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Abstract In this paper, we investigate the maximum likelihood estimation of the
unknown parameters of the Burr Type-XII distribution and the acceleration fac-
tor based on two different progressively hybrid censoring schemes, namely, Type-I
progressive hybrid censoring scheme (T-I PHCS) proposed by Kundu and Joarder
(Comput Stat Data Anal 50:2509-2528, 2006) and adaptive Type-II progressive hybrid
censoring scheme (AT-II PHCS) introduced by Ng et al. (Nav Res Logist 56:687—
698, 2009) under step-stress partially accelerated life test model. The observed Fisher
information matrix is obtained to construct an approximate confidence interval for the
unknown parameters. The performances of the estimators of the model parameters
using the above mentioned progressively hybrid censoring schemes are evaluated and
compared in terms of the mean squared errors and relative errors through a Monte
Carlo simulation study.
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1 Introduction

In reliability analysis, it is not easy to collect lifetimes on highly reliable products
with very long lifetimes since very few or even no failures may occur within a limited
testing time under normal operating conditions. To induce early failures an accelerated
life test (ALT) or partially accelerated life test (PALT) is often used. If all test units
are exposed to higher-than usual stress levels, then the test is called ALT. But if
only some of them are run under severe condition then the test is called PALT. The
information obtained from the test performed in the accelerated or partially accelerated
environment is used to predict actual product performance in the usual environment.
The stress can be applied in several ways. According to Nelson [26] the common
methods are step-stress and constant stress. Under step-stress PALT (SSPALT), a test
item is first run at normal (use) condition and, if it does not fail for a specified time,
then it is run at accelerated condition until the test terminates. But the constant-stress
PALT runs each item at either use condition or accelerated condition only, i.e. each unit
is run at a constant-stress level until it fails or censors. As indicated by Lin et al. [24],
there are many situations in life testing and reliability experiments in which units are
lost or removed from test before failure. The experimenter may not obtain complete
information on failure times for all test units. Data observed from such experiments
are called censored data.

Very often in life testing and reliability studies, it is not easy to obtain sufficient
failure data of highly reliable products within a limited testing time under normal
operating conditions. Consequently, with conventional life-testing experiments under
either Type-I or Type-II censoring, it is almost impossible to obtain adequate infor-
mation about the failure time distribution and its associated parameters. To overcome
these problems, accelerated life test (ALT) or partially accelerated life test (PALT)
can be adopted to yield information about the lifetime distributions of products by
inducing early or rapid failure of items with stronger stress than normal with lower
cost and shorter period of time. In PALT, items are tested at both accelerated and
use conditions. The stress can be applied in several ways, the common methods are
constant-stress and step-stress. In constant-stress PALT, each unit runs at either used
condition or accelerated condition only, i.e., each unit runs at a constant-stress level
until it fails or censored. But under step-stress PALT (SS-PALT), if the items do not
fail under normal used condition for a specified time, then we raise the stress on it
until the items fail or the censoring time is reached. Many authors have considered
SS-PALT, including Goel [18], DeGroot and Goel [16], Bai et al. [8], Abdel-Ghaly et
al. [2], Abd-Elfattah [1], Ismail and Aly [20] and Ismail [21].

In life testing and reliability experiments there are numerous situations where the
units are removed from the test before failure. Data obtained from such experiments are
called censored data. The two most common censoring schemes, namely Type-I and
Type-II censoring schemes are widely used in the life-testing and reliability studies.
The combination of Type-I and Type-II censoring schemes called the hybrid censoring
scheme proposed by Epstein [17] is quite common in life-testing or reliability exper-
iments in which the experiment is terminated at a random time n* = min(X;.m:1, 1),
where Xy, 1S the mth failure and € (0, 00) is a predetermined time. However, one
of the limitations of these schemes is that they do not allow withdrawing units from
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the test at any time point other than the terminal point. To tackle this problem, a more
general censoring scheme called the progressive Type-II censoring or progressively
Type-II hybrid censoring schemes are used. In progressive Type-II censoring scheme
n items are placed on a life test and the quantity m is a predetermined number of items
to be observed. At the time of the first failure x1.,.,, Ry units are randomly removed
from the remaining n — 1 surviving units. Similarly, at the time of the second failure
X2:m:n» Ro units of the remaining n — 1 — R units are randomly removed and so on. At
the time of the mth failure x,,,.,., all the remainingn —m — Ry — Ry —- - - — R;;—1 units
are removed. For further details on Type-II progressive censoring and for its different
advantages, the readers may refer to the excellent monograph of Balakrishnan and
Aggarwala [13], Balakrishnan [9] and Balakrishnan and Cramer [11].

