
Ann. Data. Sci. (2016) 3(4):445–468
DOI 10.1007/s40745-016-0091-y

A Systematic Review on Minwise Hashing Algorithms

Jingjing Tang1 · Yingjie Tian2

Received: 8 August 2016 / Revised: 28 August 2016 / Accepted: 29 September 2016 /
Published online: 26 October 2016
© Springer-Verlag Berlin Heidelberg 2016

Abstract Similarity detection technology captures a host of researchers’ attention.
Minwise hashing schemes become the current researching hot spots in machine learn-
ing for similarity preservation. During the data preprocessing stage, the basic idea
of minwise hashing schemes is to transfer the original data into binary codes which
are good proxies of original data to preserve the similarity. Minwise hashing schemes
can improve the computation efficiency and save the storage space without notable
loss of accuracy. Thus, they have been studied extensively and developed rapidly for
decades. Considering minwise hashing algorithm and its variants, a systematic survey
is needed and beneficial to understand and utilize this kind of data preprocessing tech-
niques more easily. The purpose of this paper is to reviewminwise hashing algorithms
in detail and provide an insightful understanding of current developments. In order to
show the application prospect of the minwise hashing algorithms, various algorithms
have combined with linear Support VectorMachine for large-scale classification. Both
theoretical analysis and experimental results demonstrate that these algorithms can
achieve massive advantages in accuracy, efficiency and energy-consumption. Further-
more, their limitations, major opportunities and challenges, extensions and variants as
well as potential important research directions have been pointed out.

Keywords Minwise hashing · Similarity estimation · Large-scale · Linear SVM

B Yingjie Tian
tyj@ucas.ac.cn

Jingjing Tang
tangjingjing13@mails.ucas.ac.cn

1 School of Mathematical Sciences, University of Chinese Academy of Sciences,
Beijing 100049, China

2 Research Center on Fictitious Economy and Data Science, Chinese Academy of Sciences,
Beijing 100190, China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40745-016-0091-y&domain=pdf

446 Ann. Data. Sci. (2016) 3(4):445–468

1 Introduction

With the booming development of information acquisition technology, we have wit-
nessed an explosive growth in the scale of shared data collections that are characterized
by a set of relevant features and represented as high-dimensional points. Since many
similar information existing in these data collections highly consumes resources of
index, a fundamental task is to examine data for similar items [1] in the real-world
applications such as duplicated web page removal [2,3], advertising diversification
[4], wireless sensor networks [5], graph sampling [6] and web spam [7]. When we
take the distance metric between all data points as the similarity measurement, the
storage and computation requirements are rigorous. Thus, the compact storage and
efficient distance computation are indispensable for data representations.

Binary codes [8,9] are attractive data representations for search and retrieval
purposes due to their efficiency in computation and storage capacity. The hashing
technique [10–16] is a common method for assigning binary codes to data points. The
binary codes serve as hash keys which are learned from the hash functions to preserve
some notion of similarity in the original feature space. Suitable binary codes should
maintain the general hash property of high collision probabilities for similar items.
Furthermore, the storage needed to store the binary codes will be greatly decreased.
The existing hashing methods can be mainly divided into two categories [13,17,18]:
data-independent methods and data-dependent methods.

Representative data-independent methods include locality-sensitive hashing (LSH)
[10,11,19] and its extensions [20–22], and shift invariant kernel hashing (SIKH) [23].
These data-independent methods need longer codes to achieve satisfactory perfor-
mance [17], which will be inefficient due to the higher storage and computational
cost. In contrast, data-dependentmethods learn hash functions from the training data to
overcome the shortcomings of the data-independentmethods. Typicalmethods include
Semantic hashing [24], Spectral hashing (SH) [25], Binary reconstruction embedding
(BRE) [21], Semi-supervise hashing (SSH) [26], Self-taught hashing [27], Composite
hashing [28], Minimal loss hashing (MLH) [29] and Iterative quantization (ITQ) [17].

In recent decades, approximation distance computation [30,31] for similarity
searching is proposed by several researchers to avoid the running time bottleneck.
This is due to the fact that approximate nearest neighbor is almost as good as the
exact one in many cases. Locality-sensitive hashing (LSH) [22] was introduced as an
approximate high-dimensional similarity search schemewith provably sub-linear time
complexity dependence on the data size. The key idea is to compute randomized hash
functions that guarantee a high probability of collision for similar samples. Then, one
can determine near neighbors by hashing the query sample and retrieving the elements
stored in the buckets containing that sample.

Minwise hashing is a standard algorithm for estimating the sets similarities. Then,
several variants, i.e. b-bit minwise hashing [32–37], connected bit minwise hashing
[38], f -fractional bit minwise hashing [39] and one permutation hashing [40], appear
from diverse perspectives to improve the original minwise hashing algorithm for better
performance.

While original minwise hashing method stores each hashed value using 40 bits
[2] or 64 bits [41], the b-bit minwise hashing algorithm [33–36] stores the low-

123

Ann. Data. Sci. (2016) 3(4):445–468 447

est b bits of each hashed value and gains substantial advantages in storage space
and computational efficiency for large-scale machine learning problems. To improve
the effectiveness of document similarity detection, connected bit minwise hashing
algorithm [38] is proposed for computing set similarities among high-dimensional
vectors. As the extension of b-bit minwise hashing, f -fractional bit minwise hashing
algorithm [39] is presented for a wider range of selectivity on accuracy and storage
space requirements. The feasibility of f -fractional bit minwise hashing algorithm
has investigated associated with the optimal fractional bit that makes the minimum
variances estimator. Instead of k(k ≥ 100) permutations of existing minwise hash-
ing algorithms, one permutation hashing algorithm merely applies one permutation,
which not only preferably keeps the structure of original data set, but also avoids
the disadvantages of the expensive preprocessing cost and the loss of classification
accuracy.

Furthermore, experimental results in [42,43] have shown the effectiveness of these
minwise hashing algorithms on large-scale data sets. Thus, these algorithms have been
studied extensively and developed rapidly for decades. Considering minwise hashing
algorithm and its variants, a systematic survey is needed and beneficial to understand
and utilize this style of data preprocessing techniques more easily. The purpose of
this paper is to review minwise hashing algorithms in detail and provide an insightful
understanding of current developments. In order to show the application prospect of
the minwise hashing algorithms, we combine various algorithms with linear Support
Vector Machine (SVM) [44] in classification for large-scale data set. Both theoretical
analysis and experimental results demonstrate that these algorithms can achieve mas-
sive advantages in accuracy, efficiency and energy-consumption. Furthermore, their
limitations, major opportunities and challenges, as well as potential important research
directions have been pointed out.

Section 2 of the paper reviews Locality-sensitive Hashing (LSH) and five represen-
tative minwise hashing algorithms, i.e. minwise hashing [2,3], b-bit minwise hashing
[33–36], connected bit minwise hashing [38], f -fractional bit minwise hashing [39]
and one permutation hashing [40]. Section 3 describes applications of these minwise
hashing algorithms for large-scale classification problems. Section 4 introduces several
extensions and variants of minwise hashing algorithms. Finally, concluding remarks
and future research directions are provided in Sect. 5.

2 Minwise Hashing Algorithms

2.1 Locality-Sensitive Hashing

We begin by briefly reviewing Locality-sensitive Hashing (LSH). A binary hashing
function defines a mapping h(x) from Rd to the discrete set {0, 1}. In practice, each
sample will be fed into a number of independent random hashing functions.

LSH is a special type of hashing algorithms with the locality-sensitive property,
which basically states that if two samples are similar in the original feature space,
their corresponding hash codes shall be alike. A key notion to quantify this property
is collision probability, which is defined as Pr(h(x1) = h(x2)) (the expectation of

123

448 Ann. Data. Sci. (2016) 3(4):445–468

identical hash bit over all possible hashing functions). The locality-sensitive property
also implies that the collision probability should be monotonically increasing with
respect to the pairwise data similarity.

The basic idea behind locality-sensitive hashing (LSH) is to project the data into a
low-dimensional binary space.Eachdata point ismapped to a l-bit binaryvector termed
as the hash key. With proper hash projections, the approximate nearest neighbors can
be found in sublinear time with respect to the size of training samples. Define an LSH
family F for a metric space M = (M, d), a threshold R > 0 and an approximation
factor c > 1.F is a family of functions h : M → S satisfying the following conditions
for any two samples x1, x2 ∈ M and a function h chosen uniformly at random fromF :

– if d(x1, x2) ≤ R, then h(x1) = h(x2) (i.e., p and q collide) with probability at
least P1,

– if d(x1, x2) ≥ cR, then h(x1) = h(x2) with probability at most P2.

A family is interesting when P1 > P2. Such a family F is called (R, cR, P1, P2)-
sensitive. For any sample, the hash key is constructed by applying l binary-valued
hash functions, i.e., h1, . . . , hl , from the LSH family to the sample.

