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Abstract In this paper, we provide some new results for the Weibull-R family of
distributions (Alzaghal et al. in Int J Stat Probab 5:139–149, 2016). We derive some
new structural properties of the Weibull-R family of distributions. We provide various
characterizations of the family via conditional moments, some functions of order
statistics and via record values.
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1 Introduction

Various well known univariate distributions have been extensively used over the past
few decades for modeling data arising from different spheres such as engineering,
actuarial, environmental and medical sciences, biological studies, demography, eco-
nomics, finance and insurance. However, in many of these applied areas in particular
lifetime analysis, finance and insurance, there is a growing demand for extended forms
of these distributions. As a consequence, several methods for generating new families
of distributions have been studied in the literature.

The Weibull distribution is a well-known distribution due to its extensive use to
model various types of data. This distribution has been widely used in survival and
reliability analyses. This distribution has quite a bit of flexibility for analyzing skewed
data. It allows for increasing and decreasing hazard rate functions (hrfs), depending on
the shape parameters, which gives an extra edge over the exponential distribution that
has only constant hrf. Since the 1970s, many extensions of the Weibull distribution
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have been proposed to enhance its capability to fit diverse lifetime data and Murthy et
al. [18] proposed a scheme to classify these distributions.
Unfortunately Weibull distribution has certain drawbacks. Bain [6] pointed out that
the maximum likelihood estimators of the Weibull parameters may not behave prop-
erly for all parameters even when the location parameter is zero. When the shape
parameter is greater than one, the hrf of the Weibull distribution increases from zero
to infinity, which may not be appropriate in some scenarios. Also, the Weibull family
does not enjoy the likelihood ratio ordering, as a consequence, there does not exist a
uniformly most powerful test for testing one-sided hypotheses on the shape parameter.
The sum of independently and identically distributed Weibull random variables is not
difficult to obtain, one may use the convolution and/or characteristic approach to find
the distribution of the sum which will involve some special functions. Mudholkar et
al. [17] proposed a three parameter (one scale and two shape) distribution, the expo-
nentiated Weibull (see also [16]) distribution. They indicated, based on certain data
sets, the exponentiatedWeibull distribution provides better fits than the two parameter
Weibull distribution. Gupta and Kundu [8] considered a special case of the exponen-
tiated Weibull distribution assuming location parameter to be zero. They compared
its performance with the two parameter gamma family of distributions and the two
parameter Weibull family, through data analysis and computer simulations.

In quest for a greater applicability of the Weibull distribution many researchers
have considered various types of generalizations. These generalizations include broad
family of univariate distributions generated from the Weibull distribution introduced
by Gurvich et al. [9], the generalized Weibull distribution due to Mudholkar and
Kollia [15], and the beta-Weibull distribution due to Lee et al. [13]. The log-Weibull
distribution has been studied in detail by many authors. For example, Singh and Mira
[26] studied the moments of log-Weibull order statistics, while Huillet and Raynaud
[11] studied their application in earthquakemagnitude data.Ortega et al. [20] discussed
usefulness of the log-Weibull regressionmodel to predict recurrence of prostate cancer.

Generalized Weibull distributions can be constructed in many ways, as detailed
in Lai et al. [12] and references therein. Members of this family usually contain the
standard Weibull distribution as a special case.

Nadarajah andKotz [19] defined a class of extendedWeibull (EW)distributionswith
cumulative distribution function (cdf) given by Gα,τ (t) = 1 − exp {−αH(t)}, where
α > 0 and H(t) is a monotonically increasing function of t with the only limitation
H(t) ≥ 0 and τ represents a vector of unknown parameters in H(t). If H(t) is a power
law function, the above equation reduces to the traditional Weibull distribution. In this
paper, we consider a new generalization of any absolutely continuous (R) distribution,
using Weibull as a baseline distribution, called the Weibull-R family of distributions,
following the technique of Alzaatreh et al. [5]. It is to be noted here that parallel
development for any discrete distribution with the baseline distribution asWeibull can
also be developed. It is defined as follows:

Let T ∈ (a, b), R and Y ∈ (c, d) be random variables with cdfs FT (x) = P(T ≤
x), FR(x) = P(R ≤ x) and FY (x) = P(Y ≤ x) for −∞ ≤ a < b ≤ ∞ and
−∞ ≤ c < d ≤ ∞. Here, R can be a continuous or a discrete random variable. Let
QT (p), QR(p) and QY (p) denote the corresponding quantile functions, where the
quantile function of a random variable Z is defined as QZ (p) = inf {z : FZ (z) ≥ p},
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0 < p < 1. If the probability density functions (pdfs) of T , R and Y exist, we denote
them by fT (x), fR(x) and fY (x), respectively. We define a random variable X as
having the cdf

FX (x) =
∫ QY (FR(x))

a
fT (t)dt = FT (QY (FR(x))) (1)

for −∞ < x < ∞. Alzaatreh et al. [5] referred to the distributions in (1) as the T -RY
family of distributions. The pdf and hazard rate funtion (hrf) of X can be derived as

fX (x) = fR(x) · fT (QY (FR(x)))

fY (QY (FR(x)))
(2)

and

hX (x) = hR(x) · hT (QY (FR(x)))

hY (QY (FR(x)))
.