T-I PHCS was proposed by Kundu and Joarder [22] in which n items are placed
on life test with a predetermined quantities, 1, m and progressive censoring scheme
Ry, Ry, ..., Ry. The experiment is terminated at random time n* = min (X0, 1)-
In this case, the experiment will terminate at X, if X0 < 1, Otherwise it will
terminate at time 1. The advantage of this censoring scheme is that the choice of n
depends on how much maximum experimental time the experimenter can afford to
continue. Moreover, the experimental time is bounded. The available data under T-1
PHCS will be one of the following two forms

Case I: X1un:n < -+ < Xpomen I Xppen <1
Case IL: X100 < -+ < Xpopen i Xppomen > 1)

where J is the number of failures before time 7. For further details see Balakrishnan
and Kundu [12]. Based on T-I PHCS, few authors have made statistical inference on
the SS-PALT, see for example, Ismail [21], Shi et al [29], Cai et al. [15] and Zhang et
al. [32]. In T-I PHCS, the effective sample size is random and a few failures (or even
equal to zero) would take place before the prefixed time, leading to low efficiency in
the statistical inference procedure.

To overcome the drawback of the T-I PHCS, Ng et al. [27] proposed an AT-II PHCS,
in which the effective number of failures m is predetermined and the progressive cen-
soring scheme Rj, R, ..., Ry, is provided, but the values of some of the le s may be
changed accordingly during the experiment. In the AT-II PHCS, the experimental time
is allowed to run over the (predetermined) threshold time . If (X0 < 1), we will
have a usual Type-II progressive censoring scheme with a pre-fixed progressive cen-
soring scheme R1, Ra, ..., R, and the experiment stops at time X;,.:m. Otherwise,
once the experimental time passes 7, then we can terminate the experiment as soon
as possible by setting Ryy1, Rj4+2, ..., Rpy—1 = 0,1.e. if Xjupn < 1 < Xis1amns
where J + 1 < m and X ;.. is the Jth failure time occur before time 7, we will not
remove any surviving unit from the experiment until the effective number of failures
m is reached and then all remaining items R,, = (n -J - Zijzl R,-), are removed.

Several life testing studies based on AT-II PHCS have been carried out in the
recent times, see for example, Lin et al. [24], Hemmati and Khorram [19], Mahmoud
et al. [25], Ashour and Nassar [7], AL Sobhi and Soliman [6] and Zhang and Shi
[33]. Recently, Ismail [21] studied the likelihood estimation of Weibull distribution
parameters and the acceleration factor under step-stress partially accelerated life test
models based on AT-II PHCS.
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To the best our knowledge, there are hardly any studies related to SS-PALT by
using both T-I PHCS and AT-II PHCS. The aim of this paper is to derive maximum
likelihood estimators (MLEs) and the asymptotic confidence intervals of the unknown
parameters of the Burr Type-XII distribution and acceleration factor when the data
is coming from two types of censoring schemes: T-I PHCS and AT-II PHCS under
SS-PALT. The rest of this paper is organized as follows: In Sect. 2, we describe the
model. In Sect. 3, we obtain the maximum likelihood estimators and the corresponding
asymptotic confidence intervals under SS-PALT with T-I PHCS. In Sect. 4, the max-
imum likelihood estimators and the corresponding asymptotic confidence intervals
under SS-PALT with AT-II PHCS are provided. In Sect. 5, the method developed has
been illustrated using simulated data from the proposed models with both T-I PHCS
and AT-IT PHCS. Some concluding remarks are made in Sect. 6.

