852] 0.1016 [−0.7480, 0.9512]

Separated 0.9842 [0.0889, 1.8795]* 0.9495 [0.0471, 1.8520]*

Single − 0.1930 [−1.0432, 0.6571] − 0.2684 [−1.1134, 0.5766]

Widowed − 1.1145 [−2.5252, 0.2961] − 1.2265 [−2.6389, 0.1859]

Lambda 0.0014 [0.00012, 0.015]

Alpha 0.9074

*Indicates significance covariate at 5% level of significance

with time to death of co-infected patients. As explained under methodology part joint
models were fitted under the Bayesian approach using R under JMbayes package and
the results are based on single MCMC sampling chains of 75,000 iterations each,
following a 35,000 iteration burn-in period.

The results of the jointmodelswere givenon the table belowand comparedwithDIC
and PD values of the models. As can be observed from the joint models each candidate
linear mixed model was associated with survival models with the three candidate
association structures. The results shows that among the all explored candidate models
sharing the three random effects to survival sub model have minimum PD and DIC
values than the remaining models therefore we consider these joint models as an
appropriate joint model furthermore when we look at among the three association
structure candidate of these groups the model sharing the random intercept, linear and
quadratic slopes haveminimum PD andDIC values therefore we consider these model
as an appropriate final joint model that associates the two process.

The summary of the selected joint model on Table 9 showed the longitudinal sub-
model specification was the same to the selected linear mixed model where as the
survival sub-model specification incorporates the association parameters that relates
the linear mixed model with to survival model using the shared parameters.

As the report of this table or Table 9 the estimated joint model parameter of the
posterior estimates of the regression coefficients βand γ together with their 95%
credible intervals all of the estimated β values which was significant in the classical
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Table 8 Joint model comparisons with DIC and PD of the models

Model U1i (ti j ) U2i (t) PD DIC

Random intercept only

I boi αmi (t) 286.1910 7243.8840

II boi α0boi 285.3474 7237.1170

III boi α0(boi + βb0 ) 286.1823 7238.7310

Random intercept and linear slope

IV b0i + b1i ti j αmi (t) 527.0579 7669.0230

V b0i + b1i ti j α0(boi + α1b1i 523.4795 7653.3280

VI b0i + b1i ti j α0(boi +βb0 )+α1(b1i +βb1 ) 525.6622 7667.8695

Random linear slope

VII b1i ti j αmi (t) 741.5371 9998.8562

VIII b1i ti j α1b1i 718.3055 9821.5132

IX b1i ti j α1(b1i + βb1 ) 740.2094 9995.5371

Random quadratic slope

X b2i t
2
i j αmi (t) 280.6913 7898.5682

XI b2i t
2
i j α2b2i 273.4905 7779.8073

XII b2i t
2
i j α2(b2i + βb2 ) 276.3944 7892.6497

Random intercept and quadratic slope

XIII b0i + b2i t
2
i j αmi (t) 501.7567 9596.7041

XIV b0i + b2i t
2
i j α0(boi + α2b2i 503.4964 9262.5980

XV b0i + b2i t
2
i j α0(boi +βb0 )+α2(b2i +βb2 ) 458.74191 9797.7322

Random linear and quadratic slope

XVI b1i + b2i t
2
i j αmi (t) 566.1641 10247.2421

XVII b1i + b2i t
2
i j α1(b1i + α2b2i 500.9278 9585.0610

XVIII b1i + b2i t
2
i j α0(boi +βb0 )+α2(b2i +βb2 ) 501.7567 9596.7046

Random intercept; linear and quadratic slope

XIX b0i + b1i ti j + b2i t
2
i j αmi (t) 282.1523 6437.9382

XX b0i + b1i ti j + b2i t
2
i j α0(b0i + α1(b1i + α2b2i 268.0893 6333.7416

XXI b0i + b1i ti j + b2i t
2
i j α0(boi + βb0 ) + α1(b1i

+ βb1 ) + α2(b2i + βb2 )

271.6129 6347.1127

separate longitudinal part were here also have significant effects on the CD4 count
measurements process of HIV/TB co-infected patients at 5% level of significance.
But when we look at the estimated significance of parameters at 5% significance level
WHO clinical stage IV, weight and smoking have significant effect on the hazard
function of time-to-death of co-infected patient when we look at the classical separate
survival model covariate in relation with survival sub-model of the joint modeling
the none significance of clinical stages in separate survival analysis have significant
effect on hazard function of time to death since clinical stage IV have positive effect
significance on the hazard function.
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Table 9 The fitted joint model result

Longitudinal sub-model Survival sub-model

Fixed effects Coeff (β̂) 95% CIs Covariates Coeff (γ̂ ) 95% CIs

Clinical stage

Intercept 8.2361 [5.5629, 10.3488]* Stage II 11.4028 [−1.1811, 4.9870]

Time 0.2876 [0.0796, 0.5359]* Stage III 1.8983 [−0.6012, 5.6984]

Functional status Stage IV 2.7416 [0.4152, 6.4328]*

Bed ridden − 3.3381 [−5.4612, −1.3134]* Pulmonary TB 0.4056 [−0.5891, 1.3052]

Working 2.6762 [1.3518, 3.9612]* Weight − 0.0646 [−0.1120, −0.029)*

Alcohol user − 0.6433 [−1.8466, 0.5919] Functional status

Bed ridden 1.1505 [−0.2126, 2.4391]

