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Abstract The supervisory control and data acquisition (SCADA) systems monitor
and control industrial control systems in many industrial and economic sectors such as
water treatment, power plants, railroads, and gas pipelines. The integration of SCADA
systems with the internet and corporate enterprise networks for various economical
reasons exposes SCADA systems to attacks by hackers who could remotely exploit
and gain access to SCADA systems to damage the infrastructure and thereby harming
people’s lives. The simplicity of datasets and possible overfitting of models to training
data are some of the issues in the previous research. In this paper, we present detect-
ing and classifying malicious command and response packets in a SCADA network
by analyzing attribute differences and history of packets using k-means clustering.
This study presents a solution to classify SCADA cyber attacks to detect and classify
SCADA attacks with high accuracy using a big data framework that comprises of
Apache Hadoop and Apache Mahout. Apache Mahout’s random forest classification
algorithm is applied on SCADA’s gas pipeline dataset to categorize attacks.When 70%
of the data is used for training the classifier, our approach resulted in 5–17% improve-
ment in accuracy for the classification of read response attacks and 2–8% improvement
in accuracy for write command attacks with respect to using the original dataset.

Keywords SCADA attacks · Big Data Mining · Modbus · Hadoop · Mahout

1 Introduction

Supervisory control and data acquisition (SCADA) systems have been prone to cyber
attacks in the recent past. These attacks are usually identified from the SCADAnetwork
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packets. The goal of this study is to use the publicly available big data frame-
works and libraries to extract useful insights from the SCADA dataset to secure
SCADA systems. The nodes in a SCADA network communicate in terms of com-
mands and responses using a communication protocol. These communication packets
are captured and analyzed to understand the state of a system. This study presents
a solution to classify SCADA cyber attacks using a Hadoop big data framework.
There are many classifiers available for categorizing data, but most of them are
not suitable for big data framework. As the data are huge, the classifier needs to
work on each partition of the data separately. Apache Mahout provides classifica-
tion algorithms that work with huge datasets. In this study, Apache Mahout’s random
forest classification algorithm is used to categorize the cyber attacks present in the
SCADA system. The random forest ensemble classifier gave good classification
results to many problems, and hence is used as a classification technique in this
study.

The SCADA cyber attacks are categorized into malicious state command injec-
tion (MSCI), malicious parameter command injection (MPCI), denial of service
(DoS), näive malicious response injection (NMRI), complex malicious response
injection (CMRI), and reconnaissance attacks. These main category of attacks are
again sub classified to 35 different specific category of attacks. In this study,
we focus on the classification of the read response attacks (NMRI and CMRI)
and the write command attacks (MSCI, MPCI, and DoS). The write command
attacks corresponds to attacks that occur in the write command packets and the
read response attacks correspond to attacks that occur in the read response pack-
ets.

The dataset used in this study contains attack packets and normal packets that arrive
in a specific manner. A set of normal packets are followed by a set of attack packets,
and they are not random in nature. In some cases, the normal packets may be confused
for attack packets and vice-versa. Thus, analysis of the payload of just an individual
packet for classification is not sufficient. The dataset is analyzed to understand the
critical attributes that contribute to attacks. A comparison is made between the critical
attributes of the current packet and the corresponding critical attributes of the previous
packet(s) to derive additional features. The history of the packets are analyzed with
2-means clustering technique in order to group them into an attack category or a
normal category. The difference between the 2-means centroids and the corresponding
attribute is used to extract another set of new features. In this way, the attacks can be
classified efficiently. The classification accuracy is significantly improved through
this approach of using the information present in both the previous packet(s) and the
current packet.

The contributions of this paper is summarized as follows:

1. We build attack classification and detection models by creating new attributes
for packets by analyzing their history: (a) attribute differences from the previous
packets and (b) determining general trend in previous n packets by applying 2-
means clustering and using attribute differencing from cluster centers.

2. Our method increases the accuracy of classification using these new attributes
without over-fitting since it just does not rely on individual packets.
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3. We have performed a comprehensive evaluation of classifiers for different levels
of attack categories (i.e., the presence of attack, the main category of attack, and
the special category of the main-category of attack).

4. To the best of our knowledge, this is the first evaluation of SCADA attacks on a
big data ecosystem.

This paper is organized as follows. The following section describes the background
on SCADA attacks and the related work. Section 3 describes the feature extraction and
data preprocessing for SCADA dataset. The big data mining approach using Apache
Mahout are discussed in Sect. 4. Section 5 explains the experimental results using
various performance metrics. The last section concludes our paper.

2 SCADA Attacks and Related Work

In this section, we briefly provide an overview of SCADA attacks and provide related
work on the application of machine learning techniques for detecting SCADA attacks.

2.1 Overview of General SCADA Attacks

Cyber attacks have been a growing concern in SCADA systems. There have been
various types of attacks: data integrity attacks [26] that manipulate sensor or con-
trol signals, database attacks [33] such as SQL injection that manipulate the data
input into a web application, deception attacks [1] that include a wrong identity of
a command sending device that can enable remote water pilfering from automated
canal systems, command injection and response injection attacks [7] that inject false
control commands and false responses into a control system. Miller et al. [17] provide
a taxonomy of SCADA and critical infrastructure incidents as source sectors (e.g.,
commercial, government), method of operation (e.g., misuse of resources, user com-
promise), impact (e.g., disrupt, distort, destruct), and target sectors (e.g., commercial,
non-US entity). Zhu et al. [33] provide a taxonomy of SCADA attacks and they cat-
egorize attacks into network layer, transport layer, application layer, and attacks on
implementation protocols for the communication stack. The attacks against Modbus
protocol are studied under application layer attacks.

