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Abstract Causality analysis continues to remain one of the fundamental research
questions and the ultimate objective for a tremendous amount of scientific studies.
In line with the rapid progress of science and technology, the age of big data has
significantly influenced the causality analysis on various disciplines especially for the
last decade due to the fact that the complexity and difficulty on identifying causality
among big data has dramatically increased. Data mining, the process of uncovering
hidden information from big data is now an important tool for causality analysis, and
has been extensively exploited by scholars around the world. The primary aim of this
paper is to provide a concise review of the causality analysis in big data. To this end the
paper reviews recent significant applications of data mining techniques in causality
analysis covering a substantial quantity of research to date, presented in chronological
order with an overview table of data mining applications in causality analysis domain
as a reference directory.

Keywords Big data · Data mining techniques · Causality analysis

1 Introduction

Alongside the fruits of continuous advancements of technology and information sci-
ence rapidly spread across the world, the growing and accumulating information has
led to the age of Big Data. Every aspect of sciences is awash with more information
than ever before while the information is overflowing with a faster speed [1]. The era
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of Big Data challenges the approach of data analysis and decision making on may
communities, from governments and e-commerce to health organizations, it further-
more led to the significant impacts on the economy, science and society at broader
scale [2–4]. Data Mining itself is a relatively new and rapidly evolving subject over
the last two decades, it represents the process of uncovering hidden information from
Big Data (more details of the historical and modern definitions of Data Mining are
referred to [5]). The popularity in the application of many Data Mining techniques are
further influenced by the increasing availability of Big Data, and its ease of use for
people who lack data analysis skills and statistical knowledge [6].

Causality analysis has been extensively explored by researchers during the past
decades on a broad range of subjects [7–12]. It is driven by the instinctive desire
of knowledge and has been considered one of the fundamental studies regardless of
the research area in a broad sense. With the advance of science and technology, the
developments on causality analysis have also been overwhelmingly influenced by the
age of Big Data. In order to obtain more precise and accurate extractions, successful
adoption of Data Mining technique or a combination of techniques will be the crucial
key for causality analysis studieswith the emergence ofBigData nowadays.According
to our study, the main related Data Mining techniques for causality analysis include
Entity Extraction, Clustering, AssociationRuleMining, Classification Techniques like
Decision Trees, Neural Networks, Support Vector Machines and Naive Bayes Rule.
Note that a theoretical summary of relatedDataMining techniques have been provided
in [13], therefore it is not reproduced here in this paper.

The aim of this paper is to provide a concise review of the DataMining applications
in causality analysis over the years in the age of Big Data.1 Prospectively, this paper
also aims to summarize the rate of progress of Data Mining in causality analysis and
encourage more future research to obtain much broader applications and better under-
standings of causal relationship regardless of the subject. In order to enable such use,
the review has been organized so that interested parties could easily refer to this article
alone to apprise themselves on the research that has already been conducted to date, and
the resulting outcomeswhich have been attained. It is worthy to be highlighted that this
paper not only seeks to capture majority of the significant Data Mining applications
in causality analysis by classifying these based on different types of techniques, but
also categorizes the specific subjects that have been exploited so the broader interested
parties may find it highly beneficial to achieving a forward-looking research agenda.
Moreover, the review also includes in tabular format a summary of DataMining appli-
cations in causality analysis which can act as a quick reference guide for researchers.

The remainder of this review paper is organized such that the review of the applica-
tions ofDataMining for causality analysis is presented in Sect. 2 in chronological order
with more specific explanations on the implementation of Data Mining techniques.
The paper concludes in Sect. 3.

1 Note that this paper focuses on data mining applications in causality analysis only regardless of subjects.
It is formed based on a specific aspect of view, therefore it is not comparable with any other reviews
of data mining applications. More relevant details, please refer to [14] that focus on time series, [15]
for pharmacogenomics, [13] for crime studies, [16] for health informatics, [17] for causality analysis in
boimedical informatics, [18] for fraud detection studies, etc.
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2 Data Mining Applications in Causality Analysis

In this section, the summary of the Data Mining applications in causality analysis is
presented by types of Data Mining techniques and mainly following the chronological
order. Additionally, Table 1 is provided as a reference directory in order to provide
clear view of all reviewed literature. This table summarizes information based on the
Data Mining technique(s) used and provides information relating to key techniques
and software, research subject and purpose of the underlying applications.2

2.1 Entity Extraction

Entity Extraction is a process that identifies particular patterns such as text, images,
or audio materials depending on the availability of extensive amounts of clean input
data [4,19,20]. As concluded in [21], the main approaches for entity extraction are:
lexical-lookup, rule-based, statistic-based and machine learning.

