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Abstract In this paper, we propose a new method for generating distributions based
on the idea of alpha power transformation introduced by Mahdavi and Kundu (Com-
mun Stat Theory Methods 46(13):6543–6557, 2017). The new method can be applied
to any distribution by inverting its quantile function as a function of alpha power
transformation. We apply the proposed method to the Weibull distribution to obtain
a three-parameter alpha power within Weibull quantile function. The new distribu-
tion possesses a very flexible density and hazard rate function shapes which are very
useful in cancer research. The hazard rate function can be increasing, decreasing,
bathtub or upside down bathtub shapes. We derive some general properties of the
proposed distribution including moments, moment generating function, quantile and
Shannon entropy. The maximum likelihood estimation method is used to estimate the
parameters. We illustrate the applicability of the proposed distribution to complete
and censored cancer data sets.
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1 Introduction

The idea of developing new distributions remains an important topic in the recent
literatures. It provides more flexible distributions that can model complex data struc-
ture. Lee et al. [12] in their review paper provided an overview of most methods used
to generate family of continuous distributions. They pointed out that prior to 1980,
methods of generating distributions can be categorized into three categories; method
of differential equation, method of transformation and method of quantile function.
For more details about these methods, one is referred to Pearson [20], Johnson [10]
and Tukey [23]. Since 1980, several methods of generating distributions proposed in
the literature. Lee et al. [12] categorized these methods as “method of combination”.
These methods focused mainly on adding parameters to an existing distribution or
combining existing distributions. For more details about the recent developments in
generalizing distributions, we refer the reader to Johnson et al. [11], Eugene et al. [7],
Jones [9], Alzaatreh et al. [1–3] and Tahir et al. [22].

Recently, Mahdavi and Kundu [16] proposed the so called alpha power transfor-
mation (APT) family. The parameter α is introduced to incorporate skewness to the
base distribution. The APT family is defined as follows: Let F(x) be the cumulative
density function (CDF) of any continuous random variable X, then the CDF of the
APT family is given by

FAPT(x;α) =
{

αF(x)−1
α−1 if α > 0, α �= 1

F(x) if α = 1.
(1)

The corresponding probability density function (PDF) is

fAPT(x;α) =
{ logα

α−1 f (x)αF(x) if α > 0, α �= 1
f (x) if α = 1.

Mahdavi and Kundu [16] applied the proposed method to the exponential distribution
and proposed the alpha power exponential distribution. They studied various properties
of the proposed distribution such as explicit expressions for the moments, quantiles
and moment generating function.

This paper is organized in the following way: In Sect. 2, we propose a new method
for generating continuous distributions based on the family of distributions in (1).
The proposed family of distributions has a connection with weighted distributions.
In Sect. 3, a member of the proposed family namely, Alpha Power within Weibull
Quantile Distribution (APWQ), is proposed. General properties of the APWQ are
studied in Sect. 4 including, quantile, moments, moment generating function, Shannon
entropy, mean residual life andmeanwaiting time functions. Themaximum likelihood
estimation and Applications to complete and censored cancer data sets are studied in
Sect. 5. Section 6 offers some concluding remarks.
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2 General Properties of the New Method

Let g(x) and G(x) be, respectively, the PDF and CDF of any random variable X .
Then the CDF, F(x), of the new proposed method for generating distributions can be
obtained by inverting the following equation

αF(x) − 1

α − 1
= G(x), α �= 1. (2)

Therefore,

F(x) = log(1 + (α − 1)G(x))

log(α)
, x ∈ R, α > 0, α �= 1. (3)

The corresponding PDF is

f (x) = (α − 1)g(x)

log(α)(1 + (α − 1)G(x))
(4)

Note that when α → 1, f (x) reduces to g(x). Equation (4) can be written in the
following form

f (x) = g(x)ω(x)

c
. (5)

From (5), it is clear that f (x) is a weighted version of g(x), where the weight function
is

ω(x) = (1 + (α − 1)G(x))−1

and the normalizing constant c = log(α)/(α − 1). A useful expansion for the CDF
and PDF in (3) and (4) for 0 ≤ α ≤ 2, α �= 1 are given by

F(x) = 1

log(α)

∞∑
k=1

(−1)k(α − 1)k

k
G(x)k .

and

f (x) = g(x)

log(α)

∞∑
k=0

(−1)k(α − 1)k+1G(x)k (6)

From (3) and (4), the hazard rate function, h(x), is given by

h(x) = (α − 1)g(x)

(1 + (α − 1)G(x))
[
log(α) − log(1 + (α − 1)G(x))

] .