The risks of big data analytics for power distributed systems are addressed in [32].
The issues are listed below:

1. Lack of innovative use cases and application proposals that convert big data into
valuable operational intelligence,

2. Insufficient research on big data analytics system architecture design and advanced
mathematic for petascale data, and

3. Failing to adhere to data privacy and data protection standards.

Deka et al. [5] study attacks on power-grids and propose a polynomial graph-based
approach just using the grid topology for attacks distorting minimum measurements.
Amin et al. [1] study stealthy deception attacks for water SCADA systems and
show that these systems are not robust against such attacks by analyzing regulatory-
level proportional–integral (PI) control and diagnostic-level unknown input observers
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(UIOs) scheme. They emphasize the importance of detecting such attacks since they
cannot be detected by basic SCADA attack detection methods. Similarly, Teixeira et
al. [28] study stealthy deception attacks for SCADA energy systems. Carcano et al. [4]
present intrusion detection system based on critical state analysis and state proximity.
They provide a formal model of the system as states. They identify critical states and
then try to determine critical state proximity since the goal of an attacker is to take the
system from a safe to a critical state by a chain of licit commands. Sridhar et al. [26]
model integrity and denial of service attacks for automatic generation control loop in
a power grid. They emphasize the necessity of a secure communication link for the
system. For replay attacks, Mo et al. [18] provide countermeasures for detection based
on a zero-mean Gaussian authentication signal.

2.2 Application of Machine Learning Techniques for SCADA Attacks

This work focuses on detecting malicious SCADA communications with the help of
machine learning techniques. The importance of intrusion detection through machine
learning and the three objectives of intrusion detection are mentioned below [31]:

1. Detect as many types of attacks as possible (internal malicious and external oppor-
tunistic/deliberate attacks).

2. Detect the intrusions as accurately as possible, thereby reducing the number of
false alarms.

3. Detect intrusions as early as possible to reduce the amount of damage they incur.

Machine learning has been used to discriminate malicious and anomalous events in
intrusiondetection for traditional cyber security networks [12,23,25]. Popularmachine
learning techniques such as rule based approach, hidden Markov model (HMM), sup-
port vector machines (SVM), and one class SVM (OCSVM) can be used to prevent
SCADA from cyber-attacks. Torrisi et al. [29] use binary SVM for classifying uni-
directional and bidirectional attacks for DNP3 communication protocol. Nader et al.
[22] utilize support vector data description (SVDD) and the kernel principal compo-
nent analysis (KPCA) for intrusion detection by studying l p − norms in radial basis
function kernels. Fahad et al. [6] propose a privacy preserving framework for SCADA
data publishing by evaluatingmulti-layer perceptron neural network, J48 decision tree,
SVM, 7-nearest neighbor, and naive bayesian classifiers for a water treatment plant
and simulated SCADA datasets along with other datasets.

For discriminating power systemdisturbances,Hink et al. [9] employfive categories
of classifiers: probabilistic classification (naive bayesian), rule induction (OneR [10],
nearest neighbor with generalization), decision tree learning (random forests), non-
probabilistic binary classification (SVM), and boosting (Adaboost). For three classes
(no event, attack, and natural distrurbance), JRipper+Adaboost yielded the best per-
formance with low false positive rates. Shosha et al. [24] use feed-forward artificial
neural networks for detecting anomalies in SCADA specific protocol traffic.

Almalawi et al. combine unsupervised and supervised techniques for intrusion
detection. They use two assumptions: (i) the majority of the data are normal and (ii)
the normal data are statistically different from the abnormal data. They assume that the
data can be categorized into 3 groups: normal, abnormal, and doubtful data. Each data
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sample is assigned an anomaly score based on its k-nearest neighbors. Representative
normal and abnormal datasets are determined using k-means clustering and these
datasets are used to train best-first decision tree (BFTree), J48 decision tree, non-
nested generalized exemplars (NNge), projective adaptive resonance theory (PART),
and naive bayesian classifiers in WEKA data mining software. We should note that
the second assumption is not applicable to our dataset. While a data at an instant could
be normal, the same data could be abnormal at another instant. Hence, applying the
k-nearest neighbor using the complete dataset for assigniing anomaly scores is not
meaningful in our case. Moreoever, we do not have any assumption on the ratio of
data packets which could be abnormal.

Machine learning techniques for cyber-attack discrimination in smart power grid
framework are discussed in [13]. Maglaras et al. [14] propose K-OCSVM method
in which output OCSVM is fed to recursive k-means clustering to determine the
most possible/important outliers. Their method does not mention the use of historical
context of packets andmay fail to detect packets which could be normal or abnormal at
different instants.Maglaras et al. [15] propose an ensemblemethod based onOCSVM.
In terms of new attributes, they consider the time between previous packets and the
number of packets to a specific destination within a number of previous packets. In
our analysis, abnormal packets may have the same temporal behavior. Therefore, we
consider that the relative content of the packets are more significant than the number
of packets to a destination to determine whether they are abnormal or not.

Machine learning techniques were employed with SCADA data to address security
issues in Critical Infrastructure systems (CIS). Naive bayesian, random forests, OneR,
J48, and SVM algorithms were used through Weka to detect intrusions in SCADA
system. The performance of these classifiers with respect to intrusion detection was
evaluated [3]. Nader et al. [21] provided a one class classification technique for catego-
rizing SCADA attacks using SCADA datasets [19]. Their classification accuracy was
high (close to 100%). Their datasets were considered unsuitable for intrusion detec-
tion system (IDS) research since there were obvious patterns between few parameters
present in the dataset which resulted in predictions that gave high accuracies [11].

New SCADA datasets were created to avoid problems present in the old
datasets [20]. The random tree classification experiment was done using the entire
dataset for both training and testing phases [30]. This resulted in an accuracy of
99.7%. The use of 100% of the data for training and 100% of the data for testing
does not represent a realistic performance. This high result might be even due to the
overfitting of the data. The experiment was done using the current packet information
and no information from the previous packets was utilized.

The gas pipeline dataset developed at the Mississippi State University SCADA
Laboratory [30] is used in this research. The dataset includesMSCI, MPCI, andMFCI
that fall in the category of command injection attacks and NMRI and CMRI that fall
in the category of response injection attacks. These attacks use the state information
of the system in order to design attacks that mimic the normal behavior of the system.
These attacks can hide system changes and are difficult to detect.

In this study, we use the new datasets [20] with the random forest classification
algorithm. There are several factors that distinguish our work from previous work. (1)
We do not assume that abnormal packets are different from the normal packets. In our
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work, the same packet could be normal at one instant and abnormal at another instant.
(2) By analyzing a number of previous packets, we expect a different content in mali-
cious packets. (3) The relative content of a packet with respect to the previous packets
is more important than the frequency or the number of packets to a destination. Our
approach uses big data framework for categorizing SCADA attacks. The information
present in both the current and the previous packets were used for analysis.