The generally applicable lexico-syntactic patterns that refer to the causal relation-
ship are detected by the text mining technique in [22,23], in which they firstly identify
lexico-syntactic patterns that can express the causal relationship, then the ambiguous
patterns acquired are validated and ranked by semantic constraints on nouns and verbs.

A text mining system combing the classification technique is proposed to analyse
the open domain text for detecting causations between a verb phrase and a subordinate
clause [24]. In which, the authors firstly classified 1270 sentences from the TREC5
corpus and detect 170marked and explicit causation for forming the syntactic patterns.
The experiments by SemCor 2.1 corpus then identified 1068 instances and 517 causa-
tions by matching syntactic patterns, which yielded a high performance of averaging
over 0.9 of recall ratio.

In [25], the authors generated the Pundit system to perform causal reasoning in
textually represented unrestricted environments. In which, a large information source
spanningmore than 150 years was achieved fromNewYork Times by optical character
recognition (OCR), and the entity graph was obtained by Map-Reduced framework
according to the relations between the concepts by LinkedData cloud project [26]. By
proposing a framework that automatically harvests a newtwork of causal-effect terms
from a large web corpus, the authors in [50] used a data driven approach to solve the
problem of commonsense causality reasoning between short texts.

By focusing on the causality detection of the verbal events, a knowledge-based
approach was developed to evaluate the prediction performance of the verb pairs so
to identify the causality relationships by employing the knowledge-rich metrics [27].
More specifically, 12,000 documents from the English Gigaword corpus and 3,000
articles on news (also used by [28])were collected and analyzed with desired perfor-
mance. In order to improve the performance further without just relying on shallow
linguistic features, the authors employed additional types of knowledge on seman-

2 Note that an application that implemented multiple Data Mining techniques will be categorized into the
review subsection of the corresponding technique that was most significantly employed.
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tic classes along with linguistic features, which achieved about 30% improvement in
accuracy for the causality recognition by focusing on the verb–noun pairs [29].

The causality analysis by text mining of different languages other than English
has also been widely exploited by scholars. By referring to Force Dynamics [30], an
automatic tool named COATIS was presented to identify causality links in French
text data by targeting linguistic indicators of causality in sentences [31]. The Arabic
Discourse Treebank was firstly generated in [32] and evolved in [33] along with the
first algorithm to identify the discourse connectives and causal relations in Arabic
text. The authors in [34–36] exploited semantic relation, context and association fea-
tures in Japanese, in which, innovatively, the proposed semantic relation features also
contained the ones that have less obvious relations to causality. The authors in [37]
focused on the causal discourse relations in transcripts of spoken multilogs in Ger-
man, where a linguistically-motivated, rull-based annotation system was proposed.
Additionally, the authors in [38] studied on the extraction of causal relations in Arabic
using linguistic patterns, in which the authors achieved a precision of 78%.

The authors in [39] studied about causal knowledge extraction especially on the
medical data. In which, the information explicitly expressed inmedical abstracts in the
Medline database was explored. Over 200 abstracts were analyzed as training sample
covering four different medical areas, and 68 patterns were constructed for the 35
causality identifiers. The medical linguistic markers of causal expressions were then
identified, extracted and analyzed by pattern matching based on the syntactic parse
trees of sentences.

In terms of search engine query logs, the causal relations indicate the causation
and effect link between two queries. The authors exploited the MSN search engine
data in [40] and developed a 2-dimensional visualization tool to present the causal
relationships. In which, events are firstly identified by efficient statistical frequency
threshold; the causal relations of queries are then mined by geometric features of
the events; by combining the Granger causality test, the causal relations are finally re-
ranked based on the test coefficients. Their experiments obtained accurate and effective
performance of detecting the events in temporal query logs and causal relations of
queries.