We can rewrite (1) and (2) as

FX (x) = FT (− log (1 − FR(x))) = FT (HR(x))

and

fX (x) = fR(x)

1 − FR(x)
fT (− log (1 − FR(x))) = hR(x) fT (HR(x)) , (3)

where hR(x) and HR(x) = − log (1 − FR(x)), where,hR(x) is the hazard rate func-
tion for the random variable R, and HR(x) being the survival function of R. The
cdf of a random variable X can take this form only if a random varibale Y is unit
exponentially distributed, i.e., Y ∼ Exp(1).

If T is a Weibull random variable with parameters c and γ , (3) is the pdf of the
Weibull-R distribution:

fX (x) = c

γ

fR(x)

1 − FR(x)

[− log (1 − FR(x))

γ

]c−1

× exp

{
−

[− log (1 − FR(x))

γ

]c}
(4)

for c > 0 and γ > 0.
The cdf corresponding to (4) is

FX (x) = 1 − exp

{
−

[− log (1 − FR(x))

γ

]c}
. (5)

Note that if R is a Weibull random variable then (4) is the pdf of a generalized
gamma distribution. Hence, the Weibull-R family is a broad class of distributions as
compared to gamma-generalized distributions. For details on the construction see [3].
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A particular case of the Weibull-R family that we shall study in some detail later
is the Weibull-Lomax distribution (WLD), see Sects. 3 and 5 and 6. Possible shapes
of the pdf and the hrf of X for the WLD are shown in Figs. 1 and 2. Figure 1 shows
that the pdf can be monotonically decreasing or unimodal. Both the left and right
tails of the pdf decay to zero slowly, i.e., both tails are heavy. Processes commonly
encountered in practice have heavy tails. So, the tails of the WLD are realistic. The
right tail of the Weibull distribution decays to zero exponentially, which is not so
realistic. Figure 2 shows that the hrf can be monotonically decreasing, monotonically
increasing or upside down bathtub shaped. The Weibull distribution cannot exhibit
upside down bathtub shaped hrfs. Reliability and survival analysis often encounter
upside down bathtub hazard rates. Examples can be found in redundancy allocations
in systems [23] and mortality modeling [22].
The contents of this paper are organized as follows. Mathematical properties of
the Weibull-R distribution (including characterizations, quantiles, shape properties,
entropy measures, moments and reliability parameter) are derived in Sects. 2 and 4.
Some particular cases of the Weibull-R distribution are studied in Sect. 3. Finally,
Sect. 5 concludes the paper.

2 Characterizations of the Weibull-R Family

It is a natural requirement that in designing a stochastic model for a particular mod-
eling problem, an investigator will be vitally interested to know if their model fits the
requirements of a specific underlying probability distribution. To this end, the inves-
tigator will rely on characterizations of the selected distribution. Generally speaking,
the problem of characterizing a distribution is an important problem in various fields
and has recently attracted the attention of many researchers. Consequently, various
characterizations have been reported in the literature. These characterizations have
been established in many different directions. Here, we present characterizations of
the newly introduced Weibull-R family of distributions. These characterizations are
based on record values. We would like to remark here that other possible ways of char-
acterization of this Weibull-R family might be possible, but, in this present article, we
report the most interesting one.

2.1 Characterizations of the Weibull-R Family via Records

Here, we present characterizations of the newly introduced Weibull-R family of dis-
tributions via record values.

Let XU (m) and XU (n) form < n denote the upper record values from a given family
specified by pdf fX and cdf FX . The joint pdf of XU (m) and XU (n) is [1]

fXU (m),XU (n)
(x, y) =

[
log (1 − FX (x)) − log (1 − FX (y))

]n−m−1

�(m)�(n − m)

× [− log (1 − FX (x))
]m−1 fX (x) fX (y)

1 − FX (x)
, (6)

where −∞ < x < y < ∞ and 1 ≤ m < n.