3 Feature Extraction and Data Preprocessing for SCADA Log Analysis

In this section, we will discuss about the steps required to process the original dataset
tomake it suitable for analyzingwrite command attacks and read response attacks. The
write command attacks include malicious state command injection (MSCI), malicious
parameter command injection (MPCI), and denial of service (DoS) attacks. These
include specific category attacks, 1 through 18 as mentioned in Table 1. The read
response attacks include näive malicious response injection (NMRI) and complex
malicious response injection (CMRI) attacks. These include attacks 25 through 35 as
mentioned in Table 1.

We analyzed the attributes to distinguish normal and attack packets and then devel-
oped ourmethod.Ourmethoddoes not look at the semantics of attributes, and attributes
could be just labeled as attribute 1, attribute 2, etc. In such a case, our system still works
with unknown attributes. A packet at one time could be a normal packet and another
time could be an attack packet. The main idea comes from how attack packets are gen-
erated. The attacker does not know the actual status of the SCADA system. The attack
packets contain just somewhat random values to disrupt the system. It is expected to
be different from actual values in the system. Whenever an attack packet is sent, it is
expected to deviate from the actual values.

3.1 Feature Extraction

Figure 1 shows a plot between the pressure measurement attribute vs the crcrate
attribute of the read response attacks with labeled categories (normal and attack) of
packets. The plot shows the range of pressure values for normal data and attack data.
When a classifier is trained against such a dataset, it learns that for a certain range
of pressure values there are no attacks and for certain range of pressure values there
are attacks. For such cases, we do not need to even train a classifier, instead a simple
if–else condition might be enough. Nevertheless, values in a range could be normal for
certain times and attacks someother times. Forcing the classifier to learn ranges like this
causes overfitting. Accuracymight be high for such a dataset, but such a classifier is not
desirable due to overfitting. In the pressure range 375 and395, there are certain pressure
values (circled around 375 and 395) that are taken to be valid for an instant of time and
invalid for another instant of time, which might result in misclassifications (circled in
red in Fig. 1). Hence, new features need to be extracted from the original attributes.

We extract new features by comparing the previous and current packets. In the
original dataset, attack packets and normal packets are not random. A set of normal
packets are usually followed by a set of attack packets. For example, there is a case

123



Ann. Data. Sci. (2018) 5(3):359–386 365

Table 1 Specific categories of cyber attacks in a SCADA system [20]

Attack Number Category Description

Setpoint 1–2 MPCI Changes the pressure set point outside and
inside of the range of normal operation

PID gain 3–4 MPCI Changes the gain outside and inside of the
range of normal operation

PID reset rate 5–6 MPCI Changes the reset rate outside and inside of
the range of normal operation

PID rate 7–8 MPCI Changes the rate outside and inside of
the range of normal operation

PID deadband 9–10 MPCI Changes the deadband outside and inside of
the range of normal operation

PID cycle time 11–12 MPCI Changes the cycle time outside and inside of
the range of normal operation

Pump 13 MSCI Randomly changes the pump state

Solenoid 14 MSCI Randomly changes the solenoid state

System mode 15 MSCI Randomly changes the system mode

Critical condition 16–17 MSCI Places the system in a critical condition
which is not part of the normal activity

Bad CRC 18 DoS Sends Modbus packets with incorrect
CRC values

Clean registers 19 MFCI Cleans the registers of the slave devices

Device scan 20 Recon Scans for all possible devices controlled
by the master

Force listen 21 MFCI Forces the slaves to only listen

Restart 22 MFCI Restart communication on the device

Read ID 23 Recon Reads ID of the slave device. In this attack
the data of the device is actually not
recorded, but is shown as if the data is
being recorded

Function code scan 24 Recon Scans for possible functions that are being
used on the system. In this attack the data
of the device is actually not recorded, but
is shown as if the data is being recorded

Rise/Fall 25–26 CMRI Sends back pressure readings which create
trends on the pressure reading graph

Slope 27–28 CMRI Randomly increases/decreases pressure
reading by a random slope

Random value 29–31 NMRI Random pressure measurements are sent
to the master

Negative pressure 32 NMRI Sends back a negative pressure reading
from the slave

Fast 33–34 CMRI Sends back a high set point then a low set
point which changes ‘fast’

Slow 35 CMRI Sends back a high set point then a low set
point which changes ‘slow’
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Fig. 1 Over-fitting of data for read response attacks. Certain pressure values (circled in red) in the pressure
range 375 and 395 are taken to be valid for an instant of time and invalid for another instant of time, which
might result in misclassification. (Color figure online)

where 11 normal packets are followed by 11 attack packets, 11 normal packets, and
26 attack packets and so on. A packet may be classified as normal at one instant of
time and the same packet may be classified as an attack at another instant of time. This
results in misclassification of packets if packets are analyzed individually. We extract
features from packets in two ways:

1. The current packet is compared with its previous packet:

ni = mi − mi−1, for i > 1 (1)

In Eq. 1, ni indicates the new attribute value for the i th packet, mi indicates the
corresponding original attribute value of the i th packet, and mi−1 indicates the
corresponding original attribute value of the (i − 1)th packet.

2. The current packet is compared with its previous p packets using the K-means
algorithm. The value of K is 2 for the experiments, since we have two categories
of data packets: an attack packet and a normal packet. In case the packets are all
normal then the two centroids obtains from the 2-means are close to each other.

C = kmeans(m(i − p : i − 1), 2) (2)

In Eq. 2, C holds the two centroids for the i th attribute value for the attribute m.
The difference between the further centroid to the i th attribute value is computed.

ni =
{

mi − c1 if |mi − c1| > |mi − c2|
mi − c2 if |mi − c2| ≥ |mi − c1|

The experiments are done by considering the information present in both the current
packet and the previous packet(s). As a result, we evaluate three types of datasets:

1. Original dataset The dataset with the original attributes.
2. Attribute-difference dataset The dataset with additional attributes that are derived

by comparing the current packet with its previous packet.
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3. 2-means dataset The dataset with additional attributes that are obtained by com-
paring the current packet with its previous p packets. In our experiments, we used
previous 30 packets for 2-means (p = 30).