Section 4 contains the simulation results that demonstrate and evaluate the perfor-
mance of the estimators based on the proposed censoring schemes.

2 Model Description

Burr [14] introduced twelve different forms of cumulative distribution functions for
modeling lifetime data or survival data. Of these twelve distribution functions, Burr
Type-X and Burr Type-XII were extensively used by the researchers. A random vari-
able X is said to has Burr Type-XII distribution with shape parameters ¢ and k, denoted
by Burr(c,k), if its probability density function (pdf) is given by

f(x;c, k) = ckx 1A +x9"® D x> 0,¢,k>0 (D

It is important to note that when ¢ = 1, the Burr-XII reduces to the log-logistic
distribution and the fact that it can be a good approximation to the Weibull distribution
which is a limiting distribution of the Burr XII. Although, the Burr XII has a non-
monotone failure rate similar to the log-normal distribution, it also has other properties
that distinguish it from the log-normal which makes it a viable alternative in some
situations (see [34]). For ¢ > 1, the p.d.f. as Eq. (1) is unimodal and is L-shaped for
¢ < 1. The Burr XII distribution has been recognized as a useful model for the analysis
of lifetime data. Readers may refer to Rodriguez [28], Tadikamalla [31], Lewis [23],
Ali Mousa [4], Ali Mousa and Jaheen [5], Soliman [30], Abdel-Hamid [3], among
others for extensive reviews of the literature on Burr-XII distribution.

The survival function of Burr(c,k) distribution in (1) takes the form

S e, k) = (1+x97* )
Under SS-PALT, the lifetime of the unit is given as follows

T ifT <t
T+ B8(T—1) ifT>1
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where T is is the lifetime of the unit under normal use condition, t is the stress change
time and B, B > 1 is the acceleration factor. The pdf of X under SS-PALT model can
be given by

0 ifx <0
f&x)=1AG) = flxe, k) if0<x <t 3)
fr(x) ifx >t

where f>(x) is given by

F() = Hiek B) = kB (T + B — 1) (14 ( + px — 1))~
@

and the corresponding survival function is

$H00) =S (xi e,k B) = (1 + (x + Bx — 1)) o)

Under SS-PALT with T-I PHCS, n units are put on a life test with progressive censoring
scheme Ry, R, ..., R;,. Each unit is run under normal use condition, if it does not
fail or removed up to time 7, the accelerated condition is applied and the experiment is
terminated at n™ = min(x;;.n.n, ). If the mth progressively censored observed failures
occurs before time 7, the experiment terminated at this time Xj;;.,.,. Otherwise, the
experiment will be stopped at time 7, and all the remaining items (n — ZiJ:1 R —J )
are removed. The main purpose of this scheme is to control the total time on test based
on a predetermined time 7 . In this case the observed data will be

Casel: xipp < -+ < Xmgmin =T < Xmy+1lmn < < Xmzmen if Xpmn <1

Casell : Xy < -+ < XJymn ST < XJ,+lmn <" <X if Xpmn > 1

where 7 < n and m,, and J,, are the number of failed items at use condition for case I
and case II, respectively. It is to be noted that when x,, < n or n — oo, we will have
the conventional progressive Type-II censoring scheme.

Similarly, based on SS-PALT with AT-II PHCS, »n units are tested with progressive
censoring scheme Rj, Ry, ..., R, under normal use condition, if any item out of n
items does not fail up to time 7, itis put under accelerated condition and the experiment
will be run until censoring time 7, then we do not withdraw any items at all except for
the time of the mth failure where all remaining surviving units are removed. Thus, the
effectively applied scheme in this case is Ry, ..., R;,0,0,0, R, and the observed
data takes the form

Xtmen < " < Xmymn =T < Xmy+lmn < * -

< XJmm <1 < Xj+lmmn < < Xmmmn

If n — 0, the AT-II PHCS reduces to the traditional Type-II censoring scheme. If
n — oo, the AT-II PHCS will lead us to the conventional progressive Type-II censoring
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scheme. The statistical inference based on T-I PHCS and AT-II PHCS under SS-PALS
will be described in the next sections.