123



Ann. Data. Sci. (2018) 5(3):387–399 391

Theorem 1 If X ∼ Weibull-R(c, γ ), then the pdf of XU (m) is

fXU (m)
(x) = fX (x)

[1 − FX (x)]
�(m)�(n − m)

n−m−1∑
j=0

(−1) j
(
n − m − 1

j

)
γ −cj

·
[− log (1 − FR(x))

γ

]c(n−2− j)

� (1 + jc,− log (1 − FR(x))) (7)

for −∞ < x < ∞, where �(a, x) = ∫ ∞
x ta−1 exp(−t)dt.

Proof From (4), we have 1 − FX (x) = exp
{
−

[− log(1−FR(x))
γ

]c}
. So,

[
log

1 − FX (x)

1−FX (y)

]n−m−1

=
{[− log (1−FR(y))

γ

]c
−

[− log (1−FR(x))

γ

]c}n−m−1

.

By (6), we can write

fXU (m),XU (n)
(x, y) = 1

�(m)�(n − m)

fX (x) fX (y)

1 − FX (x)

[− log (1 − FR(x))

γ

]c(m−1)

·
{[− log (1 − FR(y))

γ

]c
−

[− log (1 − FR(x))

γ

]c}n−m−1

for −∞ < x < y < ∞. Therefore, the marginal pdf of XU (m) is

fXU (m)
(x) = 1

�(m)�(n − m)

fX (x)

1 − FX (x)

[− log (1 − FR(x))

γ

]c(m−1)

·
∫ ∞

x
fX (y)

{[− log (1 − FR(y))

γ

]c

−
[− log (1 − FR(x))

γ

]c}n−m−1

dy

= 1

�(m)�(n − m)

fX (x)

1 − FX (x)

[− log (1 − FR(x))

γ

]c(m−1)

I1, (8)

where

I1 =
∫ ∞

x
fX (y)

{[− log (1 − FR(y))

γ

]c
−

[− log (1 − FR(x))

γ

]c}n−m−1

dy

=
n−m−1∑
j=0

(−1) j
[− log (1 − FR(x))

γ

]c(n−m−1− j) (
n − m − 1

j

)
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·
∫ ∞

x
fX (y)

[− log (1 − FR(y))

γ

] jc

dy

=
n−m−1∑
j=0

(−1) jγ −cj
[− log (1 − FR(x))

γ

]c(n−m−1− j) (
n − m − 1

j

)

·� (1 + cj,− log (1 − FR(x))) . (9)

The result follows by substituting (9) in (8). ��
Theorem 1 can be useful for estimation based on record values. There are many

situations in which only records are observed. Ultimate examples of such situa-
tions can be found from the website for Guinness World Records, see http://www.
guinnessworldrecords.com/ . Another example is the situation of testing the breaking
strength of wooden beams as described in Glick [7].

3 Some Examples of the Weibull-R Family

• For R a Pareto random variable with the pdf fR(x) = kθk

xk+1 , x > θ, k > 0, we
have the Weibull-Pareto distribution (WPD) with the pdf, cdf and the hrf given by

fX (x) = βc

x

[
β log

( x
θ

)]c−1
exp

{
−

[
β log

( x
θ

)]c}
,

FX (x) = 1 − exp
{
−

[
β log

( x
θ

)]c}

and

hX (x) = βc

x

[
β log

( x
θ

)]c−1
,

respectively, for x > θ , c > 0, θ > 0, and β = k/γ . This family has been studied
by Alzaatreh et al. [4].

• For R a Lomax random variable with the pdf fR(x) = k
θ

(
1 + x

θ

)−k−1
, k > 0

x > 0, we have the WLD with the pdf, cdf and the hrf given by

fX (x) = βc

x + θ

[
β log

(
1 + x

θ

)]c−1
exp

{
−

[
β log

(
1 + x

θ

)]c}
, (10)

FX (x) = 1 − exp
{
−

[
β log

(
1 + x

θ

)]c}
(11)

and

hX (x) = βc

x + θ

[
β log

(
1 + x

θ

)]c−1
,

respectively, for x > θ , c > 0, θ > 0 and β = k/γ . Possible shapes of fX (x) and
hX (x) are shown in Figs. 1 and 2.
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Fig. 1 Possible shapes of the pdf of the WLD for β = 1, θ = 1 and c = 0.1, 1, 5, 20, 50
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Fig. 2 Possible shapes of the hrf of the WLD for β = 1, θ = 1 and c = 0.8, 1.3, 1.5, 2, 5

Note that theWLD is a shifted version of theWPD.When c = 1, theWLD reduces
to the Lomax distribution with parameters β and θ .

