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Abstract Here, we consider estimation of the pdf and theCDFof theWeibull distribu-
tion. The following estimators are considered: uniformlyminimum variance unbiased,
maximum likelihood (ML), percentile, least squares and weight least squares. Analyt-
ical expressions are derived for the bias and themean squared error. Simulation studies
and real data applications show that the ML estimator performs better than others.

Keywords Least squares estimator · Maximum likelihood estimator · Uniformly
minimumvariance unbiased estimator ·Model selection criteria ·Percentile estimator ·
Weibull distribution · Weight least squares estimator

1 Introduction

The Weibull distribution is one of the important distributions in reliability theory. It is
the distribution that received maximum attention in the past few decades. Numerous
articles have been written demonstrating applications of the Weibull distribution in
various sciences. Furthermore, the Weibull distribution has applications in medical,
biological, and earth sciences [32]. [54] discussed about efficient estimation of the
Weibull shape parameter based on a modified profile likelihood. Reliability analysis
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using an additive Weibull model with bathtub-shaped failure rate function explained
by [53]. For more discussion aboutWeibull distribution see, Zhang et al. [55] and [56].
A consistent method of estimation for the three-parameter Weibull distribution was
discussed by [39].

We assume that the random variable X has the Weibull distribution with scale
parameter λ and shape parameter α (known) and its pdf (probability density function)
is as

f (x) = α

λ
xα−1e− xα

λ , x > 0, α > 0, λ > 0, (1.1)

and so its CDF (cumulative distribution function) is

F(x) = 1 − e− xα
λ , x > 0, α > 0, λ > 0. (1.2)

Because of the numerous applications of the Weibull distribution, we feel the impor-
tance to investigate efficient estimation of the pdf and the CDF of the Weibull
distribution. We consider several different estimation methods: uniformly minimum
variance unbiased (UMVU) estimation, maximum likelihood (ML) estimation, per-
centile (PC) estimation, least squares (LS) estimation and weight least squares (WLS)
estimation.

Similar studies have appeared in the recent literature for other distributions. For
example, [6] derive estimators of the pdf and the CDF of a three-parameter generalized
exponential-Poisson distribution when all but its shape parameter are assumed known.
[2] derive estimators of the pdf and the CDF of a two-parameter generalized Rayleigh
distribution when all but its shape parameter are assumed known. [7] derive estimators
of the pdf and the CDF of a three-parameter Weibull extension model when all but
its shape parameter are assumed known. Some other recent works have included:
generalized exponential distribution by [3]; exponentiatedWeibull distribution by [4];
exponentiated Gumbel distribution by [8].

The contents of this paper are organized as follows. The MLE and the UMVUE
of the pdf and the CDF and their mean squared errors (MSEs) are derived in Sects. 2
and 3. Other estimation methods are considered in Sects. 4 and 5. The estimators
are compared by simulation and real data application in Sects. 6 and 7. Finally, some
discussion on the possible use of the results in the paper is provided in Sect. 8. Through-
out the paper (except for Sect. 7), we assume λ is unknown, but α is known. A future
work is to extend the results of the paper to the case that all two parameters are
unknown.

A future work is to extend the results of the paper to the case that all parameters of
the Weibull distribution are unknown. There has been work in the literature where the
pdf and the CDF have been estimated when all their parameters are unknown.

Such estimation of pdfs is considered by [33] for a trapezoidal distribution, by [31]
for a log-concave distribution, and by [13] for a compound Poisson distribution. See
also [16]. [31] use MLEs.

Such estimation of CDFs is considered by [44] for a three-parameter Weibull dis-
tribution, by [14] for a convex discrete distribution, and by [11] for distributions in
measurement error models. [44] use MLEs and [14] use LSEs.
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2 Maximum Likelihood Estimator of pdf and CDF

Let X1, . . . , Xn be a random sample from the Weibull distribution. The MLE of λ say
˜λ is˜λ = n−1 ∑n

i=1 x
α
i . Therefore, we obtain MLEs of the pdf and the CDF as

˜f (x) = α

˜λ
xα−1e− xα

˜λ , (2.1)

and

˜F(x) = 1 − e− xα
˜λ , (2.2)

respectively. The probability density of T = ∑n
i=1 x

α
i is

h∗(t) = tn−1 e− t
λ

�(n)λn
(2.3)

for t > 0. After some elementary algebra, we obtain the pdf of w = λ̃ as

g(w) = nnwn−1

�(n)λn
e− nw

λ (2.4)

for w > 0.
In the following, we calculate E

(

˜f (x)
r
)

and E
(

˜F(x)
r
)

.

Theorem 2.1 The E
(

˜f (x)
r
)

and E
(

˜F(x)
r
)

are given, respectively, as,

E
(

˜f (x)
r
)

= 2αr n
n+r
2 xnα−r r

n−r
2

λ
n+r
2 �(n)

Kn−r

(

2

√

r xαn

λ

)

(2.5)

E
(

˜F(x)
r
)

= 2n
n
2

λ
n
2 �(n)

r
∑

j=0

(

r

j

)

(−1) j
(

j xα
) n

2
Kn

(

2

√

njxα

λ

)

(2.6)

Proof (A) By Eq. (2.4), we can write

E( ˜f (x)r ) =
∫ ∞

0

˜f (x)r g(w)dw

=
∫ ∞

0

[ α

w
xα−1e− xα

w

]r nnwn−1

�(n)λn
e− nw

λ dw

= αr xr(α−1)nn

�(n)λn

∫ ∞

0
wn−r−1e− r xα

w e− nw
λ dw

= 2αr n
n+r
2 xnα−r r

n−r
2

λ
n+r
2 �(n)

Kn−r

(

2

√

r xαn

λ

)

(2.7)
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where the last step follows by equation (3.471.9) in [19]. The proof is similar for
E

(

˜F(x)r
)

. ��

In the following theorem we obtain the MSE of ˜f (x) and ˜F(x).