3 Statistical Inference Based on T-I PHCS

In this section the MLEs of the unknown parameters of Burr(c,k) and the acceleration
factor B and the corresponding approximate confidence intervals is obtained under
SS-PALT with T-IT PHCS. According to T-I PHCS, the Likelihood function under
SS-PALT is given by

Cu ¢
Lioc[TAGHISIGT [T A0 1200017 1S (6)

i=1 i=g,+1

where x; = x;.;,.;, for simplicity of notation, { = m,¢, = m,, RZ‘ = 0 for case I and

c=J5u=Jy RZ‘ =mn-J- Zijzl R;) for case II. from (2), (3), (5) and (6), the
likelihood function can be written as

Su c—1 ¢ c—1
Ll(c,k,,B)ac{kcﬁc“r[(le’_xF) I1 <11/l 1//?)exp (—kp(c. B.x)) (1)

i=1 i:§u+l

where x = X1, ..., Xy, Mg =m —My, g = — G, Vi =1+ B —1),i =1,...,m,
Yy =1+ Bmn—1),and

{ll §
ble. B x) =Y L+ R)I(L+3)+ Y (1+ Rln(L+9) + Ren (1 + )
i=1 i=C,+1

The natural logarithm of the likelihood function, denoted by, /1 = In(L(c, k, B))
when ¢ > 1, is given by

Cu ¢
I = ¢In(ck) + Laln(B) + (c — 1>[Zln(x,~> + Yy ln(wi)}

i=1 i=¢+1
{l‘ ;
S +af) = Y i (1+yf) — ke (c. B.x) ®)
i=1 i=Cu+1

Differentiating (8) with respect to ¢, B and k and equating each result to zero we get
the likelihood equations as

all é_ Cu ¢
5o =22 UG =g+ D n() = ¢20)
i=1

ac il
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u ¢
—k<2(1 + R+ Y (IL+ R + R2‘<p2,7) =0, ©)

i=1 i=Cyt1
Oh _ Ly e i (xi — 0!
B B i=tu+1 l i
¢ ¢
—c(k+1) Z @3 — Ck( Z Ripsi + R;k(p3,7> =0, (10)
i=C+1 i=C,+1
M _ & he ) =0, (11)
ok k -

where ¢1; = x{In(x;) (1 +x) ", oo = Yfin(W) (1 + )™, gy = Yln(y,) (1 +
VO s = (i — DY T A+ YO and g3, = (0 — DY + w9~ From
(11), the MLE of k, denoted by k can be obtained as

¢

To_ &
¢(c. p.x)

12)

substituting the value of k in (9) and (10), the MLEs of ¢ and B, say, ¢ and ;§ are
obtained by solving the following two nonlinear equations

Su ¢
ENUne -+ Y Unn) — o)
R i=¢,+1
¢ Cu ¢
—A—A(Z(l +R)pi+ Y (14 Rz + R?¢2n> =0, (13)
¢ (C, ﬂ,i) i=I i=Cu+1
¢ J ¢ J
gf‘i‘(é—l) Z (xi—T)Wi1—5<A—A+1> Z V3i
i=,+1 ¢ (c, l3s£> i=¢,+1
et 3
——( Z Rig3i + RZ‘(P&;) =0, (14)

¢ (5, ,3,£> i=Cut+1

it is be noted that Egs. (13) and (14) have no explicit solutions. Therefore, the MLEs
of ¢ and B can be obtained numerically. Substitute the ML estimates of ¢ and ,é in
(12), the MLE of k can be obtained. In order to construct the approximate confidence
intervals of ¢, 8 and k, we use the asymptotic normality theory of MLEs. The negative
second partial derivatives of Eq. (8) with respect to ¢, § and k consists of the Fisher
information matrix and given by

