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Abstract In classification problems whenmultiple algorithms are applied to different
benchmarks a difficult issue arises, i.e., how can we rank the algorithms? In machine
learning, it is common to run the algorithms several times and then a statistic is calcu-
lated in terms of means and standard deviations. In order to compare the performance
of the algorithms, it is very common to employ statistical tests. However, these tests
may also present limitations, since they consider only the means and not the standard
deviations of the obtained results. In this paper, we present the so-called A-TOPSIS,
based on Technique for Order Preference by Similarity to Ideal Solution (TOPSIS),
to solve the problem of ranking and comparing classification algorithms in terms of
means and standard deviations. We use two case studies to illustrate the A-TOPSIS
for ranking classification algorithms and the results show the suitability of A-TOPSIS
to rank the algorithms. The presented approach can be applied to compare the perfor-
mance of stochastic algorithms in machine learning. Lastly, to encourage researchers
to use the A-TOPSIS for ranking algorithms, we also presented in this work an easy-
to-use A-TOPSIS web framework.
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1 Introduction

In machine learning, and more precisely in classification problems, it is very com-
mon applying different algorithms to many benchmarks several times. Normally, the
performance of the algorithms is analyzed using the mean and the standard deviation
of some known metric, such as the classification accuracy. Next, we need to com-
pare the algorithms and a difficult question arises: how to compare these algorithms
effectively? The first answer to this question is to use statistical tests, i.e., parametric
and/or nonparametric. The statistical tests can detect if there are differences between
the performances of the algorithms [4,5]. One problem is if there are differences,
which algorithm is the best, the second best, and the worst? Using nonparametric
statistical tests, it is necessary to make pairwise and multiple comparisons among the
algorithms. Obviously, the number of tests required increases greatly with the number
of algorithms being analyzed. This is problematic, firstly because of the tiresomework
of comparing each pair of algorithms; secondly, and more importantly, the probability
of making a mistake increases. In addition, these tests may also present limitations,
since they consider only the means and not the standard deviations of the obtained
results.

Over the past few years, some approaches have been proposed in order to rank
classification algorithms. Brazdil and Soares [2] presented three methods to gener-
ate rankings of classification algorithms. However, these methods are not robust and
sometimes their results do not match with the statistical tests. Peng et al. [13] devel-
oped a decision-making framework to rank classification algorithms. Nonetheless,
this framework does not consider the standard deviation of the algorithms’ perfor-
mance. Moreover, the authors do not compare their methods with the statistical tests.
Kotthoff [10] investigated ranking approaches to select the most appropriate algo-
rithm for solving a particular problem. In this case, his goal is to tackle the Algorithm
Selection Problem [14], which is slightly different from ranking algorithms based on
performance in different benchmarks.

Recently, Krohling et al. [9] presented a new approach to support the selection of the
best algorithms by using the Hellinger distance [11]. This approach, called Hellinger-
TOPSIS, provides a rank order of the algorithms in an easy and direct way, using
the mean and the standard deviation of the performance of the algorithms. However,
the Hellinger-TOPSIS presents some shortcomings. Firstly, the mean and the standard
deviation of the algorithms’ performance have the same importance. Usually, themean
of the performance is more important than the standard deviation. In the Hellinger-
TOPSIS we cannot control the influence of these two parameters. Second, if any
algorithm in the group is deterministic, i.e, the results obtained are described just by
the means, and it must be compared with other stochastic ones, the Hellinger-TOPSIS
cannot handle such a case, because in the algorithm the standard deviation must be
different from zero.

In our previous work, we proposed the A-TOPSIS [8], a new approach that pro-
vides a rank order of the evolutionary algorithms in cases where the performance
of the algorithms are expressed in terms of means and standard deviations. In this
work, we extend our previous approach by providing an in-depth investigation for two
case studies for classification problems. In addition, we develop an easy-to-use web
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framework for A-TOPSIS. The remainder of this paper is organized as follows: Sect. 2
presents a background in decision-making and in the TOPSIS. In Sect. 3, we present
the approach based on TOPSIS to deal with data matrix consisting of the performance
of algorithms in terms of means and standard deviations and we briefly describe the
web framework developed. In Sect. 4, we present simulation results for two case stud-
ies involving the classification task in order to illustrate the suitability of the presented
approach. In Sect. 5, conclusions and directions for future work are given.