Remark 1 If X follows the distribution in (3), then the quantile function is given by

xq = G−1
(

αq − 1

α − 1

)
, 0 ≤ q ≤ 1.
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Note that Remark 1 can be used to simulate random sample from F(x) distribution by
first simulating random sample Ui ∼ Uniform(0, 1), i = 1, . . . , n. Then the random

sample Xi = G−1
(

αUi −1
α−1

)
, i = 1, . . . , n follow F(x) distribution.

Theorem 1 If a random variable X follows the family of distributions in (4), then the
Shannon entropy defined as ηX = E

[− log f (x)
]
is given by

ηX = log

(√
α log(α)

α − 1

)
− E {log g(X)} . (7)

3 Alpha Power within Weibull Quantile Distribution

The Weibull distribution is a popular life time distribution in reliability theory.
Numerous articles have been written demonstrating the applications of the Weibull
distribution in biology, medicine, engineering and meteorology. In the last few years,
several researchers have developed various extensions and generalizations of the
Weibull distribution to model various types of data. Among these, Mudholkar et
al. [18,19] introduced and studied the exponentiated Weibull distribution to analyze
bathtub failure data by adding an extra shape parameter to the Weibull distribution.
Xie and Lai [24] introduced the additive Weibull distribution, Jalmar et al. [8] intro-
duced the generalized modified Weibull distribution and Cordeiro et al. [5] studied
the exponential-Weibull distribution. Next, Eq. (3) is used to introduce the APWQ
distribution.

Let X be a random variable follows the Weibull distribution with CDF G(x) =
1 − e−λxβ

, x > 0. From (3), the CDF of the APWQ distribution is defined as

F(x) = log(1 + (α − 1)(1 − e−λxβ
))

log(α)
, x > 0. (8)

The corresponding PDF is

f (x) = (α − 1)λβxβ−1e−λxβ

log(α)(1 + (α − 1)(1 − e−λxβ
))

, (9)

where α, β > 0 are shape parameters and λ > 0 is a scale parameter. Table 1 lists
various special models of the APWQ distribution.

Remark 2 Using the result in (6), the PDF in (9) for 0 ≤ α ≤ 2, α �= 1, can be
expressed in a generalized mixture form of the Weibull distributions as

f (x) = 1

log(α)

∞∑
k=0

k∑
j=0

(
k
j

)
(−1)k+ j (α − 1)k+1gWD(x; λ( j + 1), β) (10)

where gWD(x; λ( j+1), β) is the PDF of theWeibull distribution with scale parameter
λ( j + 1) and shape parameter β.
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Table 1 Sub-models of the APWQ distribution

α λ β Reduced model

1 – – Two parameter Weibull distribution

– – 2 Alpha power within Rayleigh quantile distribution

1 – 2 Rayleigh distribution

– – 1 Alpha power within exponential quantile distribution

1 – 1 Exponential distribution

On the other hand, if α > 2, and using the expansion

[
1 + (α − 1)(1 − e−λxβ

)
]−1 = α−1

∞∑
k=0

(1 − 1/α)ke−λkxβ

the PDF in (9) can be written as

f (x) = 1

log(α)

∞∑
k=0

(1 − 1/α)k+1gWD(x; λ(k + 1), β) (11)

The survival function and hazard rate function for APWQ are, respectively, given by

S(x) = log(α) − log(1 + (α − 1)(1 − e−λxβ
))

log(α)
,

and

h(x) = (α − 1)λβxβ−1e−λxβ

(1 + (α − 1)(1 − e−λxβ
))

[
log(α) − log(1 + (α − 1)(1 − e−λxβ

))
] , x > 0.

Figures 1 and 2 display some plots of the APWQ density and hazard rate functions
respectively for various parameter values of α and β where the scale parameter λ = 1.
These plots show that theAPWQ is flexible in terms of shapes. TheAPWQdistribution
can be left-skewed or right-skewed. Also, the hazard rate function can be very flexible.
It can be increasing (IFR), decreasing (DFR), bathtub (BT), upside down bathtub
(UBT) or bimodal failure rate shapes.

4 Properties of the APWQ Distribution

In this section,we provide some general properties of theAPWQdistribution including
quantile function, mode, moments, entropy, order statistics and mean residual life and
mean waiting time.
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Fig. 1 Density plots of APWQ density for various values of α and β
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Fig. 2 Hazard rate plots of APWQ distribution for various values of α and β

Remark 3 The q-th quantile function of APWQ distribution is given by

xq =
(−1

λ
log

[
α − αq

α − 1

])1/β

, 0 ≤ q ≤ 1.