The causal relation analysis in terms of biomedical information has also been
explored bymany scholars by extracting the targeted entities. Amongwhich, a relation
extraction method based on named entity-driven information extraction was proposed
in [41] for discovering the causal relations in the BioNLP’09 task. By focusing on the
mining challenge of protein–protein interactions, a web-based textmining tool (named
PPInterFinder) was implemented in [42]to extract causal relations with promising
performance of 66% accuracy on five standard corpora (AIMED [43], BioInfer [44],
HPRD50 [45], IEPA [46] and LLL [47]). An annotation schemeBioCause was defined
for enriching biomedical domain corpora with causal relations in [48]. Furthermore,
the BioCause corpus was upgraded in [49] by adopting a self-learning algorithm con-
sidering command relations in parse trees and positional features, which improved the
performances of identifying causal relations in biomedical scientific discourse. The
authors in [51] extracted hidden information from biomedical literature to reveal the
Protein–Protein, Drug–Drug causal interactions. In terms of the biological expression
language, Track 4 at BioCreative V was presented in [52] to identify and extract var-
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ious levels of information so to achieve the extraction of causal networks from text,
whilst the authors in [53] described the new corpora that succeed to capture causal
relationships not only between proteins or chemicals, but also complex events such
as biological processes or disease states. In [54], both named entity recognition and
event extraction were adopted to detect the causality relationship between drugs and
diseases through the electronic health record in Spanish.

The event causality identification was studied by combining discourse relation
predictions (through the Penn Discourse Treebank (PDTB) [55])and distributional
similarity methods in a global inference procedure [56]. Their experiments on the
collected articles fromCNNhas proved additional improvements towards determining
event causality through text mining. Furthermore, the authors in [57] extracted the
causal events from the cause–effect pairs identified, and built an abstract causality
network with effective performances on identifying high-level causality rules behind
specific causal events.

The authors in [58,59] conducted developments based on TimeLM [60] and pre-
sented a framework for identifying causal signals and causal relations between events.
Furthermore, a sieve-based system CATENA was introduced in [61] to extract causal
relation from English natural language text with promising state-of-the-art perfor-
mances proved by both TempEval-3 and TimeBank-Dense data.

2.2 Cluster Analysis

Cluster analysis indicates grouping objects into categories/clusters based only on infor-
mation found in the data which describes the objects and their relationships, such that
the objects in a group will be similar (or related) to one another [68]. Note that a
comprehensive survey of cluster analysis algorithms is provided in [69].

A generalization of the classical cluster analysis is proposed in [70] to contribute
on identifying certain structure of causality. Specifically, the approach proposed is
a subsequent cluster analysis applied to the centers of clusters obtained in the first
clustering, and it was experimented on the data of cardiac arrhythmia with promising
performance.

More applications of cluster analysis technique have then been conducted on med-
ical studies like diabetes, gene expression, neuroimaging,etc. The authors in [71]
studied on the causal relation between type 1 diabetes and the Hemophilus influenza
B (HiB) vaccine by adopting clustering technique on a large clinical trial data. It was
proved that exposure to HiB immunization is associated with an increased risk of
type 1 diabetes. Functional clustering on genes was conducted based on the similar
expression patterns as well as the causality analysis in [72], which outperformed the
usual approach and provides better understanding of gene expression data sets as well
as their regulatory networks. A novel aspect of causal analysis on neuroimaging data
sets was presented in [73], which adopted the concept of informative clustering so to
group the variables from different brain regions in terms of their shared information
on the future of another targeted variable.

Moreover, clustering technique has also been widely adopted for the analyses of
fMRI data set. A cluster Granger causality method was proposed in [74] to analyze

123



Ann. Data. Sci. (2018) 5(2):133–156 141

the connectivity between regions of interests based on fMRI data set. The clusters
of voxels were defined to prepare the multidimensional series for further causality
analysis, and the experimental results showed promising performance on detecting
interregional connections. A pair-wise clustering approach was proposed in [75] to be
applied on the large scale Granger Causality Index interactions from processing the
fMRI data. It provedwith promising performance on reconstructing the structure of the
original network and better understanding the interactions between different nodes of
the network. Furthermore, the authors introduced the non-linear mutual connectivity
analysis framework in [76]. The non-metric network clustering technique was adopted
based on the Louvain method [77] to recover the network structure so to contribute
on the investigation of causal relations between regions of the motor cortex.

In order to prevent the overwhelming working loads of information security
(INFOSEC) system and tomaintain the proper responses in a timely fashion, clustering
techniques are adopted in [78] to group low-level alert data into high-level aggregated
alerts based on the information of corresponding attributes so to conduct causal anal-
ysis on the INFOSEC problem regarding security alert correlation and relationships
among attacks.