2 Background in Decision-Making and TOPSIS

The Technique for Order Preference by Similarity to Ideal Solution (TOPSIS), devel-
oped byHwang andYoon [6], is a technique to evaluate the performance of alternatives
through the similarity with the ideal solution. According to this technique, the best
alternative would be one that is closest to the positive-ideal solution and farthest from
the negative-ideal solution. The positive-ideal solution is the one that maximizes the
benefit criteria and minimizes the cost criteria. The negative-ideal solution maximizes
the cost criteria andminimizes the benefit criteria. In summary, the positive-ideal solu-
tion is composed of all the best values attainable for the criteria, and the negative-ideal
solution consists of all the worst values attainable for the criteria. The interested reader
shall refer to Behzadian et al. [1] for a broad survey about TOPSIS.

Let us consider the decision matrix A, which consists of alternatives and criteria,
described by:

A1
A = . . .

Am

C1 . . . Cn⎛
⎜⎝
x11 . . . x1n
...

. . .
...

xm1 · · · xmn

⎞
⎟⎠ (1)

where A1, A2, . . . , Am are viable alternatives, and C1,C2, . . . ,Cn are criteria, xi j
indicates the rating of the alternative Ai with respect to criterionC j .Theweight vector
W = (w1, w2, . . . , wn) is composed of the individual weights w j ( j = 1, . . . , n), for
each criterion C j and satisfies

∑n
j=1 w j = 1. In general, the criteria can be classified

into two types: benefit and cost. The benefit criterion means that a higher value is
better, while for the cost criterion the opposite is valid. The data of the decision
matrix A come from different sources, so it is necessary to normalize it in order to
transform it into a dimensionless matrix, which allows the comparison of the various
criteria. In this work, we use the normalized decision matrix R = [

ri j
]
m×n with i =

1, . . . ,m, and j = 1, . . . , n. The normalized value ri j is calculated as:

ri j = xi j√∑m
i=1 x

2
i j

,with i = 1, . . . ,m; j = 1, . . . , n. (2)

or

ri j = xi j
xi max

,with i = 1, . . . ,m; j = 1, . . . , n. (3)
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The normalized decision matrix R represents the relative rating of the alterna-
tives. After normalization, one calculates the weighted normalized decision matrix
P = [

pi j
]
m×n with i = 1, . . . ,m, and j = 1, . . . , n by multiplying the normal-

ized decision matrix by its associated weights. The weighted normalized value pi j is
calculated as:

pi j = w j · ri j with i = 1, . . . ,m, and j = 1, . . . , n. (4)

The TOPSIS is described in the following steps [6,7]:

Step 1 Identify the positive ideal solutions A+ (benefits) and negative ideal solutions
A− (costs) as follows:

A+ = (
p+
1 , p+

2 , . . . , p+
n

)
(5)

A− = (
p−
1 , p−

2 , . . . , p−
n

)
(6)

where p+
j = (

maxi pi j , j ∈ J1;mini pi j , j ∈ J2
)

and p−
j =(

mini pi j , j ∈ J1;maxi pi j , j ∈ J2
) ; J1 and J2 represent the criteria benefit and cost,

respectively.
Step 2Calculate the Euclidean distances from the positive ideal solution A+ (benefits)
and the negative ideal solution A− (costs) of each alternative Ai , respectively as
follows:

d+
i =

√√√√
n∑
j=1

(d+
i j )

2 (7)

d−
i =

√√√√
n∑
j=1

(d−
i j )

2 (8)

where d+
i j = p+

j − pi j ,with i = 1, . . . ,m and d−
i j = p−

j − pi j ,with i = 1, . . . ,m.

Step 3 Calculate the relative closeness coefficients ξi for each alternative Ai with
respect to the positive ideal solution as given by:

ξi = d−
i

d+
i + d−

i

(9)

Step 4 Rank the alternatives according to the relative closeness. The best alternatives
are those that have higher value ξi and therefore should be chosen.