• For R a Cauchy random variable with the pdf fR(x) = 1

π
[
1+( x

δ )
2
] ,−∞ < x < ∞,

we have the Weibull–Cauchy distribution with the pdf and cdf given by
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fX (x) = 2c

γ
[
1 + ( x

δ

)2] (
π − 2 arctan x

δ

)
{

− log
[ 1
2 − 1

π
arctan

( x
δ

)]
γ

}c−1

· exp
{

−
[
− log

( 1
2 − 1

π
arctan

( x
δ

))
γ

]c}

and

FX (x) = 1 − exp

{
−

[
− log

( 1
2 − 1

π
arctan

( x
δ

))
γ

]c}
,

respectively, for −∞ < x < ∞, δ > 0, γ > 0 and c > 0.

• For R a normal random variable with the pdf fR(x) = 1√
2πσ

exp
[
− 1

2

( x−μ
σ

)2]
,

−∞ < x < ∞, we have the Weibull-normal distribution with the pdf and cdf
given by

fX (x) = c

γ
[
1 − 


( x−μ
σ

)] 1√
2πσ

exp

[
−1

2

(
x − μ

σ

)2
]

· exp
{

−
[

− log
(
1 − 


( x−μ
σ

))
γ

]c}[
− log

(
1 − 


( x−μ
σ

))
γ

]c−1

and

FX (x) = 1 − exp

{
−

[
− log

(
1 − 


( x−μ
σ

))
γ

]c}
,

respectively, for −∞ < x < ∞, −∞ < μ < ∞, σ > 0, γ > 0 and c > 0, where

(·) denotes the standard normal cdf.

The WLD, the Weibull–Cauchy distribution and the Weibull-normal distribution are
new and do not appear to have been studied by others. The WLD is different from the
Weibull-Lomax distribution studied by Tahir et al. [24], compare (10) with equation
(2.1) in Tahir et al. [24].

4 Properties of the Weibull-R Family

The corresponding hrf and quantile function for any u ∈ (0, 1) are

hX (x) = c

γ

fR(x)

1 − FR(x)

[− log (1 − FR(x))

γ

]c−1

= ∂

∂x

{[− log (1 − FR(x))

γ

]c}
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and

Q(u) = F−1
X

(
1 − exp

{
−γ

[− log(1 − u)
]1/c})

.

Since these are in closed form, theWeibull-R family can be applied to model censored
data also. One can also obtain a closed form expression for the cumulative hrf.

4.1 Shape

Lemma1 below gives the limiting behaviors of the Weibull-R pdf and its hrf. Its proof
is obvious.

Lemma 1 We have

fX (x) ∼ c

γ c
fR(x)Fc−1

R (x) exp
[−γ −cFc

R(x)
]

and

hX (x) ∼ c

γ c
fR(x)Fc−1

R (x)

as x → −∞.

Lemma 2 The mode of the pdf of the Weibull-R family is the root of

f ′
R(x)

fR(x)
+ fR(x)

1 − FR(x)
− (c − 1) fR(x)

[1 − FR(x)] log [1 − FR(x)]

−cγ −c {− log [1 − FR(x)]}c−1 fR(x)

1 − FR(x)
= 0,

where f ′
R(x) = d fR(x)/dx.

The proof of Lemma2 is straightforward.
Analytical solutions to the mode do not appear possible, even for the four examples

presented in Sect. 3. The mode should be computed numerically, for example, using
uniroot in the R software.

4.2 Entropy Measures

Entropies of a random variable X are measures of variation of uncertainty. Entropies
have been used in several applications in science, engineering and economics. The
Shannon entropy [21] of a random variable X say with pdf fX is defined by
E

[− log fX (X)
]
.
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Lemma 3 If X is a Weibull-R random variable then its Shannon entropy is

ηX = − log c + log γ − (c − 1)E

{
log

([− log (1 − FR(X))
])

γ

}

−E

[
log

fR(X)

1 − FR(X)

]
+ E

{[− log (1 − FR(X))

γ

]c}
.

Lemma 3 follows immediately from (4).
The problem of testing whether some given observations can be considered as coming
from one of two probability distributions is an old problem in statistics. Consider a
random sample X1, X2, . . . , Xn of size n from a Weibull-R family. The objective is
to identify a specific Weibull-R distribution in (4) that is most appropriate to describe
the data X1, X2, . . . , Xn . Between two candidates say Weibull-R1 and Weibull-R2
distributions, with respective pdfs fR1 , fR2 and respective cdfs FR1 , FR2 , we decide in
favor of one of them on the basis of the difference D1,2 = ηWeibull−R1 − ηWeibull−R2 ,

where ηWeibull−R1 and ηWeibull−R2 are the entropies respectively of Weibull − R1 and
Weibull − R2 random variable. We see that

D1,2 = (c − 1)E

[
log

log
(
1 − FR2(X)

)
log

(
1 − FR1(X)

)
]

+ E

[
log

fR2(X)

1 − FR2(X)

1 − FR1(X)

fR1(X)

]

+E

{[
− log

(
1 − FR1(X)

)
γ

]c}
− E

{[
− log

(
1 − FR2(X)

)
γ

]c}
.