2.2 Minwise Hashing

Minwise hashing [2,3] is a basic algorithmic tool for real-world problems related
to set similarity and containment. Computing the size of set intersection is a crucial
problem in information retrieval and machine learning. Minwise hashing applies the
idea of Monte Carlo method, which transforms the problem of computing the size of
set intersections into the probability of one case occurs. Due to large numbers of the
permutations k, one can estimate the occurred probability of the case to achieve the
document resemblance. It is worth noting that minwise hashing mainly works well
with binary data represented via w-shingle, which can be viewed either as 0/1 vectors
in high-dimension or as a set.

Consider two sets S1 and S2 where S1, S2 ⊆ � = {0, 1, . . . , D − 1}. A generally
used measurement of similarity is the resemblance

R = |S1 ∩ S2|
|S1 ∪ S2| = a

f1 + f2 − a
, (1)

where f1 = |S1|, f2 = |S2|, a = |S1 ⋂
S2|.

Applying a random permutation π on two sets S1 and S2 and storing the smallest
elements under π as min(π(S1)) and min(π(S2)), the collision probability is simply

Pr (min(π(S1)) = min(π(S2))) = |S1 ∩ S2|
|S1 ∪ S2| . (2)

123

Ann. Data. Sci. (2016) 3(4):445–468 449

Then, repeat the permutation k times to estimate R without bias as the following
binomial probability associated with its variance:

R̂M = 1
k

k∑

j=1
1
{
min

(
π j (S1)

) = min
(
π j (S2)

)}
,

Var(R̂M) = 1
k R(1 − R). (3)

The common practice is to store each hashed value, e.g., min(π(S1)) and
min(π(S2)), using 40 bits [2] or 64 bits [41]. The cost of storage and computation will
be formidable in large-scale application [45]. In order to demonstrate the comprehen-
sive promotion degree with respect to the estimations of variance, storage space and
sample size, the storage-factor for minwise hashing can be constructed with 64 bits as
follows:

M(R) = 64 × Var(R̂M) × k,

= 64R(1 − R). (4)

However, it is worth noting that the storage-factor cannot be regarded as the mea-
surement of precision. Moreover, minwise hashing requires the storage space of 64mk
bits, where m is the size of data set and 64 is the bit number for each hashed binary
code.

2.3 b-Bit Minwise Hashing

For the sake of computing resemblances, it is costly in time, storage space and energy-
consumption for large-scale applications. Recently, the development of b-bit minwise
hashing [33–36] recommend storing only the lowest b bits instead of 40 bits [2,3] or
64 bits [41] of each hashed value. By only storing b bits, b-bit minwise hashing gains
substantial advantages in terms of storage space and the speed of computation.

Given two sets S1, S2 ⊆ � = {0, 1, . . . , D − 1}. Define the minimum hashed
values of S1 and S2 under a random permutation π to be Z1 = min(π(S1)) and Z2 =
min(π(S2)); Z

(b)
1 (Z (b)

2) the lowest b bits for the hashed value Z1 (Z2). Define e1,i
(e2,i) the i-th lowest bit for Z

(b)
1 (Z (b)

2). Theorem 1 [33] provides the main probability
formulations. Its proof assumes that D is large and the random permutation repeats
many times, which is invariably satisfied in practice.

Theorem 1 Assume D is large.

Pb = Pr
(
Z (b)
1 = Z (b)

2

)

= Pr

(
b∏

i=1
1{e1,i = e2,i } = 1

)

= C1,b + (1 − C2,b)R, (5)

r1 = f1
D , r2 = f2

D , f1 = |S1| , f2 = |S2| , (6)

123

450 Ann. Data. Sci. (2016) 3(4):445–468

C1,b = A1,b
r2

r1+r2
+ A2,b

r1
r1+r2

, (7)

C2,b = A1,b
r1

r1+r2
+ A2,b

r2
r1+r2

, (8)

A1,b = r1[1−r1]2b−1

1−[1−r1]2b
, (9)

A2,b = r2[1−r2]2b−1

1−[1−r2]2b
. (10)

For a fixed r j (where j ∈ {1, 2}), A j,b is a monotonically decreasing function of
b = 1, 2, 3

For a fixed b, A j,b is a monotonically decreasing function of r j ∈ [0, 1] reaching
a limit: lim

r j→0
A j,b = 1

2b
.

From Theorem 1, the desired probability equation (5) is determined by R and the

ratios r1 = f1
D

and r2 = f2
D

for a fixed b. Meanwhile, A j,b converges to zero in a

rapid speed with the increasing of b. A j,b is closed to zero when b ≥ 32. If R = 1,
then Pb = 1 since we have r1 = r2 and C1,b = C2,b in this case.

Theorem 1 suggests an unbiased estimator R̂b for R:

R̂b = P̂b − C1,b

1 − C2,b
, P̂b = 1

k

k∑

j=1

{
b∏

i=1

1
{
e1,i,π j = e2,i,π j

} = 1

}

, (11)

where e1,i,π j (e2,i,π j) is i-th lowest bit of Z1 (Z2) under the permutation π j . The
variance is

Var(R̂b) = 1

k

[
C1,b + (

1 − C2,b
)
R
] [
1 − C1,b − (

1 − C2,b
)
R
]

(
1 − C2,b

)2 (12)

From (3) and (11), R̂b converges to the variance of R̂M for large b, namely
lim
b→∞ Var(R̂b) = Var(R̂M). In fact, for the purpose of practice, Var(R̂b) and

Var(R̂M) are numerically indistinguishable when b is 64 bits. Intuitively, compared
to (12), at the same sample size k, the estimation variance will be increasing when
we use fewer bits per sample so that the accuracy is contaminated. Hence, we need
increase the value of k to maintain the same accuracy. In brief, b-bit minwise hashing
not only preferably improves the accuracy, but also significantly reduces the storage
and computational requirements.

With the same size k, the space required for storing each samplewill be smaller with
the decrease of b. Unfortunately, the estimated variance (12) will increase according
to the b-bit minwise hashing theory. The storage factor B(b; R, r1, r2) [33–35] is
proposed to accurately measure the variance-space trade-off as follows:

123

Ann. Data. Sci. (2016) 3(4):445–468 451

B(b; R, r1, r2) = b × Var
(
R̂b

)
× k,

= b
[
C1,b + (

1 − C2,b
)
R
] [
1 − C1,b − (

1 − C2,b
)
R
]

(
1 − C2,b

)2 . (13)

From that we know the lower B(b; R, r1, r2) is better. The ratio
B(b1; R, r1, r2)

B(b2; R, r1, r2)
measures the improvement of using b = b2 over using b = b1. Moreover, b-bit
minwise hashing requires the storage space of bmk bits, where m is the size of data
set.

2.4 Connected Bit Minwise Hashing

Based on the b-bit minwise hashing theory, connected bit minwise hashing [38] is
proposed which connects bits obtained by b-bit minwise hashing algorithm. As an
efficient and feasiblemethod for similarity estimation, it can greatly reduce the number
of comparisons so that the efficiency of similarity estimation is improved merely with
a minor loss of accuracy. Furthermore, connected bit is convenient to be built and the
performance increases with a far-reaching practical significance in large-scale data
environment.

Again, consider two sets S1, S2 ⊆ � = {0, 1, 2, . . . , D − 1} and a random per-
mutation group π , where π = {π1, π2, . . . , πk}, π j : � → � and j ∈ {1, 2, . . . , k}.
Define the minimum hashed value under π to be Zh = min(π(Sh)); Z

(b)
h the low-

est b bits for each hashed value of Zh; eh,i,π j the i-th lowest bit for Z(b)
h under the

permutation π j and h ∈ {1, 2}. Experimental number k corresponds to k random inde-
pendent permutations. For the connected bits b and the connected number n, define
the variables:

x1 = e1,1,π1e1,2,π1 . . . e1,b,π1e1,1,π2e1,2,π2 . . . e1,b,π2e1,1,π3

· · · e1,b,π3 · · · e1,1,πn · · · e1,b,πn ,

x2 = e2,1,π1e2,2,π1 · · · e2,b,π1e2,1,π2e2,2,π2 · · · e2,b,π2e2,1,π3

· · · e2,b,π3 · · · e2,1,πn · · · e2,b,πn

If and only if e1,1,π j · · · e1,b,π j = e2,1,π j · · · e2,b,π j , whereπ j ∈ π̂ ={π1, π2, · · · , πn},
we obtain x1 = x2. Note that the permutation group π̂ consists of n permutations
selected from a k-size sequential random independent permutation group π retaining
its original order (k
 n).