3.1.1 Discussion on K-means

The K-means algorithm is used for extracting additional features by analyzing his-
tory of previous p packets. The SCADA gas pipeline dataset used in this study has a
sequence of attack instances followed by a sequence of normal instances. It is reason-
able to check the pattern of previous set of packets to understand how the current packet
is different from the previous packets. K-means is used only in the feature extraction
stage to understand the behavior of packets. The value of K is chosen to be 2, since we
either have a normal packet or an attack packet. K-means is not suitable in detecting
clusters that are non-spherical in shape or widely different in sizes or densities [27].
If there are normal packets as well as attack packets, two clusters are expected in the
dataset: one for normal packets and another for attack packets. The current packet is
compared with the centroids of those packets. If all packets are normal, the cluster
centroids should be close to each other. The main idea is to compare the current packet
with two centroids from previous packets. It is not critical to split packets into normal
and attack clusters accurately.

3.1.2 Theoretical Analysis on Feature Extraction

Themain goal of feature extraction process is to generate new features that can separate
an attack packet from normal packets.

Let Cnp and Cap be the clusters representing normal packets and attack packets,
respectively. Ideally, Cnp should contain normal packets whereas Cap should include
only attack packets. In this domain, 2-means clustering considers a history of previous
n packets. If there is only one attack packet (pa) in previous n packets, 2-means
clustering will put pa intoCap. Nevertheless,Cap may also have other normal packets.
Regardless,Cnp will always have normal packets and its mean will be used to generate
2-means attributes. This shows that as long as attack packets go into one cluster
regardless of normal packets in that cluster, attributes are generated properly due to
a pure cluster of normal packets. This shows that feature extraction is not heavily
dependent on incorrect 2-means clustering.

The worst case for 2-means clustering occurs when the normal and attack packets
are evenly distributed between these clusters. Although attribute values are more criti-
cal than the ratio of packets, the ratio of normal to attack packets is used for simplicity
in our analysis by checking this ratio is greater than or equal to a threshold α for safe
clustering.

The second aspect of feature creation is the distribution of attack packets in a
window frame. If there is a normal packet between every attack packet, the proper
attribute values can easily be determined by attribute difference. The worst scenario
occurs when there are contiguous attack packets where attacks packets could be con-
sidered as new normal. We use Bernoulli distribution with a probability of p for an
attack packet and (1− p) for a normal packet. For safe 2-means clustering of n packets
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with k of them are attack packets, (n−k)
k ≥ α should be satisfied. This implies that if

k ≥ � n
α+1�, the feature extraction process might not be effective. In case of k attack

packets, the previous packet should be an attack packet, otherwise attribute difference
would be enough to generate new attributes for distinguishing the current packet. Out
of k packets, the previous packet is considered to be an attack packet in the worst case
scenario. If the binomial distribution is used for the rest of the (k − 1) packets in the
window, the probability of poor feature extraction becomes

f (n, p, α) =
n∑

k=�n/(α+1)�

(
n − 1

k − 1

)
(1 − p)(n−k) p(k−1) p

For example, for α = 1, p = 0.2, and n = 20, the probability of getting poor
attributes for the worst case is 0.0013 assuming that 2-means clustering will definitely
fail for α ratio.

3.2 Data Preprocessing for Write Command Attacks

Data preprocessing involves the following steps:

1. The instances whose function code is 16 and the Modbus frame length is 90 are
taken from the original data set. The dataset now contains 64,100 instances.

2. Data cleaning The pressure measurement (14th feature) is removed from the
dataset as it is has missing values.

3. Feature extractionThe address, function, length, and command response attributes
have the same constant values for all the write command packets, and hence are
removed from the dataset. All the packets are ordered in time using the time
attribute. The time attribute is then removed from the dataset. The dataset now
contains 11 critical attributes for classifying the write command attacks as shown
in the Table 2. Analysis is based on comparisons between the current packet and
the previous packet(s). The comparison is done in the following manner:
(a) Each packet is compared to its previous packet, except for the first one. The

comparison is done with respect to each attribute individually (excluding the
three labels) in the packet that includes setpoint, gain, reset rate, deadband,
cycletime, rate, system mode, control scheme, pump, solenoid, and crcrate. The
difference in attributes of the current packet and the previous packet give new
features as shown in the Table 3. The attribute values for these new features is
0 for the first packet in the dataset.

(b) Each packet is compared with its previous set of packets. This comparison is
done using the kmeans algorithm. The value of k is 2 for this experiment. The
attributes setpoint, gain, reset rate, deadband, cycletime, rate, system mode,
control scheme, pump, solenoid, and crc rate are considered here. The new
features that result from this process are shown in Table 4.
The packets are compared as follows:

i. For the first p packets, the current packet is compared with all its previous
packets. For example, the 3rd packet is compared with all the previous 2
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Table 2 Critical attributes for
write command attacks

Attribute name

setpoint

gain

reset rate

deadband

cycletime

rate

system mode

control scheme

pump

solenoid

crcrate

Table 3 Feature extraction for
write command attacks—using
the previous packet

Original feature New feature

setpoint setpoint_diff

gain gain_diff

reset rate resetrate_diff

deadband deadband_diff

cycletime cycletime_diff

rate rate_diff

system mode systemmode_diff

control scheme controlscheme_diff

pump pump_diff

solenoid solenoid_diff

crcrate crcrate_diff

Table 4 Feature extraction for
write command attacks with
2-means—using previous
packets

Original feature New feature

setpoint setpoint_centroid_diff

gain gain_centroid_diff

reset rate resetrate_centroid_diff

deadband deadband_centroid_diff

cycletime cycletime_centroid_diff

rate rate_centroid_diff

system mode systemmode_centroid_diff

control scheme controlscheme_centroid_diff

pump pump_centroid_diff

solenoid solenoid_centroid_diff

crcrate crcrate_centroid_diff
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packets. For the first packet, the new attribute values are taken to be 0.
For the second packet, the new attribute values are equal to the previous
attribute values (first packet attribute values).

ii. For the remaining packets (starting from the (p+1)th packet), the 2-means
algorithm is applied to each of the 11 original attributes of the previous
30 packets individually.