Considering data mining approach as a proactive decision-support tool in terms of
crime prevention, the authors in [79] proposed a framework of uncovering hidden-
causal-effect knowledge and reveal the shift around effect by studying the temporal
crime activity data from National Police Agency in Taiwan. Clustering mining tech-
nique was firstly implied for mining the significant parameters, then a rule extraction
algorithm based on association rulemining techniquewas employed to discover causal
relations.

In terms of the financial development and economic growth studies, clustering anal-
ysis technique was combined with a regime switching panel vector auto regression
model to identify directional effects in finance-growth causality based on a sample of
69 countries [80], in which the clustering analysis identified the presence of conver-
gence clubs based on data properties and the results confirmed the growth to financial
development unidirectional causality and coexistence of bidirectional causality for
most countries.

By exploring the trajectory data collected from taxis in Beijing, the authors in [81]
adopted density-based clustering method DBSCAN [82] to better discovery of the
region structure and capturing causal relationship among regions. More specifically,
the causal time-varying dynamic Bayesian network was applied to reveal the evolution
of their causal time-varying structures. Then the density-based clustering assisted
to directly identify regions for a particular space-time interval from trajectories and
further analyse the spatio–temporal behavior of drivers driving from one region to
another selected based on the causal structures. Another study that focusing on urban
big data of Beijing in [83] combinedK clusters technique, patternmining and bayesian
learning to investigate the spatiotemporal causal structure between air quality and
meteorological data.

Focusing on the causality extraction of the wear of machinery, the authors in [84]
adopted the lubricating oil analysis data to investigate the causal rules for wear con-
ditions of the equipments by combining the cluster analysis technique, which makes
it possible to have more detailed diagnosis regarding wear conditions of machinery in
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the future tasks. Another industrial application in [85] targeted the study of causal min-
ing for large-scale complex industrial plant, the authors combined the dynamic time
warping-based K-means clustering method and modified group Granger causality to
detect the root cause of disturbances that may impact the over all control performance
and lead to inferior quality.

Another development of clustering method in [86] is the cluster sequence min-
ing technique that extracts pattern from numerical multidimensional event sequences.
Specifically, it extracts patterns with a pair of clusters that satisfies space proximity of
the individual clusters and time proximity in time intervals between events from differ-
ent clusters. It was further adopted to the causality analysis of earthquake occurrences
based on an earthquake event sequence in Japan after 2011. Similarly, the authors in
[87] studied the cause-and-effect relationships between hydrological parameters and
the Majiagou landslide movement in China with data mining techniques including
primarily two-step cluster analysis as well as association rule mining.

2.3 Association Rule

Association Rule is a technique for investigating the possibility of simultaneous occur-
rence of data [95], it aims to mine all rules in the database that satisfy some minimum
support and minimum confidence constraints [97]. It was initially proposed in [96] as
a method of discovering interesting co-occurrences in supermarket data. Note that its
implementation for large data sets can indicate the strength of association among data
attributes, which can be further examined for causal relations [98].

The local causal discovery (LCD) algorithmwas firstly proposed in [99] by focusing
on the observational data. It was illustrated underling constraint-based algorithm that
combined Association Rule Mining technique to contribute on the causal discovery.

Silverstein et al. [100] focused on the research of market basket data and proposed
the novel algorithms by combining Association Rule Mining so to determine causal
relationships on large scale data sets. The experimental results on both census data
and text data indicated sufficient performance on identifying causal structures with
feasible computation time. Another experiment with contraceptivemethod choice data
in Indonesia was conducted in [101] by a comprehensive comparison study between
causal Association Rule Mining and Bayesian Network method.

The authors in [102] proposed a model of mining causality among multi-value
variables based on partitioning, which is a generalization of both item-based and
quantitative Association Rule Mining. It was proved to establish on extracting causal
rules with reduced unnecessary information in large databases.