ComputeGb,n = Pr (x1 = x2) = Pn
b = [C1,b + (1 − C2,b)R]n . Then, an unbiased

estimator R̂b,n for R from k independent permutations can be obtained as follows:

R̂b,n = Ĝ
1
n
b,n−C1,b

1−C2,b
, (14)

123

452 Ann. Data. Sci. (2016) 3(4):445–468

Ĝb,n =

⌊
k
n

⌋

∑

j=1

{
n∏

i=1
1

{
e1,1,πn(j−1)+i ...e1,b,πn(j−1)+i

= e2,1,πn(j−1)+i ...e2,b,πn(j−1)+i

}

=1

}

⌊
k
n

⌋ . (15)

When n = 1, namely Gb,n = Gb,1 = Pb, we obtain that the resemblance estimator
R̂b of b-bit minwise hashing is the special case for R̂b,n . Following the property of
binomial distribution and the delta method [46] in statistics, the variance of R̂b,n is

Var(R̂b,n) = 1

k
× Gb,n

(
1 − Gb,n

)

(
1 − C2,b

)2 × nG
2(n−1)

n
b,n

. (16)

It can be derived that the variance of connected bit minwise hashing is larger than
that of b-bit minwise hashing which has some slight effects on accuracy. Fortunately,
the connected bit minwise hashing can greatly reduce the number of comparisons and
preferably improve the performance.

Similarly, the storage factor G(b, n; R, r1, r2) for connected bit minwise hashing
[38] quantifies the variance-space trade-off as follows:

G(b, n; R, r1, r2) = b × n ×
(
k

n

)

× Var(R̂b,n),

= bGb,n
(
1 − Gb,n

)

(
1 − C2,b

)2 × nG
2(n−1)

n
b,n

. (17)

From that, we know the lower G(b, n; R, r1, r2) is better. Although connected bit
minwise hashing has the same storage space as b-bit minwise hashing with bmk bits,
wherem is the size of data set, the comparisons to achieve its resemblance has substan-
tially reduced. However, it is worth noting that the storage-factor only demonstrates
the degree of comprehensive promotion of the estimation variance, storage space and
sample size but cannot indicate the effect of precision.

2.5 f -Fractinal Bit Minwise Hashing

Although the higher integer bit value decreases the variance estimator and improves
the accuracy, it will consume lots of time. Furthermore, the integer bit determined by
b-bit minwise hashing method could not meet fine-grained requirements in terms of
accuracy, computational efficiency and storage space. Thus, f -fractional bit minwise
hashing algorithm [39] is proposed for a wider range of selectivity on these aspects.
The key idea of this algorithm is the continuous selectivity of bit instead of the discrete
integer value represented by a linear combination of bits obtained by b-bit minwise
hashing method. Correspondingly, the similarity and the optimal fractional bit that
makes the minimum variance estimator can be estimated. F-fractional bit minwise
hashing algorithm not only enriches the theoretical system of b-bit minwise hashing

123

Ann. Data. Sci. (2016) 3(4):445–468 453

algorithm, but also satisfies the various needs of accuracy and storage space in the
practical system.

Consider two sets S1, S2 ⊆ � = {0, 1, 2, · · · , D − 1} and a random permutation
group π , where π = {π1, π2, · · · , πk}, π j : � → � and j ∈ {1, 2, · · · , k}. Define
the minimum hashed value under π as Zh = min(π(Sh)) ∈ Rk ; the lowest bl bits
for each dimension of Zh as Z(bl)

h ∈ Rk ; the i-th lowest bit of the j-th dimension for

Z(bl)
h as eh,i,π j , where h ∈ {1, 2} and i ∈ {1, 2, · · · , bl}.
Let b1, b2 be integer bit with b1 < b2 and wl be the proportion of bl with wl = kl

k ,
where l ∈ {1, 2} and k1 + k2 = k.

Define f :
f = w1b1 + w2b2, w1 + w2 = 1, b1 < b2. (18)

Define the j-th dimensional value of Z(bl)
1 and Z(bl)

2 as the following variables respec-
tively: X1, j = e1,1,π j e1,2,π j · · · e1,bl ,π j and X2, j = e2,1,π j e2,2,π j · · · e2,bl ,π j , where
bl ∈ {b1, b2} and π j ∈ {π1, π2, · · · , πk}.

Then

Pf = Pr (X1, j = X2, j)

= Pr (b = b1)Pr

(
b1∏

i=1

1
{
e1,i,π j = e2,i,π j

} = 1

)

+Pr (b = b2)Pr

(
b2∏

i=1

1
{
e1,i,π j = e2,i,π j

} = 1

)

= w1
[
C1,b1 + (1 − C2,b1)R f

] + w2
[
C1,b2 + (1 − C2,b2)R f

]
. (19)

The unbiased estimator R̂ f for R f from k independent permutations is:

R̂ f = P̂ f −
(
w1C1,b1+w2C1,b2

)

1−(
w1C2,b1+w2C2,b2

) , (20)

P̂ f = 1
k (

w1k∑

j=1

{
b1∏

i=1
1
{
e1,i,π j = e2,i,π j

} = 1

}

+
w2k∑

j=1

{
b2∏

i=1
1
{
e1,i,πw1k+ j = e2,i,πw1k+ j

}
= 1

}

). (21)

Note that R̂b and P̂b are special case of R̂ f and P̂ f with w1 = 0, w2 = 1 and
b2 = 1 or w1 = 1, w2 = 0 and b1 = 1.

Following the property of binomial distribution and the delta method [46] in statis-
tics, the variance of R̂ f is

123

454 Ann. Data. Sci. (2016) 3(4):445–468

Var(R̂ f) = 1

k
× w1

2Pb1(1 − Pb1) + w2
2Pb2(1 − Pb2)

[
1 − (w1C2,b1 + w2C2,b2)

]2 , (22)

where Pb1 = C1,b1 + (1 − C2,b1)R f and Pb2 = C1,b2 + (1 − C2,b2)R f .
The variance decreases with a larger f -bit and lies between that of its proximate

integer bits. In order to satisfying various accuracy and storage space requirements,
diverse combination of b1 and b2 with respective w1 and w2 can be made to con-
stitute fractional bit f . Similarly, the storage factor F(w1, w2, b1, b2; R, r1, r2) for
f -fractional bit minwise hashing [47] can be presented as:

F(w1, w2, b1, b2; R, r1, r2) = f × k × Var(R̂ f)

= (w1b1 + w2b2)

×w1
2Pb1(1 − Pb1) + w2

2Pb2(1 − Pb2)
[
1 − (w1C2,b1 + w2C2,b2)

]2 . (23)

According to the accuracy and storage requirements, we select an appropriate frac-
tional bit f . It is apparent that the variance is the decreasing function of bit which
simultaneously determines the size of storage space. If f satisfies b1 < f < b2, we
conclude that Var(b1) > Var(f) > Var(b2) and {storage(b1) < storage(f) <

storage(b2)}.
In fact, there exists multifarious combinations for any fixed fractional bit f . From

(18), w1 = b2− f
b2−b1

, w2 = f −b1
b2−b1

. For example, when choosing f = 2.5, w1 = 0.5,
w2 = 0.5, b1 = 2, b2 = 3 or w1 = 0.75, w2 = 0.25, b1 = 2, b2 = 4 can be selected
to compose f . For any given integer bit b1 and b2, f = f0, 1 ≤ b1 < f0 < b2 ≤ 32,
Var(R̂ f) = Var(b1, b2, f0). Because the integer values b1 and b2 are discrete and
limited, the number of the combinations for fractional bit f are finite. Thus, the
variance under the numbered b1 and b2 can be calculated.

Although various combinations can be made for the fixed fractional bit f , the one
which makes the minimum estimator of variance is optimal. Thus, the theoretical sys-
tem of minwise hashing algorithms gets further development and ultimately attaches
profound significance in large-scale data environment.

For (20), if r1 = f1
D = r2 = f2

D , then C1,b1 = C2,b1 = Cb1 and C1,b2 = C2,b2 =
Cb2 . In particular, Cb1 and Cb2 can be approximated at zero if b1 and b2 are large
enough. In this case, the variance of R̂ fopt can be yielded as

Var
(
R̂ fopt

)
= R f (1 − R f)

[
(b2 − f)2 + (f − b1)2

]

k(b2 − b1)2
. (24)

Computing the partial derivative of (24) on the components b1, b2 and f and let
them be zero, b1 = f , b2 = f and f = b1+b2

2 . Because b1 and b2 are integer bits, f is
a fractional bit and 1 ≤ b1 < f0 < b2 ≤ 32, the optimal fractional bit is achieved with
b1 = � f �, b2 =
 f �, w1 =
 f �− f

 f �−� f � and w2 = f −� f �

 f �−� f � , which make the minimum

estimator of variance as Var(� f �,
 f �, f). Thus, the formula of optimal fractional
bit is fopt =
 f �− f

 f �−� f � × � f � + f−� f �

 f �−� f � ×
 f � concerning the certain fractional bit f .

Moreover, the storage factor of fopt is

123

Ann. Data. Sci. (2016) 3(4):445–468 455

Fopt

(
 f � − f

 f � − � f � ,
f − � f �

 f � − � f � , � f � ,
 f �; R, r1, r2

)

= f × k × Var(R̂ f)

=
(
 f � − f

 f � − � f � � f � + f − � f �

 f � − � f �
 f �

)

× (

 f �− f

 f �−� f �)
2
P� f �(1 − P� f �) + (

f −� f �

 f �−� f �)

2
P
 f �(1 − P
 f �)

[1 − (

 f �− f

 f �−� f �C2,� f � + f−� f �

 f �−� f �C2,
 f �)]2

. (25)

Besides, f -fractional bit minwise hashing and the optima fractional bit minwise
hashing require the storage space of f mk and foptmk bits respectively, where m is
the size of data set.