We use the following three datasets for our experiments:

1. The original dataset with 19 attributes.
2. The attribute-differencedatasetwith 11derived attributes and14original attributes,

in total 25 attributes. These 11 attributes are derived by comparing the current
packet attribute values with its previous packet attribute values.

3. The 2-means dataset with 11 additional attributes derived from the comparison of
the current packet with its previous packets, the 11 new attributes derived in the
attribute-difference dataset, and 14 original attributes. Hence, this dataset contains
36 attributes.

The dataset is split to training and testing in the following ways:

1. 100–100 The entire dataset is used for both training and testing.
2. 80–20 80% of the instances (first 51,280 instances) were used for training the

random forest model and the remaining 30% of the instances (remaining 12,820
instances) were used for testing the classifier.

3. 70–30 70% of the instances (first 44,870 instances) were used for training the
random forest model and the remaining 30% of the instances (remaining 19,230
instances) were used for testing the classifier.

3.3 Data Preprocessing for Read Response Attacks

Data preprocessing involves the following steps:

1. The instances whose function code is 3 and the Modbus frame length is 46 are
taken from the original dataset. The dataset now contains 68,848 instances.

2. Data cleaning The attributes with missing values are removed from the instances.
These include setpoint, gain, reset rate, deadband, cycletime, rate, system mode,
control scheme, pump and solenoid attributes. These ten features are trimmed off
in the pre-processing stage.

3. Feature extraction The address, function, length, and command response are
removed, since they have the same constant value for all the read response packets.
The read response packets are also ordered in time, and then the time attribute is
trimmedoff. The dataset contains two attributes namely,pressure measurement and
crcrate, apart from the three labels. The analysis is based on the current packet’s
pressure measurement with the previous packets’s pressure measurement values,
as mentioned in Section 3. This gives two derived attributes namely, pressuremea-
surement_diff and pressuremeasurement_centroid_diff.

We use the following three datasets for experiments. Original dataset with 10
attributes. The attribute-difference dataset contains 1 derived attribute, pressuremea-
surement_diff and 5 original attributes, in total 6 attributes. The 2-means dataset
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contains 1 additional attribute derived from the comparison of the current packet
with its previous packets, the 1 new attribute derived in the first dataset, and 5 original
attributes. Thus, the second dataset contains 7 attributes.

The dataset is split to training and testing in three ways as for write command
attacks: 100–100, 80–20 and 70–30. The 80–20 had first 55,078 instances for training
and the remaining 13,770 instances for testing. The 70–30 had first 48,194 instances
for training and remaining 20,654 instances for testing.

4 Big Data Mining Using Apache Mahout

Mahout is a project supported by Apache Software Foundation [2]. It is a library
of scalable machine learning algorithms that works on top of Hadoop. The machine
learning algorithms (clustering and classification) are executed as a series of map
reduce jobs. In this study, we use random forest ensemble algorithm.

Ensemble methods are techniques that improve classification accuracy by aggregating
the predictions of multiple (weak) classifiers. They generally predict the class label of
a test record based on the majority vote on the predictions made by the classifier [27].

Random forest is an ensemble classifier of decision trees. A random forest clas-
sifier combines the predictions made by multiple decision trees, where each tree is
based on randomly selected samples. These random samples are in turn generated
from a fixed probability of distributions [27]. Since each decision tree could be gen-
erated using random samples independently, random forest is suitable for big data
systems. The big data is partitioned into chunks and stored in the HDFS. The classi-
fication algorithm works on chunks of data independently to construct multiple base
classifiers (decision trees), and then aggregate their predictions when classifying test
records.

4.1 Procedure

In traditional classification problems, there is only one class label for the available
dataset. Based on the range of this class attribute, the problem can be classified as
binary (2-class) classification if there are two classes (or multi-class classification
problem if there are more than 2 classes).

In this SCADA domain, we have a hierarchy of class labels and the original dataset
contains three levels (labels) of classes. At the first or top level, the class label (18th
attribute) indicates if an instance is a normal or an attack sample as in binary classifi-
cation problems. If the instance is an attack sample, the class label has a sub-category
of the attack as the main-category attack at the second level. At the third-level, the
specific category of the main category attack is provided. The third label ’specific
result’ specifies the sub-category of an attack sample. Only one of the three labels is
considered as a class while doing the experiments, and the remaining two labels were
either ignored or treated as a categorical attribute. The valid combinations of the labels
are shown in the Table 5. For example, the third row indicates that only the categorized
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Table 5 Valid combinations of labels

Label Binary result Categorized result Specific result Comment

LII Label Ignore Ignore Detection

CLI Categorical attribute Label Ignore Main category classification,
knowing the presence of an
attack

ILI Ignore Label Ignore Main category classification
without knowing the presence
of an attack

CCL Categorical attribute Categorical attribute Label Specific category classification,
knowing the main category of
an attack

IIL Ignore Ignore Label Specific category classification,
without knowing the presence
of an attack

result is used for training, while ignoring the binary result and specific result. There
are three hierarchies of attack categorization:

1. Detecting the presence of an attack (binary result).
2. Classifying the attack into one of the main categories of attacks.
3. Classifying the attack into one of the sub-categories of attacks (specific result) as

listed in Table 1.

For example, (1: Attack, 2: NMRI attack, 3: Pipe) attack would be three levels of
class labels for a sample packet. This classification indicates that this is an attack packet
and itsmain category of attack isNMRI attack, and the special category ofNMRI attack
is pipe attack. This allows to train models based on each level of this classification
hierarchy. For example, we could build a model for just detecting presence of attacks
for the first category by ignoring the other levels of classification. We code the label
LII in order of levels of the hierarchy as (1) L: the label of the first level is used, (2)
I: the label from the second level is ignored, and (3) I: the label from the third level is
ignored.

If we build a model for detecting the main categories of attacks assuming that the
packet is an attack packet, it is coded as CLI: (1) C: the presence of attack is provided,
(2) L: the model is build based on the second level for the main category, and (3) I:
the third level is ignored. If we just focus on finding the specific categories ignoring
any knowledge about presence of an attack or the main category of the attack if there
is an attack, then it is coded as IIL: (1) I: the presence of attack is ignored, (2) I: the
main category of the attacks is ignored, and (3) L: the model is just built for the special
category (the third level).

