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Abstract In this paper we study various reliability properties of a Weibull inverse
exponential distribution. The maximum likelihood and Bayes estimates of unknown
parameters and reliability characteristics are obtained. Bayes estimates are obtained
with respect to the squared error loss function under proper and improper prior situa-
tions. We use the Lindley method and the Metropolis–Hastings algorithm to compute
the Bayes estimates. Interval estimation is also considered. Asymptotic and highest
posterior density intervals of unknown parameters are constructed in this respect. We
perform a numerical study to compare the performance of all methods and obtain com-
ments based on this study. We also analyze two real data sets for illustration purposes.
Finally a conclusion is presented.

Keywords Bayes estimates · Maximum likelihood estimates · Metropolis–Hastings
algorithm · Lindley approximation method · Highest posterior density interval

1 Introduction

In the past a number of probability distributions have been proposed in literature
that provide a comprehensive coverage for the reliability data analysis. Such studies
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have increasingly become very common in various research areas including, among
others, industrial and engineering applications, agricultural and bio-medical experi-
ments, weather predictions etc. Probability distributions like generalized exponential,
Weibull, lognormal, gamma etc. have found widespread applications in reliability the-
ory because of their applicability to model various failure time data indicating a broad
range of hazard rate behavior such as unimodal and monotonic pattern. Still these
models can be inadequate in situations where hazard rates indicate bathtub shaped
behavior. Several attempts have been made to extend family of distributions by uti-
lizing a number of techniques, the most commonly used of which is introduction of
additional parameter in corresponding survival functions. Mudholkar and Srivastava
[6] studied properties of an exponentiatedWeibull distribution which is quite a flexible
extension of theWeibull distribution due to its monotonic, unimodal or bathtub shaped
hazard rate behavior. In a subsequent paper Mudholkar and Hutson [7] further studied
reliability properties of this family of distribution. One may also refer to Alzaatreh
[1], Lin et. al.[4] and Tahir [12] for some more interesting results on this topic. In
this paper we study properties of aWeibull inverse exponential distribution and obtain
inference for unknown parameters, reliability and hazard rate functions. Note that the
density function of an inverted exponential distribution is given by

g(x) = λ

x2
e− λ

x ; x > 0, λ > 0, (1.1)

and the cumulative distribution function is

G(x) = e− λ
x ; x > 0, λ > 0. (1.2)

The corresponding hazard rate function is given by

h(x) =
λ
x2
e− λ

x

1 − e− λ
x

; x > 0, λ > 0. (1.3)

where λ is the rate parameter.
Weibull distribution is one of the most widely used distribution in reliability anal-

ysis, particularly in situations where data indicate monotonic hazard rates. However
as mentioned it may not be an adequate model for reliability data with bathtub shaped
or unimodal hazard rates. Examples of such nature often abound in reliability theory.
In this connection we mention that a number of modifications have been proposed to
the Weibull distribution in literature. Bourguignon et al. [2] studied various reliability
properties of a new wider Weibull-G family of distributions. They derived some new
special distributions from this family by assuming Weibull model as a base distri-
bution. They further showed that mathematical properties developed for the original
model are equally applicable to special cases also. In particular properties of quantile
function, moments, generating function and order statistics are established. To pro-
ceed further with the notations suppose that g(x;Λ) and G(x;Λ) denote the density
and distribution functions of a base model with Λ being a vector of parameters. Also
note that distribution function of a two-parameter Weibull distribution is of the form
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F(x;α, β) = 1 − e−αxβ
, x > 0, where α > 0 and β > 0 are unknown parameters.

Based on such an assumption, Bourguignon et al. [2] established a new generalization
of Weibull distribution, namely Weibull − G family of distributions. They replaced
the variable x with the term G(x;Λ)

1−G(x;Λ)
and obtained the distribution function of new

Weibull generalized distribution as

F(x;α, β,Λ) =
∫ G(x;Λ)

1−G(x;Λ)

0
αβtβ−1e−αtβdt

= 1 − e
−α

[
G(x;Λ)

1−G(x;Λ)

]β

; x ∈ R, α > 0, β > 0,

(1.4)

where G(x;Λ) denotes distribution function of the base model. Thus the correspond-
ing density function turns out to be

f (x;α, β,Λ)=αβg(x;Λ)
[G(x;Λ)]β−1

[1 − G(x;Λ)]β+1 e
−α

[
G(x;Λ)

1−G(x;Λ)

]β

; x ∈ R, α > 0, β > 0.

(1.5)
We denote this density function using the notationWeibull−G(α, β,Λ). Observe

that for β = 1 the corresponding Weibull generator reduces to an exponential gen-
erator. We further note that the odds ratio that a component having lifetime Z with
distribution function G(.) would fail at a time point x is G(x)

1−G(x) . Now if the random-
ness of this odds ratio of failure is modeled using the random variable X where X
follows a Weibull distribution then it is seen that

P(Z ≤ x) = P

(
Z ≤ G(x)

1 − G(x)

)
= F(x;α, β,Λ) (1.6)

corresponds to the original expression as given in Eq. (1.4). The survival function of
Weibull − G distribution is

S(x;α, β,Λ) = 1 − F(x;α, β,Λ) = e
−α

[
G(x;Λ)

1−G(x;Λ)

]β

; x ∈ R, α > 0, β > 0

(1.7)

and the hazard rate function is given by

h(x;α, β,Λ) = f (x;α, β,Λ)