8112 é_ Su ¢
—QZC—Z—FZ@H‘F Z @si

i=1 i=go+1
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u ¢
+k<2(1 + Ri)p4i + Z (I'+ R)esi + R?¢5n>,

=1 i=gu+1
o _ & ¢ . ¢
“ap =gt Yo w0 ek + ) Y e
=g+l i—ty+1
¢ 2
al e
+Ck< Z Ri%i+R§%”)’_3_klz=k_2’
i=¢,+1
a3 ol £ 1 ¢
— = — = — (X‘ _ T)lp_ + (p7_
9cop 9poc i=§rl l l i:%;rl l
¢
+k< Z Ri<ﬂ7i+R2‘<p7,,>,
i=¢+1
al? & ¢
o = =) (L Ry I + R)gsi + Riga,
deok 9koc ;( + z)(olz“l‘i_;l( + Ri)¢g2i + t 921

812 ¢ ¢
_aﬁék:C Z (p3i+6’( Z Ri§03i+R;~k‘P3r/>-

i:§u+1 i:§u+1

where gg; = x{In(x)2(14+x0) "%, @5i = Y{ln () * (A+97) 2, @5y = Yln(@) (1 +
YOI =y +v) ™ L gei = (i — 02U 21+ Y9 2 [(c— DA+ ¥ — cyfl,
Pon = (ty — DY 21+ ¥ 2le — DA+ YO — eyl or = (i — Dy (1 +
Ye +eln()(1+¥) %, and @7, = (oy — DY L+ 95 + eln(r)) (1 +¥5) 2.

The asymptotic variance-covariance matrix is obtained by inverting the Fisher
information matrix as follows

a2 a2 a2\ ! . . .
T 9c2 T 9cap T dcok var(c) cov(c, B) cov(c, k)
ol ol a3 _ A oA A n 5
T3Bac op?  9pok = | cov(B, &) wvar(B) wvar(B, k)| (15)
ol o1 (it cov(k, &) cov(k, B) var(k),

T Okdc T OkaB T 9k? / c=¢ p=p k=h

Thus, the approximate confidence intervals of ¢, § and k, are respectively, given by

& % 22y var (@), B £ zo o/ var (B), and k=, zo 2\ var (k). (16)

where z4/2 is the upper «/2 percentile of a standard normal distribution.
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4 Statistical Inference Based on AT-II PHCS

The Likelihood function under SS-PALT based on AT-II PHCS is given by

my m J
Lyoc[TAGISiG1® [T A6 [T 20015 S2601% (17)

i=1 i=my,+1 i=m,+1

from (2), (3), (5) and (17), the likelihood function can be written as

c—1 m c—1
Ly(c. k. B) oc c™k™ g™ ]_[ <1x+x ) I1 (l'ﬁ w?)exp (—ke> (c. B. x))
i=my+1 J

(18)
where
my m J
o, .x)=> A+R)n(1+x)+ > In(1+y)+ Y Riln(1+F)+Ruln (1+5)
i=1 i=my+1 i=my+1

the natural logarithm of the likelihood function, I, = In(La(c, k, B)) is given by

I, = min(ck) + maln(B) + (¢ — l)[Zln(x,) + Z In(yr) ]

= i=m,+1
my m
S +x8) = Y in(1+9f) — ke (c. B, x) (19)
i=1 i=my,+1
from (19), the likelihood equations of ¢, 8 and k can be expressed as
my m
—=—+Zln<x,)+ Z In(¥i) — Zgol, > g —kan(e. p.x) =0,
i=my,+1 i=my+1
(20)
dr m _
i ﬁ“ +(—1 Z (i =Y —ck+1) Z @3
i=m,+1 i=my+1
J
—ck( > Ripsi +Rm¢3m) =0, 1)
i=my,+1
al
=T o =0 (22)

where ¢1;, ¢2i, ¢3i as defined in the previous section,and

my m J
wic.p.0)=Y (I+R)pii+ > ¢+ Y Rigoi+ Rutoom.