Each of these levels is represented as an attribute in the dataset. Depending on the
way classifiers are built, we ignore some of these class levels and use the aforemen-
tioned coding scheme for labeling (e.g., IIL).

The commands used for the experiments are based on the information provided in
[2].
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4.2 Commands for Write Command Attacks

– mahout describe

This command generates the descriptor file for the given dataset. It basically creates
a metadata for the input dataset. The input parameters to this command would be the
.arff dataset file, path for the output file, and the attributes type description as shown
below:

mahout describe -p hdfs://localhost:9000
\/wckmeans_ss3/wcddcent.arff -f
\hdfs://localhost:9000/wckmeans_ss3/iil.info
\ -d 33 N I I L

The descriptor (-d) indicates that the dataset has thirty three numerical attributes (33N)
followed by ignoring the two labels (I I), and the specific category label (L). This
procedure corresponds to the 4th row in Table 5. The output of this command is a
.info.

– mahout buildforest

This command builds the trees using the partial builder implementation with the train-
ing data. The input parameters to this command would be the split size in bytes,
training dataset, the .info file generated by the describe command, the number of ran-
dom attributes to be selected at each node of the tree for splitting, the number of trees
to be built, and the output path for the forest.seq file as shown below:

mahout buildforest -Dmapred.max.splitsize
\ =2655590 -d hdfs://localhost:9000
\ /wckmeans_ss3/wcddcent.arff -ds
\ hdfs://localhost:9000/wckmeans_ss3
\/iil.info -sl 6 -p-t 100 -o hdfs://
\ localhost:9000/wckmeans_ss3/6100iil

The number of random attributes to be selected at each node of the tree for splitting
is set to the square root of the total number of features. Hence, 4 random attributes
were selected at each node with original dataset, 5 random attributes were selected at
each node with attribute difference dataset, and 6 random attributes were selected at
each node with 2-means dataset. 100 trees were built with all the three datasets.

The number of random attributes selected at each node is usually equal to the square
root of the total number of attributes in the dataset excluding the label. The importance
of split size will be discussed in the next section.

– mahout testforest

Once the model is available, we use it to classify the test data. The input parame-
ters for this command include the test dataset file (.arff file in this experiment), the
descriptor .info generated by the describe command, the path to the model formed by
the buildforest command, and the output path, as shown below:

123



374 Ann. Data. Sci. (2018) 5(3):359–386

mahout testforest -i hdfs://localhost:9000
\/wckmeans_ss3/wcddcent.arff -ds
\/iil.info -m hdfs://localhost:9000
\/wckmeans_ss3/6100iil -a -mr -o
\ hdfs://localhost:9000/wckmeans_ss3
\/6100iilout

4.3 Commands for Read Response Attacks

The commands for classifying read response attacks are similar to those used for write
command attacks, except for the mahout describe which takes different parameters
for -d option. The following procedure corresponds to the 4th row in Table 5.

mahout describe -p hdfs://localhost:9000
\/SCADARRAttacks/SCADARRA_Train.arff
\ -f /SCADARRAttacks/SCADARRA_TrainLII.info
\ -d 3 N C C L

3 random attributes were selected at each node with the original dataset, 2 random
attributeswere selected at each nodewith the attribute difference dataset, and 3 random
attributes were selected at each node with the 2-means dataset. 50 trees were built with
all three datasets.

4.4 Split Size

The split size parameter -Dmapred.max.split.size is the number of map-reduce tasks
that would be set in the partialbuilder class. This parameter affects the performance of
Hadoop. As the number of tasks increases, the framework overhead increases, which
increases the load balance and lowers the cost of failures. On the other hand, this might
even result in resource exhaustion [8]. After analyzing different split sizes for initial
experiments, split size for the experiments is chosen as 3. In other words, the data is
split into 3 partitions.

5 Experimental Results

In this section, we discuss the results of our experiments in terms of accuracy and
false negative rates for all the three datasets for various training and testing splits.
While comparing the performance for various splits (70–30, 80–20 and 100–100), we
provide analysis for IIL (specific category) experiments.

5.1 Performance Metrics

We provide results of classification using a number of performance metrics [30].

1. Confusion matrix The performance of a classification model is based on the counts
of test records correctly and incorrectly predicted by the model. These counts are
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tabulated in a confusion matrix. The format of a confusion matrix for a binary
classification problem is depicted in Fig. 2. Each fi j in this figure denotes the
number of records from class i predicted to be of class j . f11 is the number of true
positives, f10 is the number of false negatives, f01 is the number of false positives,
and f00 is the number of true negatives.

2. Accuracy It is the percentage of correct decisions made by the classifier. The prob-
lem with accuracy is that it does not consider the distribution of misclassification.
Accuracy measure is not discriminative.

Accuracy = f11 + f00
f11 + f10 + f01 + f00

(3)

3. False negative rate (FNR) It is the percentage of attack instances that are classified
as normal instances.

FNR = f10
f11 + f10

(4)

If a specific category attack is classified as another attack, this does not reduce the
FNR. In other words, only attacks that are classified as normal increase the FNR.

4. PrecisionThismetric determines the ratio of actual attacks to total attacks classified
by the system.

Precision = f11
f11 + f01

(5)

5. Recall This is the ratio of the number of instances that are classified correctly as
a category of attack to the total number of instances in that category of the attack.
It provides a metric to determine the true positive ratio in a category of the attack.
This is also known as sensitivity or hit rate.

Recall = f11
f11 + f10

(6)

6. F1 score This is harmonic mean of precision and recall, thus providing a single
measurement for a system. It has values between 1 (best case) and 0 (worst case).

F1 = 2 × Precision × Recall

Precision + Recall
(7)

7. Kappa The discrepancy between normal statistics and kappa is shown through
kappa statistics. It is basically a metric to quantitatively show the agreement
between two observers. In the context of classification results, it is an agree-
ment between the actual categories and predicted categories forms the basis for
calculation of kappa.