S(x;α, β,Λ)
= αβg(x;Λ)

[G(x;Λ)]β−1

[1 − G(x;Λ)]β+1

= αβh(x;Λ)
[G(x;Λ)]β−1

[1 − G(x;Λ)]β
; x ∈ R, α > 0, β > 0,

(1.8)

where h(x;Λ) denotes the hazard rate function of the base model. Furthermore, Bour-
guignon et al. [2] estimated unknown model parameters using maximum likelihood
method and analyzed real data sets for illustration purpose. Tahir et al. [13] further pro-
posed another Weibull-G family of distributions and studied its various probabilistic
and statistical properties in a manner similar to Bourguignon et al. [2].
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The rest of the paper is organized as follows. In Sect. refs2, we introduce the model
and discuss some of its mathematical properties. The maximum likelihood estimates
(MLEs) of unknown model parameters and reliability characteristic are obtained in
Sect. 3. Bayes estimators are derived with respect to the squared error loss function in
Sect. 4. The Lindley method and the Metropolis–Hastings algorithm have been used
for this purpose. In Sect. 5, a numerical study is performed to compare suggested
estimates in terms of their mean square error and bias values. We analyze two real
data sets in Sect. 6. Finally a conclusion is presented in Sect. 7.

2 The Weibull-Inverted Exponential Distribution

In this section we propose a three parameter Wiebull-inverted exponential (WIE)
distribution. AssumeG(x) and g(x) are as in Eqs. (1.1) and (1.2). Then using Eq. (1.4),
the corresponding distribution function of WIE distribution is given by

F(x;α, β, λ) = 1 − e
−α

(
e

λ
x −1

)−β

; x > 0. (2.1)

The associated density function is given by

f (x;α, β, λ) = αβλ

x2
e

λ
x

(
e

λ
x − 1

)−β−1
e
−α

(
e

λ
x −1

)−β

; x > 0 (2.2)

for α > 0, β > 0, λ > 0. We denote this distribution as W I E(α, β, λ). The inverse
exponential distribution with parameter λ corresponds to the case when α = 1, β = 1.
Figures 1 and 2 depict plots of density and distribution functions of W I E(α, β, λ)

distribution, respectively, for different choices of values of parameters α, β and λ.
Visual analysis of Fig. 1 suggests that the proposed distribution is quite flexible in
nature and can acquire a variety of shapes such as positively skewed, J-reversed and
symmetric as well. We further observe that the corresponding distribution function is
an increasing function in x (Fig. 2).

The survival function S(x;α, β, λ), the hazard rate function h(x;α, β, λ) and the
reverse hazard rate function r(x;α, β, λ) of this distribution are respectively given by

S(x;α, β, λ) = e
−α

(
e

λ
x −1

)−β

; x > 0, (2.3)

h(x;α, β, λ) = αβλ

x2
e

λ
x

(
e

λ
x − 1

)−β−1 ; x > 0 (2.4)

and

r(x;α, β, λ) =
αβλ

x2
e

λ
x

(
e

λ
x − 1

)−β−1
e
−α

(
e

λ
x −1

)−β

1 − e
−α

(
e

λ
x −1

)−β
; x > 0 (2.5)

for α > 0, β > 0 and λ > 0.
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Fig. 1 Plots of the pdf for different values of α, β and λ

In Figs. 3 and 4we have plotted hazard rate function and reverse hazard rate function
for arbitrarily chosen values of parameters α, β and λ. Figure 3 indicates the flexibility
of the proposed distribution in terms of hazard rate function as it can acquire different
shapes such as constant, decreasing, increasing, unimodal, j-shaped or bathtub shaped
over the parameter space. The reverse hazard rate function is decreasing function as
can be seen in Fig. 4. These features suggest that prescribed model can be used to fit
different reliability data.

2.1 Mixture Representation

In this section we derive some mathematical properties of the prescribed model. We
first observe that analysis related to aW I E(α, β, λ) distribution can also be performed
using the following representation. By expanding the exponential term in Eq. (1.5),
we have

123



214 Ann. Data. Sci. (2018) 5(2):209–234

Fig. 2 Plots of the cdf for different values of α, β and λ

f (x;α, β,Λ) = αβg(x;Λ)
[G(x;Λ)]β−1

[1 − G(x;Λ)]β+1

∞∑
r=0

(−1)rαr

r !
(

G(x,Λ)

1 − G(x,Λ)

)βr

= αβg(x;Λ)

∞∑
r=0

(−1)rαr

r !
(G(x,Λ))β(r+1)−1

(1 − G(x,Λ))β(r+1)+1
. (2.6)

Also from generalized binomial theorem, we have

(1 − G(x,Λ))−(β(r+1)+1) =
∞∑
j=0

Γ (β(r + 1) + j + 1)

j !Γ (β(r + 1) + 1)
(G(x;Λ)) j . (2.7)
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Fig. 3 Plots of the hrf for different values of α, β and λ

Substituting Eq. (2.7) in (2.6), we find that we have

f (x;α, β,Λ) =
∞∑
r=0

∞∑
j=0

(−1)rαr+1βΓ (β(r + 1) + j + 1)

r ! j !Γ (β(r + 1) + 1)
g(x;Λ)(G(x;Λ))β(r+1)+ j−1.