2.6 One Permutation Hashing

For the sake of similarity retrieval [1], the computation of similarity between sets is a
core mission. Algorithms such as minwise hashing [2,3], b-bit minwise hashing [33–
36], connected bit minwise hashing[38] and f -fractional bit minwise hashing [39]
apply k independent random permutations on the entire data set leading to expensive
cost of time, storage space and energy-consumption for similarities computation.How-
ever, one permutation hashing [40] merely utilizes one permutation without notable
replacement of samples and preserves the matrix sparsity. By doing so, it not only
preferably preserves the structure of original data set, but also avoids expensive pre-
processing cost.

At first, the shingled binary data vector for each sample is viewed as a set consisting
of the locations of the nonzero elements. Consider sets Si ⊆ � = {0, 1, 2, · · · , D−1},
where D is the size of the space. One permutation hashing algorithm permutes each
set once and convert it into a binary vector where 1 represents the new location of the
nonzero element. Then, the D-dimensional binary vector is divided into r bins and the
smallest nonzero element’s location of each bin is stored for each data vector.

For the theoretical analysis, define the number of “jointly empty bins” and the
number of “matched bins” as respectively:

Nemp =
k∑

j=1

Iemp, j , Nmat =
k∑

j=1

Imat, j , (26)

where Iemp, j and Imat, j are defined for the j-th bin, as

Iemp, j =
{
1 if both π(S1) and π(S2) are empty in the j − th bin
0 otherwise

(27)

Imat, j =
⎧
⎨

⎩

1 if both π(S1) and π(S2) are not empty and the smallest element
of π(S1) matches the smallest element of π(S2), in the j − th bin

0 otherwise

(28)

123

456 Ann. Data. Sci. (2016) 3(4):445–468

Recall the notation: f1 = |S1|, f2 = |S2|, a = |S1 ∩ S2|. We also use f = |S1 ∩ S2| =
f1 + f2 − a.

Theorem 2 R̂mat = Nmat
k−Nemp

, E(R̂mat) = R,

Var
(
R̂mat

)
= R(1 − R)

(
E

(
1

k−Nemp

) (
1 + 1

f −1

)
− 1

f −1

)
,

E(1
k−Nemp

) = ∑k−1
j=0

Pr(Nemp= j)
k− j ≥ 1

k−E(Nemp)
.

The fact that E(R̂mat) = R may seem surprising as in general ratio estimators are
not unbiased. Note that k−Nemp > 0, because we assume the original data vectors are
not completely empty (all-zero). As expected, when k � f = f 1+ f 2− a, Nemp is
essentially zero and hence Var(R̂mat) ≈ R(1−R)

k . In fact, Var(R̂mat) is a bit smaller

than R(1−R)
k , especially for large k.

It is probably not surprising that our one permutation scheme (slightly) outperforms
the original k-permutation scheme (at merely 1/k of the preprocessing cost), because
one permutation hashing, which is “sampling-without-replacement”, provides a better
strategy for matrix sparsification.

Actually, the hashed values are aligned identically since they are generated from
the same permutation. From the perspective of energy-consumption, the number of
permutations reduces from k to just one which is much more computationally efficient
andmakes the storage realizable. Moreover, in consideration of the scheme converting
many nonzero elements into zero without the destruction of the original data set, it
provides a relatively satisfactory strategy for sparsity. Furthermore, two strategies
are adopted for dealing with the empty bins, i.e. the Zero Coding Scheme and the
m-Permutation Scheme.

3 Applications of Minwise Hashing Algorithms

In this section, we show the combinations of various minwise hashing algorithms
with linear support vector machine (SVM) for large-scale document classification
[48]. Both the theoretical analysis and the experimental results demonstrate that this
kind of combinations can achieve massive advantages in accuracy, efficiency and
energy-consumption.

Document similarity detection technology [49–52] is an important topic in the
information processing field, and it is a powerful tool to protect the author’s intel-
lectual property and to improve the efficiency of information retrieval. Generally, the
problem of similarity computation is transformed into finding sets with a relatively
large intersection by the technique known as “shingling”. Representing documents as
w-shingle sets generates lower-dimensional data sets. The value of w depends on the
length of typical documents and the size of set with typical characters, where w ≥ 5
in prior studies [2,41]. Since word frequency distributions with documents approxi-
mately follow a power-law [53] and most shingle terms occur rarely, it is reasonable
and adequate to view w-shingle data sets as the sets of 0/1 (absence/presence) vectors
in high-dimensional space. Compared with the decimal data, binary-quantized data
performswell in experiments. In practice, the problem of insufficientmemory capacity

123

Ann. Data. Sci. (2016) 3(4):445–468 457

often appears. Thus, minwise hashing algorithms are beneficial to make the original
data represented compactly.

Connected bit minwise hashing [38], f -fractional bit minwise hashing [39] and
one permutation hashing [40] extend b-bit minwise hashing [33–36] to improve the
efficiency of similarity estimation without notable loss of accuracy. The hashed bit is
convenient to be built and the performance increases with a strong practical signifi-
cance in the environment of massive amounts of data.

This part compares the integrations of linear SVM with b-bit minwise hashing
[35,36], connected bit minwise hashing [43], f -fractional bit minwise hashing [42]
and one permutation hashing [40] practically. In theoretical analysis, the positive
definiteness of resemblance matrices generated by these minwise hashing algorithms
guarantees the converting of the nonlinear SVM problem [54] into linear SVM for
large-scale classification. This property makes the kernel matrices decompose into
matrices inner product to be the foundation for the integration as Theorems 5, 6 and
7 shown. Through solving large-scale linear SVM with many representative software
packages such as LIBLINEAR [55], SVMper f [56], SGD [57,58] and Pegasos [59],
these combinations yield better performance and possess their own merits.

3.1 Integrating Linear SVM with Connected Bit Minwise Hashing Kernel

Connected bit minwise hashing algorithm can improve the efficiency of similarity
estimation since the half of comparisons is greatly reduced without notable loss of
accuracy. The positive definiteness of the resemblance matrices generated by con-
nected bit minwise hashing and optimal fractional bit minwise hashing serve as the
theoretical foundation for integrating linear SVM with them.

Definition 3 [36] A symmetricm×m matrix K satisfying
∑

i. j
ci c j Ki j ≥ 0 for all real

vectors c is called positive definite (PD).

Lemma 4 [36] Consider m sets S1, · · · , Sm ∈ � = {0, 1, · · · , D − 1}. Apply one
permutation π to each set. Define Zi = min(π(Si)) and Z (b)

i be the lowest b bits of
Zi . The following three matrices are PD.

1. The resemblance matrix R ∈ Rm×m, whose (i, j)-th entry is the resemblance

between set Si and set S j : Ri j = |Si ∩ S j |
|Si ∪ S j | = |Si ∩ S j |

|Si | + |S j | − |Si ∩ S j | .
2. The minwise hashing matrix M ∈ Rm×m: Mi j = 1{Zi = Z j }.
3. The b-bit minwise hashing matrix M (b) ∈ Rm×m: M (b)

i j = 1{Z (b)
i = Z (b)

j }.

Consequently, consider k independent permutations and denote M (b)
(s) the b-bit

minwise hashing matrix generated by the s-th permutation. Then, the summation
k∑

s=1

M (b)
(s) is also PD.

123

458 Ann. Data. Sci. (2016) 3(4):445–468

Theorem 5 [43] Consider m sets S1, · · · , Sm ∈ � = {0, 1, · · · , D − 1}. Apply one
permutation group π of size n to each set Si . Define the minimum value under π

as Zi = min(π(Si)) = {min(π1(Si)),min(π2(Si)), · · · ,min(πn(Si))}, Z(b)
i be the

lowest b bits for each dimension of Zi and Zi , Z
(b)
i ∈ Rn, Zi

(n,b) with the length of

nb derived from sequentially connecting n dimensions of Z(b)
i , Zi

(n,b) ∈ R1 and n the
number of connected bits. The matrix generated by connected bit minwise hashing is
PD.

Instead of just one permutation groupπ consist of n permutations, we use k (k
 n)
permutations and thus there will be �k/n� connected bit minwise hashing matrices.
Define M (n,b)

(s) as a connected bit minwise hashing matrix generated by the s-th permu-
tation group with the size of n, where s = 1, 2, · · · , �k/n�. Note that the summation
�k/n�∑

s=1

M (n,b)
(s) is still PD, since c�

[�k/n�∑

s=1
M (n,b)

(s)

]
c =

�k/n�∑

s=1
c�M (n,b)

(s) c ≥ 0 for arbitrary

vector c by the reason that M (n,b)
(s) is PD.