Theorem 2 The APWQ is unimodal. When β ≤ 1, the mode is at x = 0. And when
β > 1, the mode is at x = x0 where k(x0) = 0 and

k(x) = 1 − β + α
{
β − 1 + ex

βλ(1 − β + xββλ)
}

.

123



Ann. Data. Sci. (2018) 5(3):421–436 427

Proof Since λ is a scale parameter, without loss of generality assume λ = 1. From
(9), f ′(x) = 0 ⇔ xβ−2[(β − 1−λβxβ)(α + (1−α)e−λxβ

)+λβ(1−α)xβe−λxβ ] =
0. Therefore the critical values of f (x) are x = 0 or the solution of the equation
(β − 1 − λβxβ)(α + (1 − α)e−λxβ

) + λβ(1 − α)xβe−λxβ = 0. This implies that
(β − 1 − λβxβ)(αeλxβ + 1 − α) + λβ(1 − α)xβ = 0. This simplifies to α(β − 1 −
λβxβ)eλxβ +(1−α)(β−1) = 0.Hence, the critical values of f (x) are x = 0 or x = x0
where k(x0) = 0. Consider the derivative of k(x) as k′(x) = αβex

β
xβ−1(1 + xββ).

Clearly k′(x) > 0 for all x > 0. Therefore, k(x) is strictly increasing. Now assume
β ≤ 1. Since k(0) = 1 − β ≥ 0, this implies that x = 0 is the only critical values of
f (x). Also, lim

x→0
f (x) = ∞ if β < 1 and (α − 1) logα if β = 1. Hence, the mode is

at x = 0. Now assume β > 1. The fact that k(0) = 1 − β < 0 and k(x) is strictly
increasing, implies that k(x) has a unique solution at x = x0. Furthermore, when
β > 1, lim

x→0
f (x) = 0 and therefore, x = 0 is not a modal point. This completes the

proof. �

4.1 Moment and Moment Generating Function

In this subsection,wewill derive the r -thmoments and themoment generating function
for the APWQ distribution.

If 0 ≤ α ≤ 2, α �= 1 and From (10), it is easy to obtain the r − th moment of
APWQ as

E(Xr ) = �(1 + r/β)

λr/β log(α)

∞∑
k=0

k∑
j=0

(
k
j

)
(−1)k+ j (α − 1)k+1

( j + 1)1+r/β
. (12)

Similarly, if α > 2, the r − th moment of APWQ can be obtained from (11) as

E(Xr ) = �(1 + r/β)

λr/β log(α)

∞∑
k=0

(1 − 1/α)k+1

(k + 1)1+r/β
(13)

Also, the moment generating function for 0 ≤ α ≤ 2, α �= 1, can be written as

Mx (t) = 1

log(α)

∞∑
k=0

k∑
j=0

∞∑
m=0

(
k
j

)
(−1)k+ j (α − 1)k+1tm

m!( j + 1)1+m/βλm/β
�(1 + m/β).

Similarly, the moment generating function for α > 2, takes the form

Mx (t) = 1

log(α)

∞∑
k=0

∞∑
m=0

(1 − 1/α)k+1 tm�(1 + m/β)

m!(k + 1)1+m/βλm/β

Remark 3, Theorem 2 and Eqs. (12) and (13) are used to obtain the mean, median,
mode, variance, skewness and kurtosis for the APWQ distribution. The median is
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Table 2 Mean, median, mode, variance, skewness, and kurtosis of APWQ for λ = 1 and various values
of α and β