(2.8)

Now combining Eqs. (1.1), (1.2) and (2.8), an alternative form of W I E(α, β, λ) dis-
tribution turns out as

f (x; α, β, λ) =
∞∑
r=0

∞∑
j=0

(−1)rαr+1βΓ (β(r + 1) + j + 1)

r ! j !Γ (β(r + 1) + 1)

λ

x2
e− λ

x

(
e− λ

x

)β(r+1)+ j−1

=
∞∑
r=0

∞∑
j=0

(−1)rαr+1βΓ (β(r + 1) + j + 1)

r ! j !Γ (β(r + 1) + 1)

λ

x2

(
e− λ

x

)β(r+1)+ j
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Fig. 4 Plots of the reverse hrf for different values of α, β and λ.

=
∞∑
r=0

∞∑
j=0

(−1)rαr+1βΓ (β(r + 1) + j)

r ! j !Γ (β(r + 1) + 1)

λ(β(r + 1) + j)

x2
e− λ(β(r+1)+ j)

x

=
∞∑
r=0

∞∑
j=0

(−1)rαr+1βΓ (β(r + 1) + j)

r ! j !Γ (β(r + 1) + 1)
g(x; λ(β(r + 1) + j)), (2.9)

where g(x;Λ) denotes the density function of an inverted exponential distribution
with Λ = λ(β(r + 1) + j). The corresponding alternative form of the distribution
function can be obtained as

F(x;α, β, λ) =
∞∑
r=0

∞∑
j=0

(−1)rαr+1βΓ (β(r + 1) + j)

r ! j !Γ (β(r + 1) + 1)
G(x; λ(β(r + 1) + j)),

(2.10)
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whereG(x;Λ) denotes the distribution function of an inverted exponential distribution
with Λ = λ(β(r + 1) + j). These above two representations are quite useful for
inferential applications.

2.2 Quantile, Median and Random Number Generation

Suppose that X represents a continuous random variable with distribution function
F(x). The pth quantile xp, 0 < p < 1 is then given by F(xp) = p. Accordingly
using the equation

1 − e
−α

(
e

λ
x p −1

)−β

= p, (2.11)

we obtain the pth quantile of the considered model as

xp = λ

log
[
1 + ((−α−1) log(1 − p))

−1
β

] . (2.12)

The corresponding median is

x0.5 = λ

log

[
1 + ( 1

α
log(2)

)−1
β

] . (2.13)

Monte Carlo simulations for a WIE distribution can be done using the probability
integral transformation technique.

2.3 Moments

We now discuss the kth noncentral moment of the W I E(α, β, λ) distribution. These
moments can be used to make inference about other characteristics of this model such
as measures of spread, skewness, kurtosis etc. The desired moment is given by

μ′
k = E[Xk ] =

∫ ∞

0
xk f (x; α, β, λ)dx

=
∫ ∞

0
xk

∞∑
r=0

∞∑
j=0

(−1)rαr+1βΓ (β(r + 1) + j)

r ! j !Γ (β(r + 1) + 1)
g(x; λ(β(r + 1) + j))dx

=
∞∑
r=0

∞∑
j=0

(−1)rαr+1βΓ (β(r + 1) + j)

r ! j !Γ (β(r + 1) + 1)

∫ ∞

0
xk

λ(β(r + 1) + j)

x2
e− λ(β(r+1)+ j)

x dx .

(2.14)
Assume z = λ(β(r+1)+ j)

x then after some simplifications, we have

μ′
k = E[Xk ] =

∞∑
r=0

∞∑
j=0

(−1)rαr+1βΓ (β(r + 1) + j)

r ! j !Γ (β(r + 1) + 1)

Γ (1 − k)

(λ(β(r + 1) + j))(1−k)
, ∀ k < 1.

(2.15)
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Note that the above series does not exist for k > 1. Therefore, the kth moment of
W I E(α, β, λ) distribution does not exist since the expression in Eq. (2.15) only exist
for k < 1.

2.4 Moment Generating Function

Themoment generating function (mgf),MX (t), provides an alternativeway formaking
inference related to certain probabilistic features. The desired mgf can be obtained as

MX (t) = E(et X ) =
∫ ∞

0
etx f (x;α, β, λ)dx .

This can be further rewritten as

MX (t) = E(et X ) =
∞∑
k=0

tk

k!
∫ ∞

0
xk f (x;α, β, λ)dx

=
∞∑
k=0

tk

k!μ
′
k .

(2.16)

Thus the moment generating function of W I E(α, β, λ) distribution does not exist
since kth moment of X exists only for k < 1.

2.5 Order Statistics

In this section we study properties of order statistics of the WIE distribution.
Here we discuss some useful properties related to the W I E(x;α, β, λ) distri-
bution. Let X1, X2, . . . , Xn denotes observations from this distribution and that
X(1), X(2), . . . , X(n) be the corresponding order statistics. Then density function of
the i th order statistic X(i) is given by

fi (x;α, β, λ) = 1

B(i, n − i + 1)
f (x;α, β, λ)[F(x;α, β, λ)](i−1)

[1 − F(x;α, β, λ)](n−i), (2.17)

where B(., .) is the beta function. Since 0 < F(x;α, β, λ) < 1 for x > 0, therefore
the term [1 − F(x;α, β, λ)](n−i) can be expanded as

[1 − F(x;α, β, λ)](n−i) =
n−i∑
j=0

(−1) j
(
n − i

j

)
[F(x;α, β, λ)] j . (2.18)
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Substituting this in Eq. (2.17), we have

fi (x;α, β, λ) = f (x;α, β, λ)