Seemingly, the positive definiteness of M (n,b)
(s) is not beneficial enough for efficient

linear SVMtraining since it is a nonlinear operation.Aconcise strategy canbe provided
to construct a matrix Bs to decompose the resemblance matrix as an inner product
satisfying M (n,b)

(s) = B�
s Bs , where Bs has dimensions 2nb × 2nb. It is high-effective

to connect the value of b-bit minwise hashing. Meanwhile, the decomposition of
resemblance matrix can be taken as the transformation of kernel matrix for SVM
model.

Consider a data set {(xi , yi)}mi=1, where a binary data vector xi ∈ RD and yi ∈
{−1, 1}. Apply k random permutations on each feature vector xi and store the lowest
b bits of each hashed value. Then, connect every successive n b-bit and obtain a new
data set using mbk bits in total. Later, expand each new data point into a �k/n�-
dimensional vector and convert the above vector into a 2nb × �k/n�-length vector
with exactly �k/n� 1’s at run-time.

For example, suppose k = 6 and the original hashed values are {4, 3, 3, 3, 1, 1}
whose binary digits are {100, 011, 011, 011, 001, 001}. Consider b = 1. The binary
digits are stored as {0, 1, 1, 1, 1, 1}. Then, set connected bit number n = 2 and con-
nect consecutive 2 bits of the stored digits as {01, 11, 11} corresponding to {1, 3, 3} in
decimals. At run-time, expand it into a 12-length (2nb ×�k/n� = 22×1×�6/2� = 12)
vector, to be {0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0} and it is a new feature vector applica-
ble to the “LIBLINEAR” solver. The expansion is directly and reasonably based on
Theorem 5.

3.2 Integrating Linear SVM with F-Fractional Bit Minwise Hashing Kernel

The positive definiteness of the resemblance matrices generated by f -fractional bit
minwise hashing and optimal fractional bit minwise hashing has been proved as the
theoretical foundation for integrating linear SVM with them.

123

Ann. Data. Sci. (2016) 3(4):445–468 459

Theorem 6 [42] Consider m sets S1, · · · , Sm ∈ � = {0, 1, · · · , D − 1} and a
permutation group π (π = {π1, π2, · · · , πk}). Apply the permutation group π to each
set. Define the minimum value under the permutation group π as Zh = min(π(Sh));
the lowest bl bits for each dimension of Zh as Z(bl)

h and Zh, Z
(bl)
h ∈ Rk, where

h ∈ {1, 2} and bl ∈ {b1, b2} Define f = w1b1 + w2b2, w1 + w2 = 1, b1, b2
be integer bit with b1 < b2 and wl be the proportion of bl with wl = kl

k , where
l ∈ {1, 2}. Retaining the order of original permutation group, k1 is corresponding to
the former w1 percent permutations and k2 is corresponding to the latter w2 percent
permutations. Thus, define Z(bl)

(h;1,w1k)
be comprised of the former w1k dimension of

the k-dimensional vector Z(bl)
h and Z(bl)

(h;1,w1k)
∈ Rw1k; Z(bl)

(h;w1k+1,k) be comprised of

the latter w2k dimension of the k-dimensional vector Z
(bl)
h and Z(bl)

(h;w1k+1,k) ∈ Rw2k .

Let b1 = � f �, b2 =
 f �, w1 =
 f �− f

 f �−� f � and w2 = f −� f �

 f �−� f � and thus the formula of

optimal fractional bit combination is fopt =
 f �− f

 f �−� f � × � f � + f −� f �

 f �−� f � ×
 f �. The
following two matrices are PD:

1. The f -fractional minwise hashing matrix M (f) ∈ Rm×m, where (i, j)-th entry is
the resemblance between the sets Si and S j : M

(f)
i j = 1{Z(b1)

(i;1,w1k)
= Z(b1)

(j;1,w1k)
}×

1{Z(b2)
(i;w1k+1,k) = Z(b2)

(j;w1k+1,k)}.
2. The optimal fractional minwise hashing matrix M (fopt) ∈ Rm×m, where (i, j)-th

entry is the resemblance between the sets Si and S j : M
(fopt)
i j = 1{Z(� f �)

(i;1,w1k)
=

Z(� f �)
(j;1,w1k)

} × 1{Z(� f �)
(i;w1k+1,k) = Z(� f �)

(j;w1k+1,k)}, where w1 =
 f �− f

 f �−� f � .

However, it seems that the PD of M (f) and M (fopt) are not beneficial enough for
efficient linear SVM training since they are nonlinear operations. In spite of this, a
concise strategy can be obtained to construct matrices B and C satisfying M (f) =
B�B and M (fopt) = B�

opt Bopt .
Consider a data set {(xi , yi)}mi=1, where xi ∈ RD is a D-dimension binary data

vector and yi ∈ {−1, 1}. For a certain fractional bit f , choose k random permutations
acting on each feature vector xi and then store the lowest b1 bits as Z(b1) and b2 bits
as Z(b2) of each binary hashed value. Then, select the former w1k dimensions of Z(b1)

and the latter w2k dimensions of Z(b2) and combine them as a new k-dimensional
vector retaining their original order. Thus, a new binary data set is achieved with f km
bits, where f = w1b1 + w2b2. Later, convert each new binary data point into a k-
dimensional vector in decimals and expand the abovevector into a (2b1w1k + 2b2w2k)-
length vector with exactly k 1’s at run-time.

For example, suppose k = 6 and the original hashed values are {4, 3, 3, 3, 1, 1}
whose binary digits are {100, 011, 011, 011, 001, 001}. Considering f = 2.5
with its optimal combination as fopt =
 f �− f

 f �−� f � × � f � + f −� f �

 f �−� f � ×
 f � =

1
2 × 2 + 1

2 × 3, thus, the binary digits are stored as {00, 11, 11, 011, 001, 001}
corresponding to {0, 3, 3, 3, 1, 1} in decimals. At run-time, expand it into a 36-
length (2b1w1k + 2b2w2k = 22 × 1

2 × 6 + 23 × 1
2 × 6 = 36) vectors, to be

{0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0,

123

460 Ann. Data. Sci. (2016) 3(4):445–468

0, 0, 1} and it is a new feature vector applicable to the “LIBLINEAR” solver. The
expansion is directly and reasonably based on Theorem 6.

3.3 Integrating Linear SVM with One Permutation Hashing Kernel

Based on the assumption that the shingled data vectors are binary, relatively sparse
and high-dimensional, the resemblance matrix generated by one permutation hashing
can be regarded as the kernel matrix of SVM for large-scale text classification. The
positive definiteness of the resemblance matrix provides a solid theoretical foundation
for the integration. According to the superior decomposability of the positive definite
resemblance matrix, the desired performance can be achieved.

Theorem 7 Consider m sets S1, · · · , Sm ∈ � = {0, 1, · · · , D − 1}. Apply one
permutation hashing scheme and suppose the space � is divided evenly into r bins.
Assume the number of zero elements is small compared to r and “*” represents
empty bin coped with “zero coding” strategy. The one permutation hashing matrix
M (o) ∈ Rm×m is PD, where (x, y)-th entry is the resemblance between the sets Sx
and Sy.

Although M (o) is a nonlinear operation corresponding to the kernel matrix, the
positive definiteness of it provides a concise strategy to construct a matrix B satisfying
M (o) = B�B and ensures the rationality of the transformation from a non-linear
operation into a linear operation. Thus, similar model of standard linear SVM can be
yielded and solved by “LIBLINEAR”.

Consider a data set {(xi , yi)}mi=1, where the data vector xi ∈ RD and yi ∈ {−1, 1}.
Choose a random permutation acting on each feature vector xi and view it as a binary
vector, where “1” represents the new location of the existing elements. Divide the
D-dimensional space evenly into r bins. In each bin for one data vector, select the
location of the smallest nonzero element and represent it as a binary data. Then, store
the lowest b bits of each binary value and obtain a new data set using rbm bits. Later,
convert each new binary data into a r -dimensional vector in decimals and expand it
into a 2br -length vector with exactly r 1’s at most.“*” denotes the empty bin processed
by “zero coding” strategy.

For example, suppose D = 25 and r = 5. The original hashed values under
the permutation π are {2, 4, 7, 10, 12, 17, 19}. Take the smallest element for each bin
and store them as {2, 7, 10, 17, ∗}, whose binary digits are {10, 111, 1010, 10001, ∗}.
Selectb = 2 and thus thebinarydigits are stored as {10, 11, 10, 01, ∗} corresponding to
{2, 3, 2, 1, ∗} in decimals. At run-time, expand them into a 20-length (2br = 22×5 =
20) vector with “zero coding” strategy to be 1√

5−1
{0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0,

1, 0, 0, 0, 0, 0} and regard it as a new feature vector applied to linear SVM solver. The
expansion is reasonably based on the positive definiteness of one permutation hashing
matrix in Theorem 7. Moreover, binary data performs well compared with the original
decimal data in the experiments. Therefore, the goal of compressing the original data
set is realized for linear SVM training.