i=1 i=my,+1 i=my+1
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After equating (22) by zero, the MLE of the parameter k can be obtained as follows

P=—"T 23
(e B x) .

substituting the value of k given by (23)in (20) and (21), yields two nonlinear equations
in ¢ and B as follows

—+Zuln(x,)+ Z ln(wl)—Z(pll Z o2 — (5}3,)_6):&

i=my+1 i=m,+1 é’ ﬁ’i)
(24)
o o) 3 o

i ’ @ B.x) Bl

~ J

cm
- A—A< Z Rip3i + Rm<p3m> =0, (25)

(S, B, )\, S

it is observed that there is no closed form solution for (24) and (25). Therefore, an
iterative procedure such as Newton-Raphson method can be used to find the ML
estimates of ¢ and 8. Substitute the ML estimates ¢ and A in (12), the MLE of k can be
obtained. The elements of the Fisher information matrix in this case can be expressed
as follows

312 el
82 = +Z<P4,+ Z @si + kan(c, B, x),
C C i=1 1_mu+l
a3 _2
—@zﬁﬁ( c—1) Z (i — DY 2+ ek + 1) Z P6i

i=my,+1 i=my+1

J
+ck Z Ripsi + Rm@ﬁm),

i=m,+1
a3 m
k2~ k2’
al3 a3
_ _ B . |
dcop 3ﬂac l_%Jrl(x, Y, +l_%+1¢7l + kws(c, B, x)
oL o (c, B, x),
- - T = C, X
dcok . okoc !
ol a3 “ J
080k d0kop Ci:%-i,—l 3+ i:§+l i3 + m§03m)
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where ¢4;, ¢si, vsi, ¢7i, as defined before and

my m J
wa(c, B, x) = Z(l + Ri)gai + Z @si + Z Ri@si + Ry@sm,
i=1 i=my+1 i=my+1
and
m J
w3(c, B, )= Y @i+ Y. Rigri+Ru@im.
i=my+1 i=my+1

The asymptotic variance-covariance matrix and the approximate confidence inter-
vals of ¢, B and k can be obtained as in (15) and (16).

5 Simulation Study

In this section, a simulation study is carried out to compare the performance of the
estimators based on different sampling schemes and the corresponding approximate
confidence intervals in terms of mean squared errors (MSEs), relative errors (REs),
where RE=o/MSE /0, 0 = c, B, k, and confidence lengths (CLs) discussed in the
previous sections. We perform a simulation study to illustrate the statistical behaviour
of the estimators by considering (n, m) = (30, 10), (45, 15), (60, 10) and (60, 20) and
different values of 7,  and by choosing (c = 3,8 =12andk =1.5),(c=2,=2
and k = 2) based on T-I PHC and AT-II PHC schemes. We consider the following
three progressive censoring schemes

e Schemel: Ry =---=Ry,_1=0and R, =n—m.
e Scheme2: Ry =---=Ry_1=1and R, =n —2m + 1.
e Scheme3: Ry = -+ = Ry, = .

Itis observed that scheme 1 describes the case of Type-II censoring scheme, where n —
m units are removed from the experiment at the time of the mth failure, while scheme
2 and scheme 3 is the usual Type-II progressive censoring scheme with censoring.
For each setting, we replicate the process 1000 times and obtain average estimates,
MSEs, REs and CLs.The simulation results are reported in Tables 1, 2, 3 and 4. The
simulation study is performed as follows

1. Determine the values of n, m, le s, T, n and the values of parameters c, 8 and k.
2. Generate progressive Type-II censored sample from Burr Type-XII distribution
using the method proposed by Balakrishnan and Sandhu [10], by setting X =

-1 1

(I=U)F —1)e,ifx < 7,and X = W=DE =Dt 4 o if x> 7 where U

represents a uniform random variable from [0, 1].Based SSPALT with T-I PHCS
the experiment is terminated at n* = min(x,,, n).

3. Under SSPALT with AT-II PHCS, we generate the data by following the same

procedure in step 2,but if < x,,, we generate an additional Type-II censored

sample of size m — J — 1 from truncation distribution f>(x)/[1 — Fa(xs4+1)].