8. Categorical accuracy (Cacc) We define this accuracy measure for this work. Cat-
egorical accuracy is the ratio of correctly classified instances (normal or different
main categories of attacks) to total number of instances. The correctly classified
instances are those that belong to the same main attack category. It ignores mis-
classifications within a category. For instance, suppose we have three main classes
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Fig. 2 Confusion matrix for a
binary (2-class) classification
problem

of attacks, namely a, b, and c. Each of thesemain classes have three sub categories,
namely a0, a1, and a2; b0, b1, and b2; and c0, c1, and c2. If the classifier predicts
the classes based on the sub category (a0, a1, a2, b0, b1, b2, c0, c1, and c2) , then
categorical accuracy considers the main category (a, b, and c) to measure accuracy
instead of sub category. If an instance is classified as a1 instead of a0, it is still
considered to be correctly classified by categorical accuracy, since it belongs to
the same main category a and not b or c.

5.2 Experimental Results for Write Command Attacks

This section provides the results of the experiments for write command attacks for
original, attribute difference, and 2-means datasets.

5.2.1 Original Dataset

The results for the 70–30 training–testing sets for the IIL label are discussed here.
98% of the normal packets (0) were classified correctly. Critical condition attacks
(17), PID cycle time attacks (11–12), and PID gain attacks (3–4) were also classified
correctly. However, 32% of the bad crc (18), 98% of the system mode (15), 73% of
the pump (13), 90% of PID deadband (10), and 97% of PID deadband (9) attacks
were missed (classified as normal). The false negative rate is 37.8%, which is quite
high. Solenoid attacks (14) were not detected at all. The accuracy of the classifier is
85.7098%.

The summary of classification results for the original dataset for 70–30, 80–20, and
100–100 splits is shown in Fig. 3. The accuracies were high when the entire dataset
(100–100) is used for both training and testing the classifier, since the classifier learns
well in this case. The accuracies for 70–30 and 80–20 training–testing splits were
almost close to each other, and they represent amore realistic performance, as different
datasets were used for training and testing the classifier.

5.2.2 Attribute Difference Dataset

The classification results for the 70–30 training–testing sets for the IIL label are dis-
cussed here. We have the following observation with respect to the original dataset.
0.7% of the normal packets (0) were classified as attacks. The classification accuracy
of pump (13) attack is the same.PID rate (8),PID reset rate (6),PID deadband (9–10),
system mode (15), and bad crc (18) attacks were detected far more better. The false
negative rate is reduced from 37.8 to 27.7%. Hence, more number of attacks were
detected in this case. While no solenoid attack was detected using the original dataset,
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Fig. 3 Performance of random forest classification for write command attacks using the original dataset
for different training–testing splits and different labels

only one instance of the solenoid attack could be detected with this dataset. The accu-
racy of the classifier is 91.019%. The classification accuracy is 5% more than using
the original dataset. The summary of classification results for the original dataset for
70–30, 80–20 and 100–100 splits is shown in Fig. 4. The accuracies for 70–30 and
80–20 training–testing splits are close to each other. The results have improved by 7%
with the use of attribute difference dataset for classification

5.2.3 2-Means Dataset

The experimental results for the 70–30 training–testing sets for the IIL label are dis-
cussed here. We have the following observation with respect to the attribute difference
dataset. 99% of the normal packets (0) were classified correctly. The attack catego-
rization was less when compared to the attribute difference dataset. Solenoid attacks
(14) could not be detected at all as in using the original dataset. The false nega-
tive rate increased from 27.7 to 29.3%. This is still low when compared to the false
negative rate of the original dataset and it is slightly more when compared to the
false negative rate of the attribute difference dataset. The accuracy of the classifier
is 92.0593%. The classification accuracy is 6% more than the original dataset but
is slightly higher compared to the attribute-difference dataset. However, more attack
packets are missed.

The accuracies for 70–30 and 80–20 training–testing split are close to each other as
shown in Fig. 5, except for the ILI (main category) case were 80–20 performed well.
The results have improved upto 9% when compared to the original dataset.
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Fig. 4 Performance of random forest classification for write command attacks using the attribute difference
dataset for different training–testing splits and different labels

Fig. 5 Performance of random forest classification for write command attacks using the 2-means dataset
for different training–testing splits and different labels
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Fig. 6 Classification accuracies for write command attacks using different datasets with training–testing
splits of 70–30 respectively

5.2.4 Summary

The accuracies for 70–30 training–testing splits for all the label combinations are
shown in Fig. 6. There is an improvement in classification with the use of attribute
difference and 2-means dataset. More number of PID rate (8), PID reset rate (6), PID
deadband (9–10), systemmode (15), and bad crc (18) attacks were classified correctly
by attribute difference and 2-means datasets. However, solenoid attacks (14) could not
be detected by the classifier with all the three datasets (except for one case using the
attribute difference dataset).

5.3 Experimental Results for Read Response Attacks

The classification results for the read response attacks are provided for each dataset:
original, attribute difference, and 2-means datasets.

5.3.1 Original Dataset

The experimental results for the 70–30 training–testing sets for the IIL label are dis-
cussed here. All the normal packets were classified correctly. The negative pressure
attacks (32) were classified correctly. The slope (27), random value (30), fast (33), and
slow (35) attacks were not detected by the classifier. The false negative rate is 56.5%.
This is unacceptably low. More than half of the attacks were classified as normal by
the classifier. The accuracy of the classifier is 75.9562%.

As shown in the Fig. 7, the accuracies for 70–30 and 80–20 training–testing split
are close to each other, except for the ILI (main category) case were 80–20 performed
well.

5.3.2 Attribute Difference Dataset

The experimental results for the 70–30 training–testing sets for the IIL label are dis-
cussed here. We have the following observation with respect to the original dataset.
Few of the normal packets (1%) were classified as attacks. The slope (27), random
value (30), fast (33), and slow (35) attacks were detected by the classifier with this
dataset (which were not detected using the original dataset). The false negative rate is
reduced from 56.5 to 7.16% and is quite low when compared to the original dataset. A
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Fig. 7 Performance of random forest classification for read response attacks using the original dataset for
different training–testing splits and different labels

high number of attacks were detected with this dataset. The accuracy of the classifier
increased from 75.9562 to 92.0015%.

As shown in the Fig. 8, the accuracies for 70–30 and 80–20 training–testing split
are close to each other.