123

Ann. Data. Sci. (2016) 3(4):445–468 461

Table 1 Experimental results accuracy (t ime) of the BBMH SVM and CBMH SVM algorithms on
webspam

Permutations Algorithm b = 2 b = 4 b = 6 b = 8

k = 100 BBMH SVM 94.37 (451.77) 97.96 (59.01) 98.99 (52.34) 99.25 (55.63)

CBMH SVM 95.47 (256.04 98.56 (17.18) 99.13 (23.71) 99.29 (46.00)

k = 300 BBMH SVM 97.71 (542.13) 99.11 (95.28) 99.45 (92.92) 99.56 (129.30)

CBMH SVM 99.08 (88.57) 99.26 (51.00) 99.51 (64.44) 99.56 (90.20)

k = 600 BBMH SVM 98.64 (258.42) 99.43 (212.53) 99.61 (193.58) 99.66 (236.89)

CBMH SVM 98.59 (102.78) 99.47 (108.04) 99.61 (134.82) 99.64 (192.78)

k = 900 BBMH SVM 99.31 (300.10) 99.66 (312.97) 99.71 (368.44) 99.73 (335.10)

CBMH SVM 99.10 (152.30) 99.56 (172.14) 99.66 (210.28) 99.67 (315.21)

3.4 Experimental Comparisons of the Integrations with Minwise Hashing
Algorithms

In this subsection, we compare the performance of the integrations of linear SVM
with b-bit minwise hashing, connected bit minwise hashing, f -fractional bit minwise
hashing and one permutation hashing experimentally on large-scale data set webspam
with 350,000 samples, each of which has 16,609,143 features. We split the set to 80 %
for training and the remaining 20 % for testing and repeat every experiment 50 times.
LIBLINEAR is chosen as the workhorse and all the experiments are conducted on the
workstationwith Intel(R)Xeon(R)CPU (E5-2630@2.30GHz) and 32GBRAM, under
Centos 7 System. A series of penalty parameter C are set ranging from 0.01 to 10 and
each sample is normalized to an unite vector. Besides, b-bit minwise hashing SVM
(BBMH SVM for short) sets k ∈ {100, 300, 600, 900} and b ∈ {2, 4, 6, 8}; connected
bit minwise hashing SVM (CBMH SVM for short) sets k ∈ {100, 300, 600, 900},
b ∈ {2, 4, 6, 8} and n ∈ {1, 2}; f -fractional bit minwise hashing SVM (FBMH SVM
for short) sets k ∈ {100, 200, 300, 400, 500} and f varying from 1 to 8 with the
interval of 0.25 and one permutation hashing SVM (One-perm SVM for short) sets
r ∈ {128, 256, 512, 1024} and b ∈ {2, 4, 6, 8} (r is the bins’ number and b is the bits’
number). The best experimental results from the perspective of accuracy (%) and time
(second) on current experimental setup are highlighted in bold letters.

The experimental results in Table. 1 illustrate that the CBMH SVM algorithm
reduces the processing time with a minor loss of accuracy compared with the BBMH
SVMalgorithm. Itmeans that both theCBMHSVMandBBMHSVMalgorithms have
their own advantages. The experimental results in Table. 2 show that the FBMH SVM
algorithm with the optimal combination of fractional bit yields better performance
with less time-consumption. From the results in Table 3, the data compression by one
permutation hashing scheme results in the significant reduction of the storage space
and the data loading time in large-scale classification. Due to the better preservation
of the original data structure, the One-perm SVM algorithm can be applied to the
machines with low configuration keeping the similar experimental accuracy to that of
the original data set.

123

462 Ann. Data. Sci. (2016) 3(4):445–468

Ta
bl
e
2

E
xp
er
im

en
ta
lr
es
ul
ts
ac

cu
ra

cy
(t
im

e)
of

th
e
FB

M
H
SV

M
al
go

ri
th
m

on
w
eb
sp
am

f-
fr
ac
tio

na
l

C
om

bi
na
tio

ns
k

=
10

0
k

=
20

0
k

=
30

0
k

=
40

0
k

=
50

0

f
=
3.
5

50
%

×
3

+
50

%
×

4
95

.9
6
(6
0.
04

)
97

.1
4
(9
5.
72

)
98

.6
4
(1
35

.2
4)

98
.8
4
(1
63

.2
7)

99
.0
2
(2
03

.7
8)

50
%

×
2

+
50

%
×

5
95

.5
0
(6
0.
49

)
96

.7
6
(9
6.
04

)
98

.5
9
(1
35

.6
2)

98
.6
1
(1
63

.2
8)

98
.8
1
(2
04

.5
5)

f
=
4.
5

50
%

×
4

+
50

%
×

5
98

.0
5
(6
1.
09

)
98

.6
6
(9
6.
82

)
99

.1
2
(1
36

.7
8)

99
.2
7
(1
65

.1
3)

99
.3
7
(2
05

.0
3)

50
%

×
3

+
50

%
×

6
97

.9
6
(6
1.
22

)
98

.5
3
(9
7.
45

)
99

.1
1
(1
37

.8
0)

99
.2
3
(1
65

.2
6)

99
.3
7
(2
06

.1
3)

f
=
5.
5

50
%

×
5

+
50

%
×

6
98

.5
8
(6
1.
72

)
98

.8
5
(9
7.
78

)
99

.2
6
(1
38

.3
4)

99
.4
2
(1
66

.1
2)

99
.5
3
(2
09

.4
9)

50
%

×
4

+
50

%
×

7
98

.5
1
(6
1.
79

)
98

.7
3
(9
7.
82

)
99

.2
5
(1
38

.4
1)

99
.4
1
(1
66

.5
2)

99
.5
2
(2
10

.6
4)

f
=
6.
5

50
%

×
6

+
50

%
×

7
99

.0
0
(6
2.
22

)
99

.2
6
(9
9.
36

)
99

.4
5
(1
38

.7
5)

99
.5
3
(1
67

.4
4)

99
.6
0
(2
11

.3
9)

50
%

×
5

+
50

%
×

8
98

.9
9
(6
2.
39

)
99

.2
5
(9
9.
70

)
99

.4
4
(1
38

.7
6)

99
.5
1
(1
67

.8
0)

99
.5
9
(2
12

.6
1)

123

Ann. Data. Sci. (2016) 3(4):445–468 463

Table 3 Experimental results accuracy (t ime) of the One-perm SVM algorithm on webspam

Bins b = 2 b = 4 b = 6 b = 8

r = 128 95.11 (47.63) 98.16 (34.43) 99.01 (36.02) 99.26 (30.24)

r = 256 97.25 (54.66) 98.95 (46.53) 99.38 (49.38) 99.49 (52.16)

r = 512 98.57 (96.63) 99.36 (83.77) 99.59 (85.04) 99.65 (89.69)

r = 1024 99.26 (134.39) 99.60 (137.18) 99.71 (159.5) 99.73 (162.05)

r = ∞ 99.53 (2067) 99.53 (2068) 99.53 (2069) 99.53 (2070)

In summary, one can select appropriate processing algorithms on account of the
characteristics of the data set and the system requirements.

4 Extensions and Variants of Minwise Hashing Algorithms

For the sake of similarity retrieval [1], the computation of similarity between sets is
a core mission. Minwise hashing algorithm [2,3,60] stores the data set compactly
and computes the distance to characterize similarity between data representations
efficiently. B-bit minwise hashing algorithm [33–36,61] reduces bits of traditional
minwise hashing from64-bit to b-bit and saves both storage space and computing time.
Connected bit minwise hashing[38] and f -fractional bit minwise hashing[39] improve
the previous b-bitminwise hashing on time-consumption and accuracy.However, these
algorithms require applying k independent random permutations on the entire data
set leading to expensive cost of time, storage space and energy-consumption for the
computation of similarities. However, one permutation hashing [40] appears without
notable replacement of samples and preserves the matrix sparsity. Recently, many
extensions and variants of minwise hashing algorithms have been proposed [62].

Li [63] developed 0-bit consistent weighted sampling (CWS) for efficiently esti-
mating min-max kernel, which is a generalization of the resemblance kernel originally
designed for binary data. Because the estimator of 0-bit CWS constitutes a positive
definite kernel, this method can be naturally applied to large-scale data mining prob-
lems. By feeding the sampled data from0-bit CWS to a highly efficient linear classifier,
a nonlinear classifier can be trained effectively and approximately based on the min-
max kernel. The min-max kernel often provides an effective measure of similarity
for nonnegative data through an extensive classification study using kernel machines.
Although the min-max kernel is nonlinear and might be difficult to be used for large-
scale industrial applications, 0-bit CWS is a simplification of the original CWSmethod
to build linear classifiers to approximate min-max kernel classifiers.

[64] focused on a simple 2-bit coding scheme and develop accurate nonlinear esti-
mators of data similarity based on the 2-bit strategy. In the task of near neighbor
search, a crucial step is to compute or estimate data similarities once a set of candidate
data points have been identified by hash table techniques. The 2-bit coding scheme
appears to be overall a good choice for building hash tables in near neighbor search
and developing accurate nonlinear estimators.