α β Mean Median Mode Variance Skewness Kurtosis

0.5 0.5 1.499 0.777 0 4.275 2.006 6.510

0.8 1.352 0.854 0 2.223 1.985 7.808

1.5 1.023 0.919 0.655 0.419 0.899 3.902

3 0.957 0.959 0.976 0.107 0.04 2.699

5 0.959 0.975 1.014 0.043 − 0.372 2.997

0.8 0.5 1.310 0.563 0 3.770 2.215 7.635

0.8 1.184 0.699 0 1.936 2.203 9.115

1.5 0.941 0.826 0.534 0.389 1.015 4.223

3 0.914 0.909 0.907 0.106 0.126 2.717

5 0.931 0.944 0.975 0.044 − 0.293 2.916

1.5 0.5 1.080 0.356 0 3.155 2.538 9.551

0.8 0.989 0.525 0 1.616 2.510 11.156

1.5 0.837 0.709 0.393 0.353 1.177 4.717

3 0.856 0.842 0.813 0.104 0.245 2.760

5 0.894 0.902 0.921 0.045 − 0.184 2.820

3 0.5 0.868 0.208 0 2.585 2.932 12.21

0.8 0.812 0.374 0 1.336 2.861 13.79

1.5 0.733 0.592 0.270 0.320 1.359 5.340

3 0.794 0.770 0.708 0.103 0.376 2.836

5 0.852 0.855 0.858 0.047 − 0.064 2.735

5 0.5 0.741 0.137 0 2.240 3.236 14.502

0.8 0.705 0.288 0 1.170 3.124 15.972

1.5 0.664 0.515 0.200 0.298 1.494 5.847

3 0.749 0.718 0.632 0.103 0.470 2.909

5 0.821 0.820 0.810 0.048 0.023 2.688

obtained by setting q = 0.5 in Remark 3. The mean μ is obtained by setting r = 1
in Eqs. 12 or 13 based on the value of α. The variance σ 2, skewness γ1 and kurtosis
γ2 are obtained using the formulas σ 2 = E(X2) − μ2, γ1 = E[(X − μ)/σ ]3 and
γ2 = E[(X −μ)/σ ]4. These values are reported in Table 2 for various values of α and
β where the scale parameter λ = 1. From Table 2, it is noted that for fixed β and λ, the
mean, median and mode of APWQ are decreasing function of α, and the skewness is
increasing function of α. Also, for fixed α and λ, the median is an increasing function
of β, the mode is an increasing function of β > 1, while the variance and skewness are
decreasing function of β. Also, Table 2 shows that the APWQ is a flexible distribution.
It can be left skewed, right skewed or approximately symmetric. Furthermore, it can
be platykurtic (kurtosis < 3) or leptokurtic (kurtosis > 3).
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4.2 Shannon Entropy

Using (7) and (9), the Shannon entropy, ηX , for 0 ≤ α ≤ 2, α �= 1 is given by

ηX = log

(√
α log(α)

(α − 1)λβ

)
−

∫ ∞

0
{I1 − I2} f (x)dx (14)

where I1 = (β − 1) log(x) and I2 = λxβ . Now

∫ ∞

0
I1 f (x)dx = λβ(β − 1)

log(α)

∞∑
k=0

k∑
j=0

(
k
j

)
(−1)k+ j (α − 1)k+1

×
∫ ∞

0
xβ−1e−λ( j+1)xβ

log(x)dx . (15)

On using the
∫ ∞
0 e−ax log xdx = − 1

a (C + log a), where C is the Euler constant, (15)
can be written as

∫ ∞

0
I1 f (x)dx = β − 1

log(α)

∞∑
k=0

k∑
j=0

(
k
j

)
(−1)k+ j−1

β( j + 1)
(α − 1)k+1 [

C + log(λ( j + 1))
]
.

(16)
Similarly,

∫ ∞

0
I2 f (x)dx = 1

log(α)

∞∑
k=0

k∑
j=0

(
k
j

)
(−1)k+ j (α − 1)k+1

( j + 1)2
. (17)

From (14), (16) and (17), ηX reduces to

ηX = log

(√
α log(α)

(α − 1)λβ

)
− β − 1

log(α)

∞∑
k=0

k∑
j=0

(
k
j

)
(−1)k+ j+1(α − 1)k+1

j + 1

×
[
C + log(λ( j + 1))

β
+ 1

(β − 1)( j + 1)

]
.

Using similar approach, the Shannon entropy, for α > 2 is given by

ηX = log
(√

α log(α)

(α−1)λβ

)
+ β−1

log(α)

∑∞
k=0

(1−1/α)k+1

k+1

[
C+log(λ(k+1))

β
+ 1

(β−1)(k+1)

]
.