Large (respectively, small) values of D1,2 will support the Weibull-R1 (respectively,
Weibull-R2) distribution.

Proposition 4 For fixed c > 1, γ > 0 and Weibull-R1 stochastically larger than
Weibull-R2, D1,2 will support Weibull-R2.

Proof Since Weibull-R1 is stochastically larger than Weibull-R2, we can write 1 −
FR1 ≥ 1 − FR2 . This implies the following

•
[

− log
(
1−FR1 (X)

)
γ

]c
≤

[
− log

(
1−FR2 (X)

)
γ

]c
,

• log
[
1−FR2 (X)

1−FR1 (X)

]
≤ 0.

So, D1,2 will be small which implies the result. ��

4.3 Moments

For any r ∈ N, we can express the r th moment of X as
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E
(
Xr ) =

∫ ∞

−∞
c

γ
xr

fR(x)

1 − FR(x)

[− log (1 − FR(x))

γ

]c−1

× exp

{
−

[− log (1 − FR(x))

γ

]c}
dx

=
∫ ∞

0
e−u

[
F−1
R

(
1 − exp

(
−γ u1/c

))]r
du,

where u =
[− log(1−FR(x))

γ

]c
.

Analytical expressions for the moments do not appear possible, even for the four
examples presented in Sect. 3. The moments should be computed numerically, for
example, using integrate in the R software.

4.4 Reliability Parameter

The reliability parameterR is defined asR = P(X > Y ), where X and Y are indepen-
dent random variables. Estimation of R is known as stress strength modeling. It has
applications in many areas including break down of systems having two components.
Other applications can be found in Weerahandi and Johnson [25].

If X and Y are independent random variables with respective cdfs F1(x), F2(y)
and respective pdfs f1(x), f2(y) then R can be written as

R = P(X > Y ) =
∫ ∞

−∞
F2(t) f1(t)dt.

Theorem 2 Suppose X and Y are independent Weibull-R (c1, γ ) and Weibull-
R (c2, γ ) random variables. Then

R = 1 −
∞∑
k=0

(−1)k

k! � (kc2/c1 + 1) .

Proof By (4) and (5),

R =
∫ ∞

−∞

[
1 − exp

{
−

[− log (1 − FR(x))

γ

]c2}]

·c1
γ

fR(x)

1 − FR(x)

[− log (1 − FR(x))

γ

]c1−1

× exp

{
−

[− log (1 − FR(x))

γ

]c1}
dx

= 1 −
∫ ∞

0
exp(−u) exp

(−uc2/c1
)
du

= 1 −
∞∑
k=0

(−1)k

k! � (kc2/c1 + 1) ,

123



398 Ann. Data. Sci. (2018) 5(3):387–399

where u =
[− log(1−FR(x))

γ

]c1
. Hence, the proof. ��

5 Conclusions

In this paper, we have introduced the Weibull-R family with a hope that it will have
more flexibility in situations where Weibull and other Weibull mixture distributions
do not provide satisfactory fits. For each baseline distribution of R, our results can be
easily adapted to obtain main structural properties of the Weibull-R distribution. We
have derived various properties of the Weibull-R distributions, including the reliabil-
ity parameter and the r th generalized moment. The proposed family unifies several
previously proposed families of distributions, therefore yielding a general overview
of these families for theoretical studies. It also provides a rather flexible mechanism
for fitting a wide spectrum of real world data sets. For example, a Weibull-R mixture
distribution may be useful in the following scenarios:

• To characterize end-to-end Internet delay at coarse time-scales [10].
• It provides a suitable distributions for modeling dependent lifetimes from het-
erogenous populations, as mixtures of defective devices with shorter lifetimes and
standard devices with longer lifetimes.

• When R the baseline distribution is Gompertz, a mixture ofWeibull–Gompertz (in
particular, the survival function) distribution will represent a theoretically moti-
vated model for the scenario in which death or cases of a specific disease in an
actual population can be due to sufficient causes from group 1 or group 2. For
details, see [14].

We hope that this family may attract wider applications in reliability and biology.
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