Weight 0.0729 [0.027, 0.1312]* Working − 1.3272 [−2.6340, 0.0231]

Time2 − 0.0092 [−0.0126, −0.0059]* Smoker 1.3081 [0.3391, 2.1127]*

Time:Bed ridden − 0.1620 [−0.6343, 0.3379] Marital status

Time:Working − 0.1402 [−0.5543, 0.1716] Married − 0.1798 [−1.5011, 1.1710]

Bed ridden:Time2 0.0018 [−0.0112, 0.0159] Separated 1.0548 [−0.2371, 2.4592]

WorkingTime:2 0.0064 [0.002, 0.0108]* Single − 0.5006 [−1.9231, 0.8192]

Random effects Widowed − 2.3774 [−5.1561, −0.097]*

Var(b̂0) 19.1012 [15.1472, 23.7416] Association parameters

Var(b̂1) 33.5455 [25.4856, 41.6053] α̂0 − 0.0585 [−0.061, −0.0566]*

Var(b̂2) 1.4388 [1.1504, 1.7994] α̂1 − 1.798 [−1.825, −1.7561]*

σ̂ε 2.4041 [2.1914, 2.6335] α̂2 0.2788 [0.2114, 0.332]*

*Indicates significance covariate at 5% level of significance

As explained under themethodology themain aimof the jointmodelingwas to asso-
ciate the longitudinally measured CD4 measurement to time to death of co-infected
patients to understand their association. Therefore, the estimated joint model con-
firms as the subject specific baseline values and subject specific linear time slope of
CD4 were negatively associated whereas the subject specific quadratic slope is posi-
tively associated with hazard rate of death of the patients at 5% level of significance
(Table 10).

The estimated posterior values of survival sub-model together with the hazard ratio
were reported table below. As can be observed from the summary result of table the
hazard rate of clinical stage IV patient group was 15.51 times greater in comparison
with clinical stage I patient group at base line. Similarly the death rate was higher in
patient group of smoker in comparison with none smoker patient group whereas the
death rate was lower in windowed marital status patients group in comparison with
divorced marital status patient groups.

Whenwe look for the hazard rate association of random effects the unit increment in
patient specific baseline square root CD4 lowers hazard rate by 0.9432 and the patient
specific slope reduce the hazard rate by 0.16563 for patients with steeper increase in
linear longitudinally measured square root of CD4 measurement whereas the patient
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Table 10 Posterior estimated parameter and hazard rate of survival sub-model

Base line covariates Survival estimates HR estimates

Coeff (γ̂ ) 95% CIs HR 95% CIs

Clinical stages

Stage II 1.4028 [−1.1807, 4.9895] 4.0665 [0.3071, 146.8630]

Stage III 1.8983 [−0.6002, 5.6984] 6.6745 [0.5487, 298.3896]

Stage IV 2.7416 [0.4153, 6.4328]* 15.5118 [1.5144, 621.9129]*

Pulmonary TB 0.4056 [−0.5893, 1.3048] 1.5002 [0.5547, 3.6869]

weight − 0.0646 [−0.112, −0.0285]* 0.9374 [0.8943, 0.9719]*

Functional status

Bed ridden 1.1505 [−0.2123, 2.4392] 3.1598 [0.8087, 11.4638]

Working − 1.3272 [−2.6341, 0.0229] 0.2652 [0.0718, 1.0232]

Smoker 1.3081 [0.3391, 2.1127]* 3.6991 [1.4035, 8.2705]*

Marital status

Married − 0.1798 [−1.5013, 1.1710] 0.8354 [0.2228, 3.2252]

Separated 1.0548 [−0.2374, 2.4590] 2.8714 [0.7887, 11.6931]

Single − 0.5006 [−1.9231, 0.8197] 0.6062 [0.1461, 2.2698]

Widowed − 2.3774 [−5.1558, −0.097]* 0.0928 [0.0057, 0.9075]*

Association parameters

α̂0 − 0.0585 [−0.061, −0.0566]* 0.9432 [0.9417, 0.9449]*

α̂1 − 1.7981 [−1.8249, −1.759]* 0.1656 [0.1612, 0.1722]*

α̂2 0.2788 [0.2114, 0.3332]* 1.321543 [1.2354, 1.3954]*

*Indicates significance covariate at 5% level of significance

specific quadratic slope increases the hazard rate by 1.321543 for HIV/TB co-infected
patient in the study area at 5% level of significance.

4 Conclusion

In this study, the linear mixed model with subject specific baseline value and sub-
ject specific linear and quadratic time slope of square root CD4 measurement was an
appropriate fit for the longitudinally measured square root of CD4. However, weight
and functional status were factors that affect the mean square root of CD4 measure-
ments whereas the mean change over time in linear and quadratic of square root of
CD4 was differ by the functional status of the patients at 5% level of significance.

The Cox PH model was an appropriate mode to fit time to death of patients. The
fitted result of Cox and Weibull PH showed weight, functional status, smoking status
and marital status of the patients were the factors that affects the hazard rate of time
to death of HIV/TB co-infected patients at 5% level of significance in the study area.

The joint model sharing random intercepts and both time slopes of longitudinal
model to the survival model was an appropriate for the joint modeling of the data.
The estimated association parameters showed subject specific baseline value and the
subject specific linear time slope of square root of CD4 measurement was negatively
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associated whereas the subject specific quadratic time slope of square root was nega-
tively associated with hazard rate of time to death of HIV/TB co-infected patients in
the study area at 5% level of significance.
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