By focusing on the stock market in Taiwan, Hsieh et al. [103] applied inter-
transaction Association Rule Mining to identify the causal relation between upstream
and downstreamcompanies,which is significantly beneficial information for investors.
The authors further extended the research on profit mining model in [104,105] so to
better satisfy the investors’ expectation on causal relations discovery regardless of
the format of the knowledge. The latest research in [106] specifically focused on the
closed item sets and developed the new version of profit mining approach with more
efficient performance.
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Aiming at more efficiently identifying potential causal relationship in observational
data, the authors in [108,109] adopted Association Rule Mining together with cohort
studies to develop the approach of causal Association Rule Mining. The proposed
approach has been evaluated on 24 synthetic data sets and 8 frequently used public
data sets of medical and social research with comparison of the Bayesian network
method with stable and efficient performance.

The causal Association Rule Mining frameworks were proposed in [110,111] and
applied to mine potential causal associations in electronic patient health database
where the drug-related events of interests occur infrequently. Experimental results
showed promising performance and effectively identified causal relations in the
database. On the other hand, Association Rule Mining was applied in [112–114] to
identify causal signals for drug and adverse reaction based on the user contributed
content data in social media. More details can be found in [115], in which the authors
reviewed data mining techniques that have been studied in the area of drug safety to
identify signals of adverse drug reactions from various data sources. According to
the data from the United States Food and Drug Administration adverse events report-
ing system, the authors in [116] applied Association Rule Mining to identify drug
cause-and-effect interactions. A recent research in [117] studied the electronic patient
database and presented a temporal association mining approach to effectively iden-
tify the cause-and-effect relationships between two events within a patient case based
on the occurrences of various symptoms, so to prevent the serious consequences of
drug–drug interactions. Note that a recent review of drug–drug interactions through
data mining techniques can be found in [118] for more details.

A general approach to discover causal relations in large observational databases of
binary variables was proposed in [119], in which the partial associations were also
taken into account so to conduct better and more efficient performance on identifying
causal relations with combined cause variables. Similarly, another data-driven appli-
cation is [120], in which, the authors analyzed a dataset consisting of 2200 incidents
of military activity surrounding ISIS and the forces that oppose it in the Islamic State
by adopting logic programming and association rule mining. The authors discovered
causal relationships between terrorist activity and military operations as well as rules
indicating fire, suicide attacks, etc.

The application is also exploited for gene expression data in [121]. In which, the
authors proposed the dynamic association rule algorithm that will help to efficiently
select a subset of significant genes for subsequent analysis of the causal relationships
between genes and phenotypes. The experiments were conducted on the analyses of
for microarray datasets and one next generation sequencing dataset, which all shows
efficient and accurate performances on identifying influential genes of a disease.

Yadav et al. [122] further improved the Association Rule Mining on causality
detection from observational data by adopting the Rubin-Neyman causal model [123].
The authors evaluated the proposed causal rule mining framework that transition from
Association Rule Mining towards causal inference in subpopulation on the electronic
health records data and proved sufficiently performance on extracting the controversial
findings of the causal effect of a class of cholesterol drugs on type two diabetes.
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2.4 Classification Techniques

As one of the most fundamental and significant DataMining techniques, classification
is defined as the task of assigning objects to one of several predefined categories [68]
and discovering a small set of rules in the database to form an accurate classifier
[128]. It contains a few specific types of techniques including Decision Trees, Neural
Networks, Support Vector Machines, Naive Bayes Rule, etc.

In terms of applying classification techniques in DataMining for causality analysis,
many implementations combined more than one specific type of classification tech-
nique. Therefore, the review which follows is classified by each significant technique
in chronological order and depending on circumstances, those complex combination
cases are not reproduced.

Decision Trees

Decision Trees ([129–131]) are applied to accomplish the classification task by giving
a series of carefully crafted questions about the attributes of the test record [68]. When
an answer is achieved, it will be followed by a question until the category of this
attribute is concluded. All the series of questions and possible answers are carefully
predefined, as well as the process repeated to all subsets of the tree.3 Many algorithms
have been developed for getting the most reasonably optimal Decision Tree with good
accuracy in a timelymanner. For example, CART [129], C4.5 [130], ID3 [131], Hunt’s
Algorithm [132], SLIQ [133], and SPRINT [134].

A tool named TimeSleuth was proposed for discovering causality in [135], in which
C4.5 decision tree algorithm was adopted along with time involved into the input as
preprocessing step and adjusting accordingly based on the original temporal relations
as a post processing step. Furthermore, the authors developed TIMERS method in
[136] and exploited on the Louisiana wether database and the Helgoland weather
database, in particular, the proposedmethodwas based onfinding classification rules to
predict the value of a decision attribute using various of observed condition attributed.
The later second version of TIMERS algorithm was introduced in [137] to classify
the relationship between a decision attribute and a number of condition attributes as
instantaneous, causal, or acausal(possibly containing hidden common causes), which
was the latest development for the upgraded algorithm.