3 A-TOPSIS: An Approach Based on TOPSIS for Ranking Algorithms

The A-TOPSIS is an approach for ranking algorithms that uses the TOPSIS as a
building block. Its main idea is to rank a group of algorithms by using the means and
the standard deviations of their performance. Let us consider a group of m algorithms
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Fig. 1 Illustration of the A-TOPSIS: an approach for ranking algorithms in terms of mean and standard
deviations

performed to n benchmarks. We can set a decision matrix using all the performance
means and the standard deviations of each algorithm for each benchmark as follows:

D =
A1
...

Am

C1 . . . Cn⎛
⎜⎝
x11 . . . x1n
...

. . .
...

xm1 · · · xmn

⎞
⎟⎠ =

⎛
⎜⎝

(μ11, σ11) . . . (μ1n, σ1n)
...

. . .
...

(μm1, σm1) · · · (μmn, σmn)

⎞
⎟⎠

where A1, A2, . . . , Am are alternatives, C1,C2, . . . ,Cn are criteria, xi j indicates the
rating of the alternative Ai with respect to criterion C j described in terms of its mean
and standard deviations (μi j , σi j ), respectively. As we can note, for the A-TOPSIS,
the alternatives consist of the algorithms and the criteria are the benchmark problems.

The decision matrix D can be split into two matrices, given by D = {
Mμ, Mσ

}
:

Mμ =
⎛
⎜⎝

μ11 . . . μ1n
...

. . .
...

μm1 · · · μmn

⎞
⎟⎠ Mσ =

⎛
⎜⎝

σ11 . . . σ1n
...

. . .
...

σm1 · · · σmn

⎞
⎟⎠

where Mμ and Mσ are the matrices of the means and the standard deviations of
the algorithms performance for each benchmark problem. From these matrices, we
developed a new framework combining the TOPSIS as illustrated in Fig. 1.

3.1 A-TOPSIS Algorithm

Next, we present the step-by-step of the proposed framework:

Step 1 Normalize the matrices Mμ and Mσ .
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Step 2 Identify the positive ideal solutions A+ (benefits) and negative ideal solutions
A− (costs) for each matrix as follows:

A+ = (
p+
1 , p+

2 , . . . , p+
n

)
(10)

A− = (
p−
1 , p−

2 , . . . , p−
n

)
(11)

where p+
j = (

maxi pi j , j ∈ J1;mini pi j , j ∈ J2
)

and p−
j =(

mini pi j , j ∈ J1;maxi pi j , j ∈ J2
)
; J1 and J2 represent the criteria benefit and cost,

respectively.
Step 3Calculate the Euclidean distances from the positive ideal solution A+ (benefits)
and the negative ideal solution A− of each alternative Ai , respectively as follows:

d+
i =

√√√√
n∑
j=1

(p+
j − pi j , )2 with i = 1, . . . ,m. (12)

d−
i =

√√√√
n∑
j=1

(p−
j − pi j )2 with i = 1, . . . ,m. (13)

Step 4 Calculate the relative closeness coefficients for each alternative ξi with respect
to positive ideal solution as:

ξi = d−
i

d+
i + d−

i

with i = 1, . . . ,m. (14)

Step 5 After calculating the vector ξi for both decision matrices, we obtain a data
matrix that is made up of the two vectors of the relative closeness coefficients, as
given by:

C =
⎛
⎜⎝

1ξ1
2ξ1

...
...

1ξm
2ξm

⎞
⎟⎠ (15)

In this case, to each of the vectors, it is assigned a weightW = (w1, w2) = (
wμ,wσ

)
,

where wμ and wσ represent the weight assigned to the criteria means, and standard
deviations, respectively, which satisfies wμ + wσ = 1. One can now obtain the
weighted relative-closeness coefficients matrix by introducing the importance weights
to each one of the relative-closeness coefficient vector, as given by:

C =
⎛
⎜⎝

w1
1ξ1 w2

2ξ1
...