4.3 Mean Residual Life and Mean Waiting Time

Let X be a continuous random variable. The mean residual life is the expected addi-
tional lifetime that a component has survived after a fixed time point t . The mean
residual life function, say μ(t), is given by
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μ(t) = E(T − t |T > t) = 1

S(t)

∫ ∞

t
x f (x)dx − t,

where

∫ ∞

t
x f (x)dx = λ−1/β

log(α)

∞∑
k=0

k∑
j=0

(
k
j

)
(−1)k+ j (α − 1)k+1�(λ( j + 1)tβ, 1 + 1/β)

( j + 1)1+1/β ,

where �(a, b) is the upper incomplete gamma function and 0 ≤ α ≤ 2, α �= 1. When
α > 2 we have

∫ ∞

t
x f (x)dx = λ−1/β

log(α)

∞∑
k=0

(1 − 1/α)k+1�(λ(k + 1)tβ, 1 + 1/β)

(k + 1)1+1/β

Themeanwaiting time represents thewaiting time elapsed since the failure of an object
on condition that this failure had occurred in the interval [0, t]. The mean waiting time
of X , say μ̄(t), is defined by

μ̄(t) = t − m(t)

F(t)
(18)

where F(t) is the CDF given by (8) andm(t) is the first incomplete moment given by

m(t) =
∫ t

0
x f (x)dx

= λ−1/β

log(α)

∞∑
k=0

k∑
j=0

(
k
j

)
(−1)k+ j (α − 1)k+1 γ

{
λ( j + 1)tβ, 1 + 1/β

}
( j + 1)1+1/β

(19)

where γ (a, b) is the lower incomplete gamma function and 0 ≤ α ≤ 2, α �= 1.
Substituting (8) and (19) in (18), μ̄(t) can be written as

μ̄(t) = t − λ−1/β
∞∑
k=0

k∑
j=0

(
k
j

)
(−1)k+ j (α − 1)k+1 γ

{
λ( j + 1)tβ, 1 + 1/β

}
( j + 1)1+1/β log(α + (1 − α)e−λtβ )

.

Similarly, μ̄(t) in the case of α > 2 can be written as

μ̄(t) = t − λ−1/β
∞∑
k=0

(1 − 1/α)k+1 γ
{
λ(k + 1)tβ, 1 + 1/β

}
(k + 1)1+1/β log(α + (1 − α)e−λtβ )

.

123



Ann. Data. Sci. (2018) 5(3):421–436 431

5 Estimation and Applications

Let x1, x2, . . . , xn be a random sample from APWQ. The log-likelihood function is
given by


(α, λ, β) = n log(α − 1) − n log(log(α)) + n log(λβ) + (β − 1)
n∑

i=1

log(xi )

−λ

n∑
i=1

xβ
i −

n∑
i=1

log [1 + (α − 1)ϕi ], (20)

where ϕi = 1 − e−λxβ
i .

Therefore, the MLE’s of α, λ and β can be computed by maximizing the log-
likelihood function in (20). We used the routine OPTIM which is available in the R
software. Next, the APWQ distribution is used to model different types of cancer data
sets including complete and censored data.

5.1 Complete Data

The data set represents the survival times of 121 patients with breast cancer obtained
from a large hospital in a period from 1929 to 1938 [14]. This data set has recently
been studied by [21]. The data are:

0.3, 0.3, 4.0, 5.0, 5.6, 6.2, 6.3, 6.6, 6.8, 7.4, 7.5, 8.4, 8.4, 10.3,11.0, 11.8, 12.2,
12.3, 13.5, 14.4, 14.4, 14.8, 15.5, 15.7, 16.2, 16.3, 16.5, 16.8, 17.2, 17.3, 17.5,17.9,
19.8, 20.4, 20.9, 21.0, 21.0, 21.1, 23.0, 23.4, 23.6, 24.0, 24.0, 27.9, 28.2, 29.1, 30.0,
31.0,31.0, 32.0, 35.0, 35.0, 37.0, 37.0, 37.0, 38.0, 38.0, 38.0, 39.0, 39.0, 40.0, 40.0,
40.0, 41.0, 41.0,41.0, 42.0, 43.0, 43.0, 43.0, 44.0, 45.0, 45.0, 46.0, 46.0, 47.0, 48.0,
49.0, 51.0, 51.0, 51.0, 52.0,54.0, 55.0, 56.0, 57.0, 58.0, 59.0, 60.0, 60.0, 60.0, 61.0,
62.0, 65.0, 65.0, 67.0, 67.0, 68.0, 69.0,78.0, 80.0,83.0, 88.0, 89.0, 90.0, 93.0, 96.0,
103.0, 105.0, 109.0, 109.0, 111.0, 115.0, 117.0, 125.0,126.0, 127.0, 129.0, 129.0,
139.0, 154.0.