By expanding the Decision Trees technique into language processing and compu-
tational linguistics, Girju [138] proposed an automatic detection of causal relations
framework for question answering, in which the C4.5 decision tree algorithm was
adopted for extracting the lexical and semantic constraints referring to causation in
English text.

Classification techniques like Decision Trees has also been widely exploited in
finance studies. Kargupta et al. [139] proposed an experimental mobile data mining
system named MobiMine that adopted decision tree mining technique to facilitate
the monitoring process by identifying the interesting behaving stocks and detecting
their causal relationshipwith different features characterizing the stocks.Moreover, by

3 It is possible that we can get many different Decision Trees from the same given set of cases. The final
choice depends on the research and the individual circumstances.
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studying 13 years data from the Shanghai Stock Exchanges, observational data-based
causal analysis was applied on stock predictions in [140]. In particular, the authors
applied the CART algorithm (decision tree mining) and proposed the causal feature
selection algorithm to select more representative features for better stock prediction
modeling. Additionally, note that a review of data mining techniques in financial
application can be found in [141].

By focusing on the failure diagnosis in large Internet sites, Chen et al. [142] pre-
sented a decision tree learning approach to identify the causes of failures.Actual failure
data from eBay was evaluated and the presented algorithm successfully identified 13
out of 14 true causes of failure. Similarly, a system named NANO was proposed in
[143] for detecting Network Neutrality violation, in particular, a decision tree based
classification method was employed to infer the discrimination criteria.

The applications were further extended to the air traffic system. The authors in
[144] studied on the air traffic system of the Netherlands international airport Schiphol
and proposed the operational causal model based on the decision tree technique for
finding causes of incidents and accidents therefore to quantification of the probability
of adverse events in the aviation industry. The authors further developed the causal
model for air transport safety in [145] by linking event sequence diagrams, fault-trees
and Bayesian belief nets to form a homogeneous mathematical model.

The authors in [146] focused on the Spanish mining accidents studies and adopted
decision trees and bayesian classifiers among other data mining techniques to analyze
the main causes of mining accidents based on a database composed of almost 70,000
occupational accidents and fatality reports corresponding to the decade 2003–2012 in
the Spanish mining sector. The study successfully concluded a few causal rules that
can significantly develop suitable prevention policies to reduce mining accidents.

A recent theoretical advancement was presented in [147], in which the authors pro-
posed a causal decision tree model based on the improvement of normal decision tree
mining technique. The causal relations were interpreted by the nodes with a compact
graphical representation of all uncovered causal relationships, additionally, the cal-
culation was efficient and the performances were promising based on results of three
sets of experiments (including the Titanic data set, the adult data set census income
and 5 groups of synthetic data set). Furthermore, the authors in [148] proposed the
survival causal tree method to mine patient subgroups with heterogeneous treatment
causal effects from censored observational data. It was applied to identify cancer sub-
types at molecular level, which can be significantly helpful to select the most suitable
treatment for individual patients comparing to the clinical diagnoses, which can lead
to better survival chances and less suffering due to inaccurate diagnoses.

Neural Networks (NN)

Neural Networks is one of the most important tools for classification that achieved
effective and successful performances in many real world classification tasks [154].
Recent research has established convincing evidence to this end showing that Neural
Networks has high tolerance to noisy data and the ability to classify untrained patterns.
According to [149], Neural Networks is able to estimate the posterior probabilities,
which provides the basis for establishing classification rule and performing statistical
analysis [149–153].