B(i, n − i + 1)

∞∑
j=0

(−1) j
(
n − i

j

)
[F(x;α, β, λ)]i+ j−1. (2.19)

Further, note that

[F(x;α, β, λ)]i+ j−1 =
∞∑
k=0

(−1)k
(
i + j − 1

k

)
e
−αk

(
e

λ
x −1

)−β

(2.20)

and then by substituting Eq. (2.1) in (2.20), we get

fi (x;α, β, λ) =
n−i∑
j=0

∞∑
k=0

(−1)( j+k)

(k + 1)B(i, n − i + 1)

(
n − i

j

)(
i + j − 1

k

)

f (x;α(k + 1), β, λ), (2.21)

where f (x;Σ) denotes the density function of the model with Σ = (α(k + 1), β, λ).
Thus the corresponding density function is a mixture of WIE densities.

In the next sectionwederive themaximum likelihood estimators of unknownparam-
eters α, β, λ along with reliability and hazard rate functions.

3 Maximum Likelihood Estimation

Let X1, X2, . . . , Xn be a random sample of size n taken from a W I E(α, β, λ) with
observed values being x1, x2, . . . , xn . Then the likelihood function of α, β and λ is
given by

L(α, β, λ) =
n∏

i=1

f (xi ;α, β, λ). (3.1)

Now using Eq. (2.1), we have

L(α, β, λ) =
n∏

i=1

α β λ

x2i
e

λ
xi

(
e

λ
xi − 1

)−β−1

e
−α

(
e

λ
xi −1

)−β

= αn βn λn
n∏

i=1

x−2
i e

(∑n
i=1

λ
xi

)
e
−α

∑n
i=1

(
e

λ
xi −1

)−β
n∏

i=1

(
e

λ
xi − 1

)−β−1

(3.2)

123



220 Ann. Data. Sci. (2018) 5(2):209–234

and corresponding log likelihood function is given by

l ∝ n logα + n logβ + n log λ +
n∑

i=1

λ

xi
− α

n∑
i=1

(
e

λ
xi − 1

)−β

−(β + 1)
n∑

i=1

log

(
e

λ
xi − 1

)
, (3.3)

where l = l(α, β, λ). The associated likelihood equations are obtained as

∂l

∂α
= n

α
−

n∑
i=1

(
e

λ
xi − 1

)−β

= 0, (3.4)

∂l

∂β
= n

β
+ α

n∑
i=1

(
e

λ
xi − 1

)−β

log

(
e

λ
xi − 1

)
−

n∑
i=1

log

(
e

λ
xi − 1

)
= 0, (3.5)

∂l

∂λ
= n

λ
−

n∑
i=1

1

xi
+ αβ

n∑
i=1

e
λ
xi

xi

(
e

λ
xi − 1

)−β−1

− (β + 1)
n∑

i=0

x−1
i

λ
xi(

e
λ
xi − 1

) = 0.

(3.6)

The maximum likelihood estimates α̂ , β̂ and λ̂, of α, β and λ, respectively, are
simultaneous solutions of the Eqs. (3.4), (3.5) and (3.6). Observe that α̂, β̂ and λ̂ can
not be obtained in closed forms and so we have employed a numerical technique to
compute these estimates.

In the next section Bayes estimators of unknown parameters and reliability charac-
teristics are obtained.

4 Bayes Estimation

This section deals with deriving Bayes estimators of unknown parameters α, β, λ and
reliability characteristics R(t) and h(t) with respect to the squared error loss function
defined as,

LS(μ̂(θ), μ(θ)) = (μ̂(θ) − μ(θ))2,

where μ̂(θ) denotes an estimate of μ(θ). The corresponding Bayes estimate μ̂BS

is obtained as the posterior mean of μ(θ). Suppose that X1, X2, . . . , Xn is a ran-
dom sample taken from a W I E(α, β, λ) distribution. Based on this sample we derive
corresponding estimates of all unknowns. We assume that α, β and λ are statisti-
cally independent and are a priori distributed as Gamma(p1, q1), Gamma(p2, q2) and
Gamma(p3, q3) distributions respectively. Thus the joint prior distribution of α, β and
λ turns out to be

π(α, β, λ) ∝ α p1−1 e−α q1 β p2−1 e−β q2 λp3−1 e−λ q3 , (4.1)
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for α > 0, p1 > 0, q1 > 0, β > 0, p2 > 0, q2 > 0 λ > 0, p3 > 0, q3 > 0.
Accordingly the posterior distribution is given by

π(α, β, λ| x) = 1

k
αn+p1−1 βn+p2−1 λn+p3−1 e

−α

(∑n
i=0

(
e

λ
xi −1

)−β

+q1

)

e
λ
(∑n

i=0 x
−1
i −q3

)
×

n∏
i=0

x−2
i

(
e

λ
xi − 1

)−β−1

,

(4.2)

where x = (x1, x2, . . . , xn) and

k =
∫ ∞

0

∫ ∞

0

∫ ∞

0
αn+p1−1 βn+p2−1 λn+p3−1 e

−α

(∑n
i=0

(
e

λ
xi −1

)−β

+q1

)

e
λ
(∑n

i=0 x
−1
i −q3

)
×

n∏
i=0

x−2
i

(
e

λ
xi − 1

)−β−1

dα dβ dλ.