The APWQ distribution is fitted to the data set and compared with several other
competitive models namely:McDonaldWeibull (Mc-W) [6], BetaWeibull (BW) [13],
Modified Weibull (MW) [4], Marshall-Olkin Weibull (MOW) [17] and Zografos-
Balakrishnan log-logistic (ZBLL) [25].

Table 3 lists the MLEs (and the corresponding standard errors in parentheses) of
the parameters, negative likelihood values [− 
(θ̂)], Kolmogorov–Smirnov (K–S) test
and the p value for the K–S statistics for all fitted models. From Table 3, it is observed
that the APWQ distribution has the lowest values of [− 
(θ̂)] and K–S and the largest
p value for the K–S statistics, which implies that the APWQ distribution provides
the best fit among all fitted distributions followed by MOW distribution. Figures 3a
displays the histogram and the fitted APWQ density for the data set. Also, the plots
of the fitted APWQ survival and the empirical survival functions for the data set are
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Fig. 3 a Histogram and the fitted APWQ distribution. b Fitted APWQ survival and empirical survival
functions for the first data set

displayed in Fig. 3b. It is clear that these plots show that APWQ provides good fit to
the data set and this supports the results in Table 3.

5.2 Censored Data

Censored data are very common in lifetime applications. Some mechanisms of cen-
soring are identified in literature such as type I and II censoring. The fact that APWQ
has closed form survival function advantages the distribution to be used in analyzing
lifetime data in the presence of censoring. Consider a data set D = (x; r), where
x = (x1, x2, x3, . . . , xn) are the observed failure times and ri = (r1, . . . , rn) are the
censored failure times where ri is equal to 1 if a failure is observed and 0 otherwise.
Suppose that the data are independently and identically distributed follows a distribu-
tion with probability density and survival functions f (x, θ) and S(x, θ) respectively.
Then the likelihood function for parameters θ = (α, λ, β)T can be written as

L(D; θ) =
n∏

i=1

[ f (xi , θ)]ri [S(xi , θ)]1−ri .

For the APWQ distribution, the log-likelihood function is given by


 = r log

(
(α − 1)λβ

log(α)

)
+

n∑
i=1

ri
(
(β − 1) log xi − λxβ

i − log(1 + (α − 1)ϕi )
)

+
n∑

i=1

(1 − ri )
{
log

[
log(α) − log(1 + (α − 1)ϕi )

] − log(log(α))
}

(21)

where r =
n∑

i=1
ri and ϕi is defined in (20). The log likelihood function in (21) can

be maximized numerically in order to obtain the ML estimates. The routine OPTIM
which is available in the R software can be used.
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Table 4 TheMLEs (standard errors in parentheses), and the corresponding AIC and BIC values for second
censored data set

Model Estimates AIC BIC

APWQ(α, β, λ) 6.0377 1.2969 0.0269 837.7477 843.5723

(1.6640) (0.20793) (0.0250)

MOW(α, β, λ) 0.0682 1.6351 0.0282 843.4338 852.1937

(0.1623) (0.3509) (0.0278)

W(β, λ) – 1.0535 10.2008 848.8294 854.6693

(0.06813) (0.8921)
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Fig. 4 a TTT plot b fitted survival curve of APWQ distribution

We consider a censored data set that contains remission times for bladder cancer
patients. The data set has 137 observations with 9 censored. More details about the
data can be found in Lee and Wang [15]. The TTT plot in Fig. 4a is concave then
convex which gives an indication of upside down bathtub failure rate. The distribution
fits are given in Table 4. From the table, we can see that APWQ distribution has the
lowest Akaike information criterion (AIC) and Bayesian information criterion (BIC)
values as compared to other fitted models.

The survival curve of the fitted APWQ distribution given in Fig. 4b fits the Kaplan
Meier curve well.

6 Conclusions

In this paper, a method for generating family of distributions is proposed based on the
APT family proposed recently by Mahdavi and Kundu [16]. The proposed method
can produce a flexible hazard rate functions. Some general properties of the proposed
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family are studied. Amember of the proposed family, APWQ distribution is studied in
details. The APWQ distribution is the generalization of the Weibull distribution with
attractive shape flexibilities for both the density and the hazard rate functions. In fact,
the density function can be left-skewed, right-skewed or about symmetric. The hazard
rate function possesses an IFR, DFR, BT or UBT shapes. Real data sets are used to
show the applicability of the APWQ distribution to complete as well as censored data
sets. The fact that APWQ has only three parameters with closed form CDF and at
the same time possesses several types of hazard rate shapes; make this distribution an
attractive choice to be used in various filed of studies including cancer research.
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