123



146 Ann. Data. Sci. (2018) 5(2):133–156

The applications that adopting Neural Networks technique with causality analysis
are found mainly focusing on medical and genetic studies. Tu [155] evaluated the
Neural Networks and logistic regression approaches on the medical outcome studies,
in particular, Neural Networks required less formal statistical training, showed impres-
sive ability to implicitly detect complex nonlinear relationships between dependent
and independent variables, and interactions between predictor variables. A data min-
ing system based on a Bayesian neural network was presented in [156] to assist on
minimizing the limitations of the current system and highlight strong causal relations
between specific drugs and corresponding adverse drug reactions based on the WHO
database. In terms of the reconstruction of gene regulatory network, Wahde and Hertz
[157] adopted the recurrent Neural Network model and applied on a set of actual
expression data from the development of rat central nervous system. Furthermore, the
authors in [158–160] applied the same model on the gene expression data to capture
the nonlinear dynamics of gene networks and reveal genetic regulatory interactions
fromexpression profiles. A recent research in [161], the authors proposed the paradigm
causal phenotype discovery by combining the Neural Networks data mining technique
and pairwise log likelihood non-Gaussian structural causal inference model. It was
aimed to discover latent representations of illness that are causally predictive and a
series of phenotype experiments have been applied to a few clinical time series data
collected during the delivery of care in intensive care units at large hospitals.

Another extension of Neural Networks technique has been exploited on conflict
analysis, the authors in [162] developed and tested a neural network model of Cold
War interstate conflicts and evaluated its performance on data from 1885 to 1992. The
experiment revealed the extent to which the Cold War causal structure was represen-
tative of earlier historical contexts.

Moreover, a theoretical development was proposed by the authors in [163], inwhich
theNeuralNetworks approachwas adopted as a bridge betweenmodel-free andmodel-
based causality detection approaches to better recognize dynamics in complex data
sets and identify causal flows occurring in a system of time series. In particular, the
approach required no priori assumptions and had been proved sufficient approach by
simulations; by adopting the non-uniform embedding, it was capable of providing
the optimal path of mapping between input and output spaces; it also led to a further
development with respect to traditional Granger causality approaches when redundant
variables are involved.

Support Vector Machines (SVM)

SupportVectorMachines (SVM) is amethodof separating twoclasses using anoptimal
separating hyperplane which minimizes the classification error and it has been widely
applied as an significant classification technique for Data Mining, pattern recognition,
etc [164]. Moreover, SVM was also extensively employed in cooperation of causality
analysis on various subjects.

The SVM technique was employed for text processing in [165], in which it assisted
on the automatic identification of a set of seven semantic relations between nominals in
English sentences. Specifically, the approach adopted various sets of lexical, syntactic
and semantic features extracted from various knowledge sources and achieved an
accuracy of 76.3% on the SemEval 2007 task.
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In terms of genetic studies, it was adopted in [166] to identify and characterize
high order gene–gene and gene–environment interactions, which indicated signifi-
cant importance of understanding the underlying biological mechanisms of complex
diseases and the complex relationships that control the process. By focusing on the
genome-wide association studies, the authors in [167] combined the SVM technique
to rank the causal variants and associated regions with promising performance by real
data set experiments.

Furthermore, Lee et al. [168] applied SVM technique in medical study on the fMRI
data to observe changes in the spatial activation patterns in the brain across the training
sessions, so to be prepared for the implementation of multivariate Granger causality
modelling to calculate directed causal influences between spatially distributed voxels
of the brain. The authors in [169] also focused on the medical studies aspect and
conducted the study to extract causality patterns for the problem–action relations in
discharge summaries so to present a chronological view of a patients’ problem and
an doctor’s action. In which, the causal relationship between events from clinical
narratives are investigated and the clinical semantic unit is classified by adopting
SVM. Experiment has been applied on Korean discharge summaries with about 80%
of accurate performance on effectively classifying clinical problem–action relations.

By focusing on the cyber security studies, Zhang et al. [170] proposed a traffic
analysis method to reason the occurrences of network event and target the stealthy
malware activities in order to efficiently discover the underlying triggering relations
of a massive amount of network events and detect malware activities on a host. In
particular, three different classifiers (SVM, Naive Bayes, Bayesian network) were
compared on training and classifying the data based on chosen features. Similarly, a
study that focused on the occupational safety of a steel plant in India was conducted
by combining the SVM data mining technique in [171]. In which, the SVM served as
sufficient classifier to identify causal rules and provided 88% accuracy of predicting
the accidents based on a database comprising almost 5000 occupational accidents
reports from an integrated steel plant from 2010 to 2012.

Naive Bayes Rule

Naive Bayes classifier is proposed in [172] and uses Bayes Rule to compute the
probability of each class given the instance, assuming the attributes are conditionally
independent given the label [173]. In general, it is simple and easy to understand,
convenient for implementation, and one of the most efficient and effective inductive
learning algorithms for machine learning and Data Mining [174].