5.3.3 2-Means Dataset

The experimental results for the 70–30 training and testing sets for the IIL label
are discussed here. We have the following observation with respect to the attribute
difference dataset. The random value (39–31), fast (33–34), rise/fall (25), slope (28),
and slow (35) attacks were detected far better by the classifier. The rise/fall (26) were
detected more accurately with this dataset. However, the negative pressure attacks
(32), slow (35), and slope (27) attacks were detected less accurately with respect to
the attribute difference dataset. The false negative rate is 8.9% and is slightly higher
compared to the attribute-difference dataset but is quite low when compared to the
original dataset. The accuracy of the classifier increased from 92.0015 to 92.7375%.

As shown in the Fig. 9, the accuracies for 70–30 and 80–20 training–testing split
are close to each other.

5.3.4 Summary

The accuracies for 70–30 training–testing splits for all the label combinations are
shown in Fig. 10. There is an improvement in classification with the use of attribute
difference and 2-means datasets. The slope (27), random value (30), fast (33), and
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Fig. 8 Performance of random forest classification for read response attacks using the attribute difference
dataset for different training–testing splits and different labels

Fig. 9 Performance of random forest classification for read response attacks using the 2-means dataset for
different training–testing splits and different labels
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Fig. 10 Classification accuracies for read response attacks using different datasets with training–testing
splits of 70–30 respectively

Fig. 11 Performance statistics
for read response attacks using
Matlab’s Ensemble Bagged trees
with holdout—30% using
different datasets

slow (35) attacks that were not detected with the original dataset were detected and
classified almost correctly with the attribute difference and 2-means datasets.

5.4 Summary of Experiments

The attribute difference dataset and the 2-means dataset gave high classification accu-
racies when compared to the original dataset for both the write command attacks and
the read response attacks. The solenoid (14) attacks could not be detected by either
the original dataset and the 2-means dataset, however a single instance of this attack
was detected by the attribute difference dataset. The pump (13) attack’s classification
accuracy was the same for all the three datasets (original dataset, attribute difference
dataset, and 2-means dataset). Overall, the classification accuracies were significantly
improved with the attribute difference and the 2-means datasets.

5.5 Discussion on Performance of Apache Mahout

The experiments for classification of read response attacks and write command attacks
for IIL (specific category) are conducted using Matlab’s classification learner with a
training–testing split of 70–30. The ensemble bagged trees algorithm is used as the
classification algorithm here as it gave good results compared to other classifiers. The
holdout validation scheme is used for all the experiments where 30% of data is held
out for testing. The test set is picked up randomly by the classifier [16] unlike the
time-ordered test set used for Mahout’s experiments. Hence, the training–testing sets
used in Matlab’s experiments are different from those used for Mahout’s experiments.
The results of these experiments for all the three datasets are shown in Figs. 11 and
12.

For read response attacks, Matlab’s ensemble bagged trees method yielded around
3% accuracy better than the Mahout’s random forest. For write attacks, Matlab’s
ensemble bagged trees method performed significantly better than Mahout’s random

123



Ann. Data. Sci. (2018) 5(3):359–386 383

Fig. 12 Performance statistics
for write command attacks using
Matlab’s Ensemble Bagged trees
with holdout—30% using
different datasets

forest with almost 8% improvement in accuracy. Moreover, the addition of new fea-
tures (attribute difference dataset and 2-means dataset) significantly improved the
performance of the classifier. The false negative rate is reduced from 40.5 to 5.8%
in case of read response attacks. For write attacks, the false negative rate is low-
ered by 2.21% with attribute difference dataset. The 2-means dataset further lowered
the false negative rate to 4.61% (compared to false negative rate of 9.99% for the
original dataset). The solenoid (14) attacks (write command attack) which were not
detected by Mahout’s random forest were detected with Matlab’s ensemble bagged
trees algorithm with a classification accuracy of 84.86%. The Mahout’s random forest
classification algorithm must be improved to give better results, especially for write
command attacks. The addition of new features not only improved accuracy of the
classifier but also gave low false negative rate values. Thus, the new features are good
and are critical for detecting attacks.

6 Conclusion

The principal objective of this study is to categorize the attacks in a SCADA system
using a big data ecosystem. The dataset in this study is basically for comparison pur-
poses, and eventuallywewill be using huge datasets in real time SCADAsystems. This
study provides a basis on how to deal with SCADA attacks on a big data framework.
Apache Mahout’s random forest is used to classify the attacks into major categories
or specific categories on a Hadoop framework. The partition size should be set to the
amount of data that can be loaded into the memory without failing the classification
job. Based on the size of the partition, the number of splits can be determined. It may be
unnecessary to have toomany splits with small partition sizes. Reducing the number of
partitions may improve the classification accuracy. The classification is performed by
using the information present in the current packet and the previous packet(s). It is dif-
ficult to determine whether a packet is normal or not by looking at the attribute values
without considering attribute values from previous packets. A packet could be normal
at one time and could be attack another time. Thus, it is critical to use the information
present in the current packet and the previous packet(s) while categorizing attacks.
New features have been extracted from the original attributes. The history of the origi-
nal attributes is analyzed using K-means clustering. The experiments were conducted
using three different datasets: original dataset, attribute difference dataset, and 2-means
dataset. A 2% to 18% improvement in classification accuracy was observed for the
write command attacks and a 5–17% improvement was observed for the read response
attacks for a 70–30 training–testing splits. The classification accuracy is significantly
improved through this approach of using the information present in both the previous
packet(s) and the current packet.
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The experimental results for Matlab’s ensemble bagged trees classification algo-
rithm show that Mahout’s random forest must be improved to give better results,
especially for classification of write command attacks. Mahout’s random forest can
work with very large data but it should be more powerful than the classifiers running
on a single system. The FNR reduced significantly with the addition of new features.
Our new features improved the performance of the classifier for bothMahout’s random
forest and Matlab’s ensemble bagged trees algorithm.

Instead of using 2-means, we could find the difference between the current and
the most different packet in the history, or we could use the maximum of differences
for the history of p packets. This could be studied as future work. Since in our study
2-means generated satisfactory results, we did not perform further experiments. We
should note that our method does not rely on proper clustering of normal and attack
packets. Adding additional attributesmay affect the distance function used in k-means.
For proper clustering, it may be critical. Our method just extracts two sets of mean
values from the history of p packets. However, the effect of the number of clusters
could be studied as future work.
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