Shrivastava and Li [65–67] proposed asymmetric minwise hashing (MH-ALSH) to
provide a solution for estimating set resemblance. The new scheme utilizes asymmetric

123

464 Ann. Data. Sci. (2016) 3(4):445–468

transformations to cancel the bias of traditional minwise hashing towards smaller sets,
making the final “collision probability”monotonic in the inner product. The theoretical
comparisons show thatMH-ALSH is provably better than traditional minwise hashing
and other recently proposed hashing algorithms for the task of retrieving with binary
inner products.

Weighted minwise hashing (WMH) [68] is one of the fundamental subroutine,
required by many celebrated approximation algorithms, commonly adopted in indus-
trial practice for large-scale search and learning. The resource bottleneck of the
algorithms is the computation of multiple (typically a few hundreds to thousands)
independent hashes of the data. Exact weighted minwise hashing broke the expensive
barrier and showed an expected constant amortized time algorithm with only a few
bits of storage per hash value.

The query complexity of locality sensitive hashing (LSH) is dominated by the
number of hash evaluations, and this number grows with the data size. [69] presented
a hashing technique to generate all the necessary hash evaluations for similarity search
using one single permutation. The key of the proposed hash function is a “rotation”
schemewhich is the sparse sketches of one permutation hashing in an unbiased fashion
thereby maintaining the LSH property.

[70] studied large-scale regression analysis where both the number of variables
and observations may be large and in the order of millions or more. In order to
make progress, one must seek a compromise between statistical and computational
efficiency. For dealing with this large-scale problem, the proposed min-wise hash
random-sign mapping (MRS mapping) is a dimensionality reduction technique for
a sparse binary design matrix. It allows for the construction of variable importance
measures, and is more amenable to statistical analysis. For both linear and logistic
models, finite-sample bounds were given on the prediction error of procedures which
perform regression in the new lower-dimensional space after applying MRSmapping.

In [71], Li et al. developed a parallelization scheme using GPUs, which reduced
the processing time. Reducing the preprocessing time is highly beneficial in practice,
for example, for duplicate web page detection (where minwise hashing is a major step
in the crawling pipeline) or for increasing the testing speed of online classifiers (when
the test data are not preprocessed). The identification of compound-protein interac-
tions plays key roles in the drug development toward discovery of new drug leads
and new therapeutic protein targets. The paper [72] developed a novel chemogenomic
method to make a scalable prediction of compound-protein interactions from hetero-
geneous biological data using minwise hashing. In [73], the twisted tabulation was
invented to yield Chernoff-style concentration bounds and high probability amortized
performance bounds for linear probing when using minwise for similarity estimation
to reduce variance.

5 Remarks and Future Directions

Minwise hashing schemes can improve the computation efficiency and save the storage
space without notable loss of accuracy. This paper has offered a systematic review of
minwise hashing algorithms and the variants mainly including five basic algorithms:

123

Ann. Data. Sci. (2016) 3(4):445–468 465

minwise hashing, b-bit minwise hashing, connected bit minwise hashing, f -fractional
bit minwise hashing and one permutation hashing. Based on the five algorithms, the
extensions and variants of minwise hashing algorithms are presented. Some of these
algorithms have already been used in the real-life applications, such as large-scale
regression and classification and scalable prediction of compound-protein interactions
etc. Researchers in data mining, especially in SVMs can benefit from this survey in
better understanding the essence of the minwise hashing algorithms. Furthermore,
their limitations, major opportunities and challenges, as well as potential important
research directions have been pointed out.

As we can see, the extensions or variants of minwise hashing algorithms were
mostly based on the data-independent hashing functions, so there is a great space for
developing methods based on the data-dependent hashing functions. These functions
should also have the same desirable properties such as good generalization, scalability,
simple and easy implementation of algorithm robustness, as well as local sensitivity.
From this respect, we believe that minwise hashing algorithms can produce better
results and worth to be considered.

Acknowledgments This work has been partially supported by Grants from National Natural Science
Foundation of China (No. 11271361, No.71331005), Major International (Ragional) Joint Research Project
(No. 71110107026).

References

1. Andoni A, Indyk P (2006) Near-optimal hashing algorithms for approximate nearest neighbor in high
dimensions. In Foundations of Computer Science, pp 459–468

2. Broder AZ (1997) On the resemblance and containment of documents. Compression Complex Seq
1997:21–29

3. Broder AZ, Glassman SC, Manasse MS, Zweig G (Sep 1997) Syntactic clustering of the web. In:
Proceedings of the 6th international conference on World Wide Web, Vol 29, p 1157–1166

4. Gollapudi S, Sharma A (2009) An axiomatic approach for result diversification. In: Proceedings of the
18th international conference on World Wide Web, p 381–390

5. KalpakisK, Tang S (2008)Collaborative data gathering inwireless sensor networks usingmeasurement
co-occurrence. Comput Commun 31(10):19791992

6. Najork M, Gollapudi S, Panigrahy R (2009) Less is more: sampling the neighborhood graph makes
salsa better and faster. Web Search and Data Mining, p 242–251

7. Urvoy T, Chauveau E, Filoche P, Lavergne T (2008) Tracking web spam with html style similarities.
ACM Trans Web 2(1):1–28

8. Gong Y, Kumar S, Verma V, Lazebnik S (2012) Angular quantization-based binary codes for fast
similarity search. In: Advances in neural information processing systems, p 1196–1204

9. He J, Chang S, Radhakrishnan R. Bauer C (2011) Compact hashing with joint optimization of search
accuracy and time. In IEEE Conference on Computer Vision and Pattern Recognition, p 753–760,
IEEE

10. Gionis A, Indyk P,Motwani R (1999) Similarity search in high dimensions via hashing. VLDB99:518–
529

11. Andoni A, Indyk P (2006) Near-optimal hashing algorithms for approximate nearest neighbor in high
dimensions. In 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS’06),
p 459–468,IEEE

12. Torralba A, Fergus R,Weiss Y (2008) Small codes and large image databases for recognition. In: IEEE
Conference on Computer Vision and Pattern Recognition, p 1–8. IEEE

13. LiuW,Wang J,Kumar S,ChangS (2011)Hashingwith graphs. In: Proceedings of the 28th international
conference on machine learning, p 1–8

123

466 Ann. Data. Sci. (2016) 3(4):445–468

14. Shi QF, Petterson J, Dror G, Langford J, Smola A, Vishwanathan SVN (2009) Hash kernels for
structured data. J Mach Learn Res 10:2615–2637

15. Mu YD, Hua G, Fan W, Chang SF (2014) Hash-SVM: scalable kernel machines for large-scale visual
classification. In: IEEE Conference on Computer Vision and Pattern Recognition, p 979–986

16. Litayem S, Joly A, Boujemaa N (2012) Hash-based support vector machines approximation for large
scale prediction. Br Mach Vis Conf 34(6):1092–1104

17. Gong Y, Lazebnik S (2011) Iterative quantization: a procrustean approach to learning binary codes.
In: IEEE Conference on Computer Vision and Pattern Recognition, p 817–824. IEEE

18. Liu W, Wang J, Ji R, Jiang Y, Chang (2012) Supervised hashing with kernels. In: IEEE Conference on
Computer Vision and Pattern Recognition, p 2074–2081. IEEE

19. Joly A, Buisson O (2008) A posteriori multi-probe locality sensitive hashing. In: Proceedings of the
16th ACM international conference on Multimedia, p 209–218. ACM

20. Datar M, Immorlica N, Indyk P, Mirrokni VS (2004) Locality-sensitive hashing scheme based on
p-stable distributions. In Proceedings of the 20th annual symposium on Computational geometry, p
253–262. ACM, 2004

21. Kulis B, Darrell T (2009) Learning to hash with binary reconstructive embeddings. In: Advances in
neural information processing systems, p 1042–1050

22. Kulis B, Grauman K (2012) Kernelized locality-sensitive hashing. IEEE Trans Pattern Anal Mach
Intell 34(6):1092–1104

23. Raginsky M, Lazebnik S (2009) Locality-sensitive binary codes from shift-invariant kernels. In:
Advances in neural information processing systems, p 1509–1517

24. Salakhutdinov R, Hinton G (2009) Semantic hashing. Int J Approx Reason 50(7):969–978
25. Weiss Y, Torralba A, Fergus R (2009) Spectral hashing. In: Advances in neural information processing

systems, p 1753–1760
26. Wang J, Kumar S, Chang S (2010) Sequential projection learning for hashing with compact codes. In:

Proceedings of the 27th international conference on machine learning, p 1127–1134
27. Zhang D, Wang J, Cai D, Lu J (2010) Self-taught hashing for fast similarity search. In: Proceedings of

the 33rd international ACM SIGIR conference on Research and development in information retrieval,
p 18–25. ACM

28. ZhangD,WangF, Si L (2011)Composite hashingwithmultiple information sources. In: Proceedings of
the 34th international ACM SIGIR conference on Research and development in Information Retrieval,
p 225–234. ACM