Now respective Bayes estimates of α, β and λ under the squared error loss are obtained
as

α̃BS = 1

k

∫ ∞

0

∫ ∞

0

∫ ∞

0
αn+p1 βn+p2−1 λn+p3−1 e

−α

(∑n
i=0

(
e

λ
xi −1

)−β

+q1

)

e
λ
(∑n

i=0 x
−1
i −q3

)
×

n∏
i=0

x−2
i

(
e

λ
xi − 1

)−β−1

dα dβ dλ,

β̃BS = 1

k

∫ ∞

0

∫ ∞

0

∫ ∞

0
αn+p1−1 βn+p2 λn+p3−1 e

−α

(∑n
i=0

(
e

λ
xi −1

)−β

+q1

)

e
λ
(∑n

i=0 x
−1
i −q3

)
×

n∏
i=0

x−2
i

(
e

λ
xi − 1

)−β−1

dα dβ dλ

and

λ̃BS = 1

k

∫ ∞

0

∫ ∞

0

∫ ∞

0
αn+p1−1 βn+p2−1 λn+p3 e

−α

(∑n
i=0

(
e

λ
xi −1

)−β

+q1

)

e
λ
(∑n

i=0 x
−1
i −q3

)
×

n∏
i=0

x−2
i

(
e

λ
xi − 1

)−β−1

dα dβ dλ.
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Similarly Bayes estimates of R(t) and h(t) are obtained as

R̃(t)BS = 1

k

∫ ∞

0

∫ ∞

0

∫ ∞

0
αn+p1−1 βn+p2−1 λn+p3−1 e

−α

(∑n
i=0

(
e

λ
xi −1

)−β

+q1

)

e
λ
(∑n

i=0 x
−1
i −q3

)
× e

−α

(
e

λ
t −1

)−β
n∏

i=0

x−2
i

(
e

λ
xi − 1

)−β−1

dα dβ dλ

and

h̃(t)BS = 1

k

∫ ∞

0

∫ ∞

0

∫ ∞

0
αn+p1 βn+p2 λn+p3 e

−α

(∑n
i=0

(
e

λ
xi −1

)−β

+q1

)

e
λ
(∑n

i=0 x
−1
i −q3

)
× 1

t2
e

λ
t

(
e

λ
t − 1

)−β−1 n∏
i=0

x−2
i

(
e

λ
xi − 1

)−β−1

dα dβ dλ

respectively. We observe that all the Bayes estimates are in the form of ratio of two
integrals and it is quite difficult to solve them analytically. So in the next section we
propose the Lindley approximation method which is very useful in such situation.

4.1 Lindley Approximation

In this section we use the Lindley [5] method to obtain Bayes estimates of unknown
quantities. Consider the posterior expectation I (X) given by

I (X) =
∫
(δ1,δ2,δ3)

u(δ1, δ2, δ3)el(δ1,δ2,δ3)+ρ(δ1,δ2,δ3)d(δ1, δ2, δ3)∫
(δ1,δ2,δ3)

el(δ1,δ2,δ3)+ρ(δ1,δ2,δ3)d(δ1, δ2, δ3)
, (4.3)

where u(δ1, δ2, δ3) is function of δ1, δ2 and δ3, l(δ1, δ2, δ3) is the log-likelihood and
ρ(δ1, δ2, δ3) is the logarithm of joint prior distribution of δ1, δ2 and δ3. Suppose that
(δ̂1, δ̂2, δ̂3) denotes the MLE of (δ1, δ2, δ3). Using the Lindley method the function
I (X) can be written as

I (X) = u
(
δ̂1, δ̂2, δ̂3

)
+ (u1υ1 + u2υ2 + u3υ3 + υ4 + υ5)

+ 0.5[A(u1σ11 + u2σ12 + u3σ13)

+ B(u1σ21 + u2σ22 + u3σ23) + C(u1σ31 + u2σ32 + u3σ33)],

where δ̂1, δ̂2 and δ̂3 denote MLEs of δ1, δ2 and δ3 respectively. Also

υi = ρ1σi1 + ρ2σi2 + ρ3σi3, i = 1, 2, 3, υ4 = u12σ12 + u13σ13 + u23σ23,

υ5 = 0.5(u11σ11 + u22σ22 + u33σ33),

A = σ11l111 + 2σ12l121 + 2σ13l131 + 2σ23l231 + σ22l221 + σ33l331,

B = σ11l112 + 2σ12l122 + 2σ13l132 + 2σ23l232 + σ22l222 + σ33l332,

C = σ11l113 + 2σ12l123 + 2σ13l133 + 2σ23l233 + σ22l223 + σ33l333
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with subscripts 1,2,3 on the right-hand sides referring to δ1, δ2, δ3 respectively and

ρi = ∂ρ

∂δi
, ui = ∂u(δ1, δ2, δ3)

∂δi
, ui j = ∂2u(δ1, δ2, δ3)

∂δi∂δ j
, li j = ∂2l

∂δi∂δ j
,

li jk = ∂3l

∂δi∂δ j∂δk
,

i, j, k = 1, 2, 3. Furthermore σi, j denotes (i, j)th element of inverse of the matrix[
− ∂2l(α,β,λ|x)