=1 1
Hence, X = W + 7, where V=[14+ (t + B(xj4+1 — 7)1 %. In
this case, the experiment stops at x,,.
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4. From the ordered observations obtained in step 2 and step 3, obtain the MLEs of
the unknown parameters and the corresponding approximate confidence intervals.

5. Repeat steps 2—4, 1000 times.

6. Obtain the average number of observed failures before the predetermined time 7,
denoted by J4, in the case of T-I PHCS.

7. Obtain the average values of estimates, MSEs, REs and CLs.

Based on the results shown in Tables 1, 2, 3 and 4, we see that in all cases the MLEs
of ¢, B and k based on AT-II PHCS always give smaller MSEs and REs in compare to
those based on T-I PHCS. For fixed n and n, when m increases, the MSEs and REs of
the MLEs based on AT-II PHCS decrease in all cases, this is also true for T- PHCS
when 7 is large. For fixed n and m, when 7 increases the MSEs and REs of the MLEs
based on T-I PHCS decrease in all cases, but there have been no such changes under
the AT-II PHCS, because the number of failures is predetermined and no additional
observed failures when 7 increase. As a matter of fact, based on T-I PHCS for small
n's, the difference between MSEs and REs of the two schemes is more sensible, but
when 7 increases, the observed number of failures increase and this difference will be
smaller or equal to zero, see Table 4, the case of (n, m) = (60, 10) under schemes 1
and 2. Therefore, considering the MSEs and REs of MLEs, the AT-II PHCS scheme
will be a preferable scheme in order to estimate the unknown parameters with a higher
efficiency when the time of the experiment is not the major concern.

Comparing the three censoring schemes (Sch), the results of Tables 1, 2, 3 and
4 show that Sch 3 of AT-II PHC and T-I PHCS gives the smallest values of MSEs
and REs in most cases. Based on AT-II PHCS, for fixed m and 7, the MSEs and REs
decrease with the increase in the sample size n for parameters ¢ and k for schemes 1,
2 and 3, while the MSEs and REs of parameter 8 increase along with n in the schemes
1,2 and 3. For fixed m and 1, when n increases, we do not observe a specific pattern in
the MSEs and REs in the case of T- PHCS. Also, the simulation results show that the
MLE:s of the parameters (Par) based AT-II PHCS perform better than the MLEs based
on T-I PHCS in terms of CLs. Based on T-I PHCS, when the predetermined time n
increases, the CLs decrease in all cases and the difference between CLs of the two
schemes decrease. It is because of the fact that, when the » increase the two schemes
approaches to the conventional progressive Type-II censoring scheme, i.e. m = J4.

6 Conclusion

In this paper, we have discussed the maximum likelihood estimators of the unknown
parameters and the approximate confidence intervals of the Burr Type-II distribution
and the acceleration factor under SS-PALT when the data are coming from two different
types of progressively hybrid censoring schemes which are Type-I progressive hybrid
censoring scheme and adaptive Type-II progressive hybrid censoring scheme. The
MLEs of the model parameters are obtained numerically using the Newton-Raphson
method and their performances are evaluated and discussed in terms of mean squared
errors (MSEs) and relative errors (REs). The efficiency of the MLEs are compared
using a simulation study. The results of the simulation study suggests that the MLEs
based on AT-II PHCS perform better than those under T-I PHCS in terms of MSEs
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and REs, because a large number of failures can be observed when AT-IT PHCS is
applied. Also, the results of the simulation study suggests that the MLEs based AT-1I
PHCS perform better than the MLEs based on T-I PHCS in terms of CLs. In general,
if the experimental time and the number of failed items in the experiment are not the
major concern, then the AT-II PHCS scheme is recommended in order to obtain better
estimates of the parameters. In contrast, if one wants to have a shorter experimental
time and/or allow only a few experimental units damaged during the experiment, then
the T-I PHCS scheme shall be a reasonable alternative to achieve the goal.
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