...

w1
1ξm w2

2ξm

⎞
⎟⎠ (16)

123



Ann. Data. Sci. (2018) 5(1):93–110 99

From this stage on, the method continues by applying the standard TOPSIS to the
resulting matrix in order to identify the global ranking.
Step 6 Identify the global positive ideal solution A+

G and the global negative ideal
solution A−

G , respectively, as follows:

A+
G = (

p+
G1, p

+
G2

) =
(
max
i

lξi , l ∈ J1;min
i

lξi l ∈ J2

)
. (17)

A−
G = (

p−
G1, p

−
G2

) =
(
min
i

lξi , l ∈ J1;max
i

lξi l ∈ J2

)
. (18)

where J1 and J2 represent the criteria benefit and cost, respectively.
Step 7 Calculate to each alternative Ai the distances from the global positive ideal
solution A+

G and from the global negative ideal solution A−
G , respectively, as follows:

d+
Gi =

√√√√ 2∑
l=1

(
lξi − p+

Gl

)2
with i = 1, . . . ,m. (19)

d−
Gi =

√√√√ 2∑
l=1

(
lξi − p−

Gl

)2
with i = 1, . . . ,m. (20)

Step 8 Calculate the global relative-closeness coefficients ξGi for each alternative Ai

with respect to global positive ideal solution A+
G as:

ξGi = d−
Gi

d−
Gi + d+

Gi

(21)

Step 9 Rank the alternatives according to the relative closeness coefficients. The best
alternatives are those that have higher value ξGi and therefore should be chosen.

3.2 A-TOPSIS Web Framework

In order to encourage researchers andpractitioners fromdifferent areas of knowledge to
use the A-TOPSIS for ranking algorithms, we provide an easy-to-use web framework.
As shown in Fig. 2, to use this framework the user needs to set the matrices Mμ and
Mσ as .csv files and the value of the weights for each one. Thereby, the framework
provides the graph bar rank and the values of the closeness coefficients.

The A-TOPSIS framework can be easily used by accessing the web address http://
www.inf.ufes.br/~agcpacheco/alg-ranking/.

4 Simulation Results

In this section, we present two case studies involving classification problems. In order
to compare our results, we also apply the Hellinger-TOPSIS for each case. As the
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Fig. 2 The A-TOPSIS
framework

Hellinger-TOPSIS cannot handle a standard deviation equal to zero, we set a very
small value as the standard deviation in cases where this occurs. Lastly, we used
the nonparametric Friedman test followed by Wilcoxon test as a pos hoc, both with
pvalue = 0.05, in order to certify the quality of the rank. For more details about the
statistical tests performed in this section, the reader may refer to Derrac et al. [4].

4.1 Case Study I

In this case study, we have an ensemble of classifiers, containing four classifiers:
feedforward neural network (FNN), extreme learning machine (ELM), discriminative
restricted Boltzmann machine (DRBM) and K-nearest neighbors (KNN). In addition,
we have three aggregation methodologies: the average of the supports (AVG), the
majority voting (MV) and the Choquet integral (CHO) [12]. All these classifiers were
applied to 12 benchmarks, and their performance for each benchmark is described
in Table 1. Our goal is to rank the seven algorithms according to their performance.
Therefore, the decision matrix D = {

Mμ, Mσ

}
, presented in Sect. 3, is set by using

the values described in Table 1.
As we can see in Table 1, the KNN algorithm does not have a standard deviation

because it was used with just one value of k. Therefore, we divided this case study into
two parts. First, we remove the KNN and consider the remaining classifiers. Second,
we consider all seven classifiers setting the KNN standard deviation equal to zero.
We decided to do it to show the ranking differences between the A-TOPSIS and the
Hellinger-TOPSIS when we include an algorithm with standard deviation equal to
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Table 2 Rank by varying the values of the weight—case study I, part I

Weight variation Ranking

[mean, std]

[0.5, 0.5] CHO � MV � AVG � ELM � DRBM � FNN

[0.6, 0.4] CHO � MV � AVG � FNN � ELM � DRBM

[0.7, 0.3] CHO � MV � AVG � FNN � ELM � DRBM

[0.8, 0.2] CHO � MV � AVG � FNN � ELM � DRBM

[0.1, 0.9] CHO � MV � AVG � FNN � ELM � DRBM

[1, 0] CHO � MV � AVG � FNN � ELM � DRBM

Fig. 3 Rank in bar graph for each weights configuration—case study I, part I

zero (recall the Hellinger-TOPSIS considers the mean and the standard deviation with
the same importance). For both parts, we carry out a sensitivity study by varying the
weights for the mean and the standard deviation, respectively.