29. Norouzi M, Blei DM (2011) Minimal loss hashing for compact binary codes. In: Proceedings of the
28th international conference on machine learning, p 353–360

30. Pandey S, Broder A, Chierichetti F, Josifovski V, Kumar R, Vassilvitskii S (2009) Nearest-neighbor
caching for content-match applications. In: Proceedings of the 18th international conference onWorld
Wide Web, p 441–450. ACM

31. ShrivastavaA,LiP (2012)Fast near neighbor search in high-dimensional binary data. In: JointEuropean
Conference on Machine Learning and Knowledge Discovery in Databases, p 474–489. Springer

32. Li P, Knig AC, Gui WH (2010) b-bit minwise hashing for estimating three-way similarities. In:
Advances in Neural Information Processing Systems

33. Li P, Knig AC (2010) b-bit minwise hashing. In: Proceedings of the 19th international conference on
World Wide Web, p 671–680. ACM

34. Li P,KnigAC (2011) Theory and applications of b-bitminwise hashing. CommunACM54(8):101–109
35. Li P, Shrivastava A, Moore J, Knig AC (2011) b-bit minwise hashing for large-scale learning. In:

Advances in Neural Information Processing Systems. Neural Information Processing Foundation
36. Li P, ShrivastavaA,Moore J,KnigAC (2011)Hashing algorithms for large-scale learning. In:Advances

in neural information processing systems, p 2672–2680
37. Li P, Moore JL, Knig AC (2011) b-bit minwise hashing for large-scale linear svm. Technical report
38. Yuan XP, Long J, Zhang ZP, Luo YY, Zhang H, Gui WH (2013) Connected bit minwise hashing. J

Comput Res Dev 50(4):883–890
39. Yuan XP, Long J, Zhang ZP, Luo YY, Zhang H, Gui WH (2012) f-fractional bit minwise hashing.

JSoftw 7(1):228–236
40. Li P, Owen A, Zhang CH (2012) One permutation hashing. In: Advances in Neural Information

Processing Systems, p 3113–3121

123

Ann. Data. Sci. (2016) 3(4):445–468 467

41. Fetterly D, Manasse M, Najork M, Wiener J (2003) A large-scale study of the evolution of web pages.
In: Proceedings of the 12th international conference on World Wide Web, p 669678, New York, NY,
USA. Proceedings of the 12th International World Wide Web Conference, ACM

42. Tang JJ, Tian YJ (2015) f-fractional bit minwise hashing for large-scale learning. In: 2015
IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology
(WI-IAT), Vol 3, p 60–63. IEEE

43. Tang JJ, Tian YJ, Liu DL (2015) Connected bit minwise hashing for large-scale linear svm. In: Fuzzy
Systems and Knowledge Discovery (FSKD), 2015 12th International Conference on, p 995–1002.
IEEE

44. Tian YJ, Ping Y (2014) Large-scale linear nonparallel support vector machine solver. Neural Netw
50:166–174

45. Manku GS, Jain A, Sarma AD (2007) Detecting near-duplicates for web crawlings. Proceedings of the
16th international conference on World Wide Web, (10):141–150

46. Tashev I, Acero A (2010) Statistical modeling of the speech signal. In: International Workshop on
Acoustic, Echo, and Noise Control (IWAENC)

47. Yuan XP, Long J, Zhang ZP, Luo YY, Zhang H, GuiWH (August 2012) Research on optimal fractional
bit minwise hashing. Computer Science, 39(8)

48. Hsieh CJ, Chang KW, Lin CJ, Keerthi SS, Sundararajan S (2008) A dual coordinate descent method
for large-scale linear svm. In: International Conference on Machine Learning, p 408–415

49. CherkasovaL,EshghiK,MorreyCB,Tucek J,VeitchA (2009)Applying syntactic similarity algorithms
for enterprise information management. In: Proceedings of the 15th ACM SIGKDD international
conference on Knowledge discovery and data mining, p 1087–1096. ACM

50. Forman G, Eshghi K, Suermondt J (2009) Efficient detection of large-scale redundancy in enterprise
file systems. ACM SIGOPS Op Sys Rev 43(1):84–91

51. Bendersky M, Croft WB (2009) Finding text reuse on the web. In: Proceedings of the 2nd ACM
International Conference on Web Search and Data Mining, p 262–271. ACM

52. Biggio B, Fumera G, Roli F (2014) Security evaluation of pattern classifiers under attack. IEEE Trans
Knowl Data Eng 26(4):984–996

53. Cox RV, Kamm CA, Rabiner L, Schroeter J, Wilpon JG (2000) Speech and language processing for
next-millennium communications services. Proc IEEE 88(8):1314–1337

54. Camastra F, Verri A (2005) A novel kernel method for clustering. IEEE Trans Pattern Anal Mach Intell
27(5):801–805

55. Fan RE, Chang KW, Hsieh CJ, Wang XR, Lin CJ (2008) Liblinear: a library for large linear classifi-
cation. J Mach Learn Res 9(4):1871–1874

56. Joachims T (2006) Training linear svms in linear time. Proceedings of the 12th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining, (10):217–226. KDD ’06

57. Border AZ, Bottou L, Gallinari P (2009) Sgd-qn: careful quasi-newton stochastic gradient descent. J
Mach Learn Res 10:1737–1754

58. Zhang T (July 4-8 2004) Solving large scale linear prediction problems using stochastic gradient
descent algorithms. International Conference on Machine Learning

59. Singer Y, Srebro N (2007) Pegasos: Primal estimated sub-gradient solver for svm. International Con-
ference on Machine Learning, pages 807–814

60. Indyk P (2001) A small approximately min-wise independent family of hash functions. J Algorithms
38(1):84–90

61. Li P, Konig C (2011). Accurate estimators for improving minwise hashing and b-bit minwise hashing.
arXiv preprint arXiv:1108.0895

62. Li P, Shrivastava A, Konig C (2011) Training logistic regression and svm on 200gb data using b-bit
minwise hashing and comparisons with vowpal wabbit (vw). arXiv preprint arXiv:1108.3072

63. Li P (2015) 0-bit consistent weighted sampling. In: Proceedings of the 21th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, p 665–674. ACM

64. Li P, Mitzenmacher M, Shrivastava A (2016) 2-bit random projections, nonlinear estimators, and
approximate near neighbor search. arXiv preprint arXiv:1602.06577

65. Shrivastava A, Li P (2014) Asymmetric minwise hashing. arXiv preprint arXiv:1411.3787
66. Shrivastava A, Li P (2015) Asymmetric minwise hashing for indexing binary inner products and set

containment. In: Proceedings of the 24th International Conference on World Wide Web, p 981–991.
ACM

123

http://arxiv.org/abs/1108.0895
http://arxiv.org/abs/1108.3072
http://arxiv.org/abs/1602.06577
http://arxiv.org/abs/1411.3787

468 Ann. Data. Sci. (2016) 3(4):445–468

67. Shrivastava A, Li P (2014) Asymmetric lsh (alsh) for sublinear time maximum inner product search
(mips). In: Advances in Neural Information Processing Systems, p 2321–2329

68. Shrivastava A (2016) Exact weighted minwise hashing in constant time. arXiv preprint
arXiv:1602.08393

69. Shrivastava A, Li P (2014) Densifying one permutation hashing via rotation for fast near neighbor
search. In: International Conference on Machine Learning, p 557–565

70. Shah RD, Meinshausen N (2013) Min-wise hashing for large-scale regression and classification with
sparse data. arXiv preprint arXiv:1308.1269

71. Li P, Shrivastava A, Konig CA (2012) Gpu-based minwise hashing: Gpu-based minwise hashing. In:
Proceedings of the 21st International Conference on World Wide Web, p 565–566. ACM

72. Tabei Y, Yamanishi Y (2013) Scalable prediction of compound-protein interactions using minwise
hashing. BMC Syst Biol 7(6):1

73. Dahlgaard S, Thorup M (2014) Approximately minwise independence with twisted tabulation. In:
Scandinavian Workshop on Algorithm Theory, p 134–145. Springer

123

http://arxiv.org/abs/1602.08393
http://arxiv.org/abs/1308.1269

	A Systematic Review on Minwise Hashing Algorithms
	Abstract
	1 Introduction
	2 Minwise Hashing Algorithms
	2.1 Locality-Sensitive Hashing
	2.2 Minwise Hashing
	2.3 b-Bit Minwise Hashing
	2.4 Connected Bit Minwise Hashing
	2.5 f-Fractinal Bit Minwise Hashing
	2.6 One Permutation Hashing

	3 Applications of Minwise Hashing Algorithms
	3.1 Integrating Linear SVM with Connected Bit Minwise Hashing Kernel
	3.2 Integrating Linear SVM with F-Fractional Bit Minwise Hashing Kernel
	3.3 Integrating Linear SVM with One Permutation Hashing Kernel
	3.4 Experimental Comparisons of the Integrations with Minwise Hashing Algorithms

	4 Extensions and Variants of Minwise Hashing Algorithms
	5 Remarks and Future Directions
	Acknowledgments
	References