∂α∂β∂λ

]−1
evaluated at (α̂, β̂, λ̂). Other expressions are,

l11 = − n

α2 , l12 = l21 =
n∑

i=1

(
e

λ
xi − 1

)−β (
log

(
e

λ
xi − 1

))
, l13 = l31

= β

n∑
i=1

x−1
i e

λ
xi

(
e

λ
xi − 1

)−β−1

,

l22 = −n

β2 − α

n∑
i=1

(
e

λ
xi − 1

)−β (
log

(
e

λ
xi − 1

))2

, l111 = 2n

α3 ,

l112 = l113 = l121 = l131 = l211 = l311 = 0,

l23 = l32 = α

n∑
i=1

x−1
i e

λ
xi

(
e

λ
xi − 1

)−β−1 [
1 − β log

(
e

λ
xi − 1

)]
−

n∑
i=1

x−1
i e

λ
xi(

e
λ
xi − 1

) ,

l33 = − n

λ2
+ αβ(β + 1)

n∑
i=1

x−2
i

(
e

λ
xi

)2 (
e

λ
xi − 1

)−β−2

+ αβ

n∑
i=1

x−2
i

(
e

λ
xi

) (
e

λ
xi − 1

)−β−1

− (β + 1)
n∑

i=1

x−2
i

(
e

λ
xi − λ

xi
e

λ
xi − 1

)

(
e

λ
xi − 1

)2 , l222 = 2n

β2 − α

n∑
i=1

(
e

λ
xi − 1

)−β (
log

(
e

λ
xi − 1

))3

,

l122 = l212 = l221 = −
n∑

i=1

(
e

λ
xi − 1

)−β (
log

(
e

λ
xi − 1

))2

,

l123 = l132 = l213 = l231 = l312 = l321 =
n∑

i=1

x−1
i e

λ
xi

(
e

λ
xi − 1

)(−β−1) (
1 − β log

(
e

λ
xi − 1

))
,

l133 = l131 = l331 = β

n∑
i=1

x−2
i e

λ
xi

(
e

λ
xi − 1

)−β−1

− β (β + 1)
n∑

i=1

x−2
i

(
e

λ
xi

)2 (
e

λ
xi − 1

)−β−2

,

l223 = l232 = l322 = α

n∑
i=1

x−1
i e

λ
xi

(
e

λ
xi − 1

)−β−1

log

(
e

λ
xi − 1

) (
β log

(
e

λ
xi − 1

)
− 2

)
,

l233 = l323 = l332 =
n∑

i=1

x−2
i e

λ
xi(

e
λ
xi − 1

)2 + α

n∑
i=1

x−2
i e

λ
xi

(
e

λ
xi − 1

)−β−1 (
1 − β log

(
e

λ
xi − 1

))

−α

n∑
i=1

x−2
i

(
e

λ
xi

)2 (
e

λ
xi − 1

)−β−2 (
β + (β + 1)

(
1 − β log

(
e

λ
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)))
,
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l333 = 2n

λ3
+ αβ

n∑
i=1

x−3
i e

λ
xi

(
e

λ
xi − 1

)−β−1

− 3αβ(β + 1)
n∑

i=1

x−3
i e

λ
xi

(
e

λ
xi − 1

)−β−2

+αβ(β + 1)(β + 2)
n∑

i=1

x−3
i e

λ
xi

(
e

λ
xi − 1

)−β−3

+ (β + 1)
n∑

i=1

x−3
i

⎛
⎜⎜⎜⎝

λ
xi
e

λ
xi

(
e

λ
xi − 1

)2

+ 2e
λ
xi

(
e

λ
xi − 1

) (
e

λ
xi − λ

xi
e

λ
xi − 1

)

(
e

λ
xi − 1

)4

⎞
⎟⎟⎟⎠ ,

ρ1 =
(
p1 − 1

α
− q1

)
, ρ2 =

(
p2 − 1

β
− q2

)
, ρ3 =

(
p3 − 1

λ
− q3

)
.

The desired Bayes estimates of α, β and λ can respectively be obtained as follows.

(1) If u(α, β, λ) = α then we get the Bayes estimate of α as

α̃BS = α̂ + ρ1 σ11 + ρ2 σ12 + ρ3 σ13 + 0.5(σ11A + σ21B + σ31C).

(2) Similarly setting u(α, β, λ) = β we get Bayes estimate of β as

β̃BS = β̂ + ρ1 σ21 + ρ2 σ22 + ρ3 σ23 + 0.5(σ12A + σ22B + σ32C).

(3) Finally Bayes estimate of λ is obtained as

λ̃BS = λ̂ + ρ1 σ31 + ρ2 σ32 + ρ3 σ33 + 0.5(σ13A + σ23B + σ33C).

Proceeding similarly the desired estimates for the reliability and the hazard rate
functions can be obtained. We next propose a Metropolis–Hastings (MH) algorithm
and derive some more Bayes estimates of unknown quantities. One may refer to
Metropolis et al. [8] and Hastings [3] for several other applications of this method.

4.2 MH Algorithm

In this section we discuss the Metropolis–Hastings algorithm which is useful in situ-
ations when a posterior distribution is analytically intractable. This procedure can be
used to compute Bayes estimates of unknown parameters as well as to construct cred-
ible intervals. The corresponding posterior samples can be obtained using following
steps.

Step 1: Choose an initial guess of (α, β, λ), say (α0, β0, λ0).
Step 2: Generate α′ using the normal N

(
αn−1, σ

2
)
proposal distribution and λ′

using the normal N
(
λn−1, σ

2
)
proposal distribution. Then generate β ′

from Gβ|(α,λ)

(
n + p2, q2 + ∑n

i=1 log
(
−1 + eλn−1 x

−1
i

))
.