4.1.1 Case Study I: Part I

From the Table 1, we remove the KNN and maintain the remaining algorithms.
Thereby, the decision matrix for this experiment has six alternatives (algorithms) and
12 criteria (benchmarks). In Table 2 is described the rank provided by the A-TOPSIS
by varying the weights for the mean and the standard deviation.

As we can see, the first, second and third place in the rank do not change regardless
the weight. In fact, the only change in the rank occurs when the values of the weights
become [0.6, 0.4]. In this case, the FNN rises to the fourth place, the ELM goes down
to the fiftieth place and the DRBM goes to the last place. Varying the weights from
[0.6, 0.4] to [1, 0] does not change the rank. In Fig. 3 is illustrated the raking in the
bar graph for each weights configuration.
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Table 3 Rank comparison between A-TOPSIS and H-TOPSIS—part I

Method Ranking

A-TOPSIS CHO � MV � AVG � FNN � ELM � DRBM

Hellinger-TOPSIS CHO � MV � AVG � FNN � ELM � DRBM

Fig. 4 Rank in bar graph for A-TOPSIS and H-TOPSIS—case study I, part I

Table 4 Wilcoxon test pairwise
comparison with p less than
0.05—case study I, part I

Pairwise p Pairwise p

FNN–CHO 0.009277 ELM–CHO 0.042480

DRBM–AVG 0.015137 AVG–CHO 0.000977

DRBM–MV 0.026855 MV–CHO 0.009277

DRBM–CHO 0.000488 – –

We compare the results obtained by A-TOPSIS with the Hellinger-TOPSIS. Since
the rank provided by the A-TOPSIS becomes stable with weights equal to [0.6, 0.4],
we chose these values for this comparison. In Table 3 is presented the rank for each
methodology, which is also depicted in Fig. 4 in the bar graph. According to the
presented results, both methods obtained the same rank.

The Friedman test for this experiment provides pvalue = 0.00005, leading to reject
H0. Then, we perform the pairwise comparisons using the Wilcoxon test. According
to the results presented in Table 4, the CHO classifier is significantly different when
compared to the other ones. Furthermore, theDRBMclassifier is significantly different
than AVG, MV and CHO. Thus, the statistical tests indicate that the CHO classifier
is the best algorithm and the DRBM is the worst one. This finding is consistent with
the results obtained by A-TOPSIS. Nonetheless, the statistical tests cannot provide a
rank with all the classifiers as A-TOPSIS does.

4.1.2 Case Study I: Part II

In this experiment, we consider all the algorithms in Table 1. Thereby, the decision
matrix for this experiment has seven alternatives (algorithms) and 12 criteria (bench-
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Table 5 Rank by varying the values of the weights—case study I, part II

Weight variation Ranking

[mean, std]

[0.5, 0.5] CHO � MV � KNN � DRBM � AVG > ELM � FNN

[0.6, 0.4] CHO � MV � AVG � ELM � FNN � DRBM � KNN

[0.7, 0.3] CHO � MV � AVG � FNN � ELM � DRBM � KNN

[0.8, 0.2] CHO � MV � AVG � FNN � ELM � DRBM � KNN

[0.1, 0.9] CHO � MV � AVG � FNN � ELM � DRBM � KNN

[1, 0] CHO � MV � AVG � FNN � ELM � DRBM � KNN

Fig. 5 Rank in bar graph for each values of the weight—case study I, part II

marks). In Table 5 is described the rank provided by the A-TOPSIS by varying the
weights for the mean and the standard deviation.