In terms of the cause–effect relations in natural language text, Chang and Choi
[175] worked on extracting causal relations that exist between two events expressed
by noun phrases or sentences, in order to do so, the lexical pair probability and the cue
phrase probability were introduced along with the employment of the Naive Bayes
classifier. Experiments on data sets from LA TIMES and Wall Street Journal were
conducted with promising performance on causal relation extraction. Sorgente et al.
[176] used the Naive Bayes Rule mining technique to identify cause–effect pairs
based on the dependency relations between the words. Evaluations were obtained
on the SemEval-2010(Task 8) data set with encourage results of over 70% precision
score achieved. A restricted hidden Naive Bayes model was proposed in [177] for
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text mining and extracting event causal relations from text. A new category feature of
causal connectives were included to classify among candidates of causal pair, and the
proposed approach has been proved to be able to cope with the possible interactions
between features so to improve the causality extraction performance.

The Naive Bayes Rule has also been adopted for the cyber security studies in [178],
the authors compared the Naive Bayes Rule with Decision Trees on the performance
of intrusion detection by using KDD’99 data set. Furthermore, they applied the Naive
BayesRule approachon theDARPA2000data set to reduce the highvolumeof reported
alerts and detect complex and coordinated attacks in [179].

As one of the significant areas that Data Mining techniques have been widely
exploited on, the Naive Bayes Rule technique was adopted on breast cancer clinical
data set in [180] to discover cause-specific death classes and propose a graphical
structure of key attributes describing the conditional dependency among attributes.
This contributed on extracting the causal relationships among clinical variables and
therefor allowed the more efficient and accurate cancer diagnosis for treating cancer
patients. Furthermore, the authors in [181] also focused on the causal relationship
identification among clinical variables for breast cancer and adopted Naive Bayes
classifier along with improved flexible k-dependence network through target-based-
encoding for numerization of categorical values with the assistance of target class. The
results are further improved in diagnosing cancer causing attributes, even for extremly
strong positive relationships.

3 Conclusion

This paper is driven by the importance of Data Mining technique in the age of Big
Data in terms of the ultimate research subject of causality analysis in a broader hori-
zon. Given the vast amount of research on Data Ming developments and applications,
it indicates an emerging demand on the better understanding of both Big Data and
causality analysis regardless of subject. Following a thorough research we are able to
present a list of Data Mining techniques as the most frequently adopted at present for
causality analysis of Big Data. These include Entity Extraction, Clustering, Associ-
ation Rule Mining, Classification Techniques like Decision Trees, Neural Networks,
Support Vector Machines and Naive Bayes Rule.

Not only to provide a review of tremendous amount of applications, this paper also
achieves to obtain a directory table with categories by Data Mining techniques and
details of research subjects and objects, therefore the broader interested parties can
easily refer to this article alone to apprise themselves on the up to date conducted
research. Moreover, this paper also contributes on directing researchers from various
areas to achieve a forward-looking research agenda. In general, this paper has the
advance in building the bridge between two significant groups of researchers: one is
the scholars who expertise in Big Data analysis and Data Mining techniques seeking
for more applications; and the other group is the researchers who are interested in
the causality analysis in particular areas containing Big Data and also enthusiast in
adopting frontier techniques. Table 1 in particularly functions as a useful resource or
’quick guide’ which summarises the Data Mining applications in causality analysis
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while providing useful information on not only on the software and purpose, but also
the research subject that have been exploited.

This paper has captured considerably adequate amount of recent significant appli-
cations. Considering the wide disciplines that have been exploited and the amount
of applications that were captured, the classification techniques are the most popular
form of Data Mining in terms of causality analysis. This also in line with the findings
from Data Mining in crime analysis [13]. Moreover, we notice that the Data Min-
ing techniques are seldom used for mining multivariate causality analysis model in
economics, whereas in text processing, cyber security, biomedical information and
medical study these methods are extremely popular and well exploited. This further
highlights the disciplinary differences that exist across subjects and the emerging need
of popularizing the use of Data Mining technique in the age of Big Data. The review
of a tremendous amount of successful applications has provided the future insight and
immeasurable potentials ofDataMining technique in causality analysis. It is genuinely
expected that this review paper can contribute on better understanding of the causality
analysis with Big Data regardless of subjects and promoting further advancements of
Data Mining techniques as well as their broader applications in causality analysis.
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