Step 3: Compute h = π(α′,β ′,λ′|x)
π(αn−1,βn−1,λn−1|x) .

Step 4: Then generate a sample u from the uniform U (0, 1) distribution.
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Step 5: If u ≤ h then set αn ← α′; αn ← αn−1; βn ← β ′; otherwise βn ←
βn−1; λn ← λ′; λn ← λn−1;

Step 6: Repeat steps (2–5) Q times and collect adequate number of replicates.

Finally, the associated Bayes estimates of α, β and λ are respectively given by

α̃mh = 1

Q − Q0

Q∑
i=Q0+1

αi , β̃mh = 1

Q − Q0

Q∑
i=Q0+1

βi , λ̃mh = 1

Q − Q0

Q∑
i=Q0+1

λi ,

whereQ denotes the total number of generated samples and Q0 denotes the initial burn-
in period. Similarly Bayes estimates of R(t) and h(t) can be computed. The highest
posterior density intervals of unknown parameters can easily be obtained using these
MH samples. In the next section performance of all estimates is discussed usingMonte
Carlo simulations.

5 Numerical Comparisons

In Sects. 3 and 4 we obtained different estimates of α, β, λ, R(t) and h(t) of a
W I E(α, β, λ) distribution. In this section performance of all estimates is compared
numerically in terms of mean square errors (MSEs) and bias values. We compute
these estimates based on 5000 replications from a W I E(α, β, λ) distribution using
different sample sizes such as n = 40, 60, 80, 100 and 120. The true value of (α, β, λ)

is arbitrarily taken as (0.2, 0.4, 0.5). We have performed all computations on R sta-
tistical software. The corresponding Bayes estimates are obtained under informative
and non-informative prior situations. Informative estimates are computed when hyper-
parameters are assigned values as p1 = 1, q1 = 5, p2 = 2, q2 = 5, p3 = 4, q3 = 8
and for non-informative case, all hyper-parameters approach the zero value. The corre-
sponding MSEs and average estimates of R(t) and h(t) are computed for two distinct
choices of t . In Tables 1–4, we have tabulated MSEs and bias values of different esti-
mators of α, β, λ, R(t), H(t) and confidence intervals for various sample sizes. We
draw the following conclusions from the tabulated values.

(1) In Table 1, we have tabulated MSEs and estimated values of estimators
α̂, α̃L I , α̃MH , β̂, β̃L I , β̃MH and λ̂, λ̃L I , λ̃MH . In this table the first column represents
the sample size n and corresponding to each n, next three columns represent ML,
lindley and MH estimates of α and then next three columns represent ML, lindley
and MH estimators of β and the last three columns represent analogous estimates of
λ. In case of Bayes estimates each cell contains four values. The first value denotes
the noninformative estimate, the second value denotes the corresponding MSE, the
third value denotes the informative estimates and fourth value denotes the correspond-
ing MSE value. From this table we observe that the respective maximum likelihood
estimates of unknown parameters α, β and λ compete good with corresponding non-
informative Bayes estimates in terms of bias and MSE values. However proper Bayes
estimates show superior performance compared to these two estimates. In particu-
lar estimates obtained using the MH procedure perform quite good compared to the
corresponding Lindley estimates. Performance of different Lindley estimates improve
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Table 5 Goodness of fit tests for all four distributions for Example 1

(α̂, β̂, λ̂) LogL AIC AICc BIC

WIED (0.0153,2.5160,0.5080) 141.4605 288.921 289.171 296.737

WIRD (0.005339,1.365000,0.184000) 141.4625 288.948 289.198 296.764

KIED (2.34427,9.06008,2.64365) 151.241 308.482 308.732 316.298

IED (2.13994) 199.3955 400.791 400.832 403.396

with an increase in sample size. This holds for all the three parameters and different
sample sizes. In general suggested estimation procedures provide better estimates for
unknown model parameters when sample size increases.

(2) In Table 2, we have tabulated MSEs and estimated values of different reliabil-
ity estimators R̂(t), R̃L I (t) and R̃MH (t) for two different choices of t such as 1 and
8. Lindley and MH estimates of R(t) are computed using the informative prior (IP)
and the noninformative prior (NIP) distributions. Here also the MLE of R(t) show
good performance compared to noninformative Bayes estimates. We again observe
that proper Bayes estimators have an advantage over the MLE in terms of MSE and
bias values. Performance of MH estimates is quite good compared to the correspond-
ing Lindley estimates. This holds true for different values of t . Also as sample size
increases we obtain better estimates of reliability.

(3) The MSEs and average values of estimates ĥ(t), h̃L I (t) and h̃MH (t) of the
hazard rate function h(t) are presented in Table 3 for different sample sizes. These
estimates are computed against two arbitrarily selected values of t , namely 0.1 and
0.75.We again observed that performance of Bayes estimators is quite good compared
to the MLE of h(t). Particularly performance of MH estimates is highly appreci-
ated. In general mean squared error values of all estimates tend to decrease as n
increases.

(4) Finally in Table 4 we have presented asymptotic confidence intervals and HPD
intervals of unknown parameters α, β and λ for different values of n. In this table we
have computed both informative and noninformative HPD intervals for all unknown
parameters. It is seen that asymptotic intervals competewell with noninformativeHPD
intervals in terms of average length obtained. However proper prior HPD intervals
perform really good compared to the other two intervals as far as average interval
length is concerned. We also observed that when the sample size increases the average
length of proposed confidence intervals tend to decrease.