As we can notice in Table 5, for all weights the first and the second place in the
rank do not change. For the weights equal to [0.5, 0.5], the KNN reaches the third
place in the rank. However, when the weights are set equal to [0.6, 0.4], only 10% of
variation, the KNN goes down to the last place. Moreover, for these weights, the ELM
rises from the sixth to the fourth place. Nevertheless, when the weights are equal to
[0.7, 0.3], the ELM and the FNN switch their positions. From the weights [0.7, 0.3]
to [1, 0], the rank become stable and does not change anymore. In Fig. 5 is illustrated
the rank in bar graph for each weights configuration.

Again, we compare the results obtained by A-TOPSIS with the Hellinger-TOPSIS.
For this experiment, we choose the stable weights [0.7, 0.3]. In Table 6 is presented
the rank for each methodology, which is also depicted in Fig. 6 in the bar graph.

In Table 6, we can easily check that the ranking of the alternatives CHO, FNN,
DRBMandKNN are the same in bothmethods. Thus, the ranking of the best andworst
alternatives are kept. On the other hand, the ranking of the alternatives MV, AVG and
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Table 6 Rank comparison between A-TOPSIS and H-TOPSIS—case study I, part II

Method Ranking

A-TOPSIS CHO � MV � AVG � FNN � ELM � DRBM � KNN

Hellinger-TOPSIS CHO � ELM � MV � FNN � AVG � DRBM � KNN

Fig. 6 Rank in bar graph for A-TOPSIS and H-TOPSIS—case study I, part II

Table 7 Wilcoxon test pairwise
comparison with p less than
0.05—case study I, part II

Pairwise p Pairwise p

FNN–KNN 0.004883 ELM–CHO 0.042480

FNN–CHO 0.009277 KNN–AVG 0.009766

DRBM–AVG 0.015137 KNN–MV 0.003418

DRBM–MV 0.026855 KNN–CHO 0.000977

DRBM–CHO 0.000488 AVG–CHO 0.000977

ELM–KNN 0.042480 MV–CHO 0.009277

ELM have changed their positions. Comparing the rank in both experiments (Tables 3,
6), we observe that the A-TOPSIS include the KNN in the last position and maintain
the ranking for the remaining algorithms. Conversely, the Hellinger-TOPSIS does not
do the same. Therefore, we conclude that the inclusion of the KNN directly affects
in the Hellinger-TOPSIS ranking. This happened because the Hellinger-TOPSIS does
not allow us to control the influence of the mean and the standard deviation in its
algorithm.

Similarly to the previous experiment, the Friedman test for this experiment provides
pvalue = 0.00007, leading to reject H0 . Next, we perform the pairwise comparisons
using the Wilcoxon test. According to the results presented in Table 7, the CHO
classifier is significantly different when compared to the other ones. In addition, the
KNN is also significantly different than the others, except DRBM. Lastly, the DRBM
is significantly different comparing to AVG, MV and CHO. Thus, the statistical tests
indicate that the CHO classifier is the best algorithm and the KNN and the DRBM are
the worst ones. Also in this case, this finding is consistent with the results obtained by
A-TOPSIS.
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Table 9 Rank by varying the values of the weights—case study II

Weight variation Ranking

[mean, std]

[0.5, 0.5] REC � LPC � EKNN � HKNN � LNC � ALH � FKNN � KNN

[0.6, 0.4] REC � HKNN � LNC � LPC � EKNN � ALH � FKNN � KNN

[0.7, 0.3] REC � HKNN � LNC � LPC � EKNN � ALH � FKNN � KNN

[0.8, 0.2] REC � HKNN � LNC � LPC � EKNN � ALH � FKNN � KNN

[0.9, 0.1] REC � HKNN � LNC � LPC � EKNN � ALH � FKNN � KNN

[1, 0] REC � HKNN � LNC � LPC � ALH � EKNN � FKNN � KNN

Fig. 7 Rank in bar graph for each values of the weight—case study II

4.2 Case Study II

This case study presented by Wen et al. [15] consists in a classification problem with
eight classifiers applied to 10 benchmarks. In Table 8 is described the performance of
the classifiers for each benchmark. Similar to the case study 1, our goal is to find the
rank of the classifiers according to their performance. It is worth mentioning that in
this case study the authors used the error rate as accuracy. The A-TOPSIS can easily
handle with this just changing the criterion from benefit to cost, i.e., the smaller the
value is, the better.

As in this case study we have eight algorithm and ten benchmarks, the decision
matrix has eight alternatives and ten criteria. In Table 9 is described the rank provided
by the A-TOPSIS by varying the weights for the mean and the standard deviation.

As we can notice in Table 9, the first and the last place are the same for all weights.
When the weights are varied from [0.5, 0.5] to [0.6, 0.4] the classifiers HKNN, LNC,
LPC and EKNN switch their positions. Varying the weights from [0.6, 0.4] to [0.9,
0.1] the rank does not change. Lastly, when the weights become [1, 0], the classifiers
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Table 10 Rank comparison between A-TOPSIS and H-TOPSIS—case study II

Method Ranking

A-TOPSIS REC � HKNN � LNC � LPC � EKNN � ALH � FKNN � KNN

Hellinger-TOPSIS REC � LNC ≈ HKNN � LPC � ALH � FKNN � EKNN � KNN

Fig. 8 Rank in bar graph for A-TOPSIS and H-TOPSIS—case study II

Table 11 Wilcoxon test
pairwise comparison with p less
than 0.05—case study II

Pairwise p Pairwise p

KNN–LMC 0.019531 EKNN–REC 0.001953

KNN–LPC 0.037109 LMC–REC 0.001953

KNN–HKNN 0.027344 LPC–REC 0.003906

KNN–REC 0.001953 HKNN–ALH 0.027344

FKNN–LMC 0.048828 HKNN–REC 0.003906

FKNN–HKNN 0.027344 ALH–REC 0.001953

FKNN–REC 0.001953 – –

EKNN and ALH switch their positions. In Fig. 7 is illustrated the rank in bar graph
for each weights configuration.

In Table 10 is described the rank provided by theA-TOPSIS andHellinger-TOPSIS.
For the A-TOPSIS we chose the stable weights [0.7, 0.3]. In addition, in Fig. 8 is
depicted the rank of each approach in bar graph.

From Table 10, we observe that there are some differences in the ranks. For both
ranks, the first and the last places do not change. However, in the Hellinger-TOPSIS
rank, the position of the classifiers LNC and HKNN are too close, therefore, they
are tied in second place. Furthermore, as we can see in Fig. 8, even though we can
distinguish the ranking for the classifiers FKNN, EKNN, LPC and ALH in Hellinger-
TOPSIS rank, the values of the closeness coefficients are too close. This issue does
not occur in A-TOPSIS.

For the case study II, the Friedman test provides pvalue = 0.00001, leading to
reject H0. The pos hoc obtained by Wilcoxon test is described in Table 11. According
to the results, the classifier REC is significantly different when compared to the other
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ones. In addition, the KNN classifier is significantly different from the LMC, LPC,
HKNN and REC. Lastly, the FKNN is significantly different than LMC, HKNN, REC
and ALH. Therefore, the statistical tests indicate that the best classifier is the REC and
the worst classifiers are KNN and EKNN. Also in this case, this finding is consistent
with the results obtained by A-TOPSIS.

5 Concluding Remarks

In this work, we present a thorough investigation about our previous work, the A-
TOPSIS framework. We carried out two cases studies case in which we detailed
the applicability of our approach and we compare it with the Hellinger-TOPSIS.
Throughout the experiments, we described the benefits of using the A-TOPSIS rather
the Hellinger-TOPSIS. In order to verify the suitability of the A-TOPSIS rank, we
performed the nonparametric tests of Friedman and Wilcoxon. The obtained results
showed the effectiveness of the approach and indicate that the A-TOPSIS can support
the statistical tests with a complete rank of all algorithms analyzed.

Despite we use classification problems in both studies case, the presented approach
is general and can be applied to compare the performance of any stochastic algorithms
in machine learning. In terms of computational burden, the A-TOPSIS consists of a
very simple computation procedure. It is worth to note that the TOPSIS is a well-
established and reliable methodology, which guarantee the A-TOPSIS effectiveness.
Finally, in order to encourage researchers and practitioners in the different areas of
knowledge, especially in machine learning, to use the A-TOPSIS, we provided a web
framework to rank algorithms in an easy way.
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