6 Data Analysis

In this section two real data sets are analyzed for the purpose of illustration.

Example 1 In this example we consider a data set originally discussed in Nichols and
Padgett [10] and it consists of 100 observations on breaking stress of carbon fibres (in
Gba). The data are as follows

3.70, 2.74, 2.73, 2.50, 3.60, 3.11, 3.27, 2.87, 1.47, 3.11, 4.42, 2.41, 3.19,
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Table 7 Goodness of fit tests for all four distributions for Example 2

(α̂, β̂, λ̂) LogL AIC AICc BIC

WIED (1.789616,0.803116,109.000090) 391.009 788.018 788.268 795.834

KIED (15.22962,2.54241,6.73913) 391.595 789.19 789.44 797.006

WIRD (0.021009,0.692002,45.670000) 396.804 799.608 799.858 807.424

IED (60.0019) 402.67195 807.3439 807.3847 809.9491

3.22, 1.69, 3.28, 3.09, 1.87, 3.15, 4.90, 3.75, 2.43, 2.95, 2.97, 3.39, 2.96,
2.53, 2.67, 2.93, 3.22, 3.39, 2.81, 4.20, 3.33, 2.55, 3.31, 3.31, 2.85, 2.56,
3.56, 3.15, 2.35, 2.55, 2.59, 2.38, 2.81, 2.77, 2.17, 2.83, 1.92, 1.41, 3.68,
2.97, 1.36, 0.98, 2.76, 4.91, 3.68, 1.84, 1.59, 3.19, 1.57, 0.81, 5.56, 1.73,
1.59, 2.00, 1.22, 1.12, 1.71, 2.17, 1.17, 5.08, 2.48, 1.18, 3.51, 2.17, 1.69,
1.25, 4.38, 1.84, 0.39, 3.68, 2.48, 0.85, 1.61, 2.79, 4.70, 2.03, 1.80, 1.57,
1.08, 2.03, 1.61, 2.12, 1.89, 2.88, 2.82, 2.05, 3.65.

Mead and Abd-Eltawab [9] fitted this real data set to Kumaraswamy Fréchet distri-
bution and obtained useful inference for the prescribed model. We first check whether
theWIE distribution is suitable for analyzing this data set. Three different distributions
are fitted and compared with WIE distribution. These are the Kumaraswamy inverse
exponential distribution (KIED), Weibull inverse Rayleigh Distribution (WIRD) and
inverse exponential distribution (IED). The MLEs of unknown parameters of compet-
ing models and the values of the negative log-likelihood criterion (NLC), Akaike’s
information criterion (AIC), the corresponding second order information criterion
(AICc), Bayesian information criterion (BIC) are reported to judge the goodness of
fit. A lower value of these criteria indicate a better fit to the data. The parameter esti-
mates and goodness-of-fit statistics are given in Table 5. These results indicate that
a WIE distribution fits the data set quite well compared to other competing models.
Therefore we analyze the given data set using this distribution and obtain inference
on unknown parameters and reliability characteristics. The maximum likelihood and
Bayes estimates of unknown parameters and reliability characteristic are tabulated in
Table 6. We mention that Bayes estimates are obtained using a noninformative prior
distribution where each hyperparameters approach the zero value. Estimates for reli-
ability and hazard rate functions are obtained for arbitrarily selected values t = 1.5
and t = 3. The asymptotic and noninformative highest posterior density intervals of
unknown parameters are also given in this table.

Example 2 Here we analyze a data set which is discussed in Smith and Naylor [11].
The data are about the strengths of 1.5cm glass fibres, measured at the National
Physical Laboratory, England. The observed data are as follows:

12, 15, 22, 24, 24, 32, 32, 33, 34, 38, 38, 43, 44, 48, 52, 53, 54, 54, 55, 56,
57, 58, 58, 59, 60, 60, 60, 60, 61, 62, 63, 65, 65, 67, 68, 70, 70, 72, 73, 75,
76, 76, 81, 83, 84, 85, 87, 91, 95, 96, 98, 99, 109, 110, 121, 127, 129, 131,
143, 146, 146, 175, 175, 211, 233, 258, 258, 263, 297, 341, 341, 376.

The goodness of fit estimates for this data are given in Table 7 for different competing
models. The tabulated values suggest that a WIE distribution provides the best fit for
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this data also. In Table 8, MLEs and Bayes estimates of unknown parameters and
reliability characteristic are presented. The reliability function are obtained at t = 50
and t = 100 and hazard rate function are calculated at t = 30 and t = 60. Interval
estimates are also given in the table.

7 Conclusion

In this paper we have studied aWeibull inverse exponential distribution under the com-
plete sampling situation. Several statistical properties of this distribution are obtained
which are quite useful in reliability analysis. We observed that corresponding hazard
rate function can acquire various shapes depending upon the parameters values. In
fact the WIE distribution can be used to model a variety of data indicating monotone,
bathtub or unimodal hazard rate behavior. We estimated unknown parameters and reli-
ability characteristic of this distribution using the maximum likelihood and Bayesian
methods.We found through a simulation study that if some proper prior information is
available on unknown parameters then Bayes estimates provide better estimates than
corresponding maximum likelihood estimates. We analyzed two real data sets and
observed that proposed methods work well in these situations.
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