Theorem 2.2

(A) MSE( ˜f (x)) = 2
n
2 α2n

n+2
2 xnα−2

λ
n+2
2 �(n)

Kn−2

(

2

√

2xαn

λ

)

−4 f (x)αn
n+1
2 xnα−1

λ
n+1
2 �(n)

Kn−1

(

2

√

xαn

λ

)

+ f (x)2 (2.8)

(B) MSE(˜F(x)) = 2n
n
2

λ
n
2 �(n)

2
∑

j=0

(

2

j

)

(−1) j
(

j xα
) n

2
Kn

(

2

√

njxα

λ

)

−2F(x)n
n
2 (xα)

n
2

λ
n
2 �(n)

Kn

(

2

√

nxα

λ

)

+ F(x)2 (2.9)

respectively, where Kν(·) denotes the modified Bessel function of the second kind of
order ν.

Proof Note that MSE( ˜f (x)) = E
(

˜f (x)
)2 − 2 f (x)E

(

˜f (x)
) + f 2(x). We have

an expression for E
(

˜f (x)
)

and E
(

˜f (x)
)2

from Theorem 2.1, yielding the given
expression for MSE

(

˜f (x)
)

. The proof for MSE
(

˜F(x)
)

is similar.

3 UMVU Estimator of pdf and CDF

In this section, we find the UMVU estimators of pdf and CDF of Weibull distribution.
Also we compute the MSEs of these estimators.

Let X1, . . . , Xn be a random sample of size n from theWeibull distribution given by
(1.1). Then T = ∑n

i=1 x
α
i is a complete sufficient statistic for the unknown parameter

λ (when α is known). According to Lehmann Scheffe theorem if h(x1|t) = f ∗(t) is
the conditional pdf of X1 given T , we have

E[ f ∗(T )] =
∫

h(x1|t)h∗(t)dt =
∫

h(x1, t)dt = f (x1),

where h(x1, t) is the joint pdf of X1 and T . Therefore f ∗(t) is the UMVUE of f (x).

Lemma 3.1 The joint distribution of X1 and T is as follow.

h(x1, t) = α

λ
xα−1
1 e− xα1

λ

(

t − xα
1

)n−2
e− (t−xα1 )

λ

λn−1�(n − 1)
. (3.1)
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Proof We have the joint distribution of (X1, X2, . . . , Xn) as

f (x1, x2, . . . , xn) =
n

∏

i=1

f (xi ) =
n

∏

i=1

(

α

λ
xα−1
i e− xαi

λ

)

. (3.2)

In order to find the joint pdf of (X1, T ), we set this transformation {y1 = xα
1 , y2 =

xα
2 , . . . , yn−1 = xα

n−1, t = ∑n
i=1 x

α
i }. Then by using some elementary algebra and

(n − 2) integrations for y2, y3, . . . , yn−1, the proof is done. ��

Theorem 3.2 If we know T = t , then

(A) ̂f (x) is UMVUE of f (x), where

̂f (x) = α(n − 1)xα−1t−1
(

1 − xα

t

)n−2

, 0 <
xα

t
< 1. (3.3)

(B) ̂F(x) is UMVUE of F(x), where

̂F(x) = 1 −
(

1 − xα

t

)n−1

, 0 <
xα

t
< 1. (3.4)

Proof By using Eq. (2.3) and Lemma 3.1, the proof of case (A) is easy. Also by using
̂F(x) = ∫ x1

0 h(x1| t)dx1 and some elementary algebra, the proof of case (B) is done.
��

Lemma 3.3 The MSEs of ̂f (x) and ̂F(x) are given by

(A) MSE
(

̂f (x)
) = α2(n−1)2x2α−2

�(n)λn

2n−4
∑

j=0

(

2n−4

j

)

(−xα) j�
(

n− j−2,
xα

λ

)

− f (x)2.

(B) MSE
(

̂F(x)
) = 1 − 2

�(n)λn

n−1
∑

j=0

(

n − 1

j

)

(−xα) j �
(

n − j,
xα

λ

)

+ 1

�(n)λn

2n−2
∑

j=0

(

2n − 2

j

)

(−xα) j �
(

n − j,
xα

λ

)

− F(x)2

respectively, where

�(a, x) =
∫ ∞

x
ta−1e−t dt

denotes the complementary incomplete gamma function.
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Proof (A) By using Eq. (2.3), we can write

E( ̂f (x))2 =
∫

( ̂f (x))2h∗(t)dt

=
∫ ∞

xα

(

α(n − 1)xα−1t−1
(

1 − xα

t

)n−2
)2

tn−1e− t
λ

�(n)λn
dt

= α2(n − 1)2x2α−2

�(n)λn

∫ ∞

xα

(

1 − xα

t

)2n−4

tn−3e− t
λ dt

= α2(n − 1)2x2α−2

�(n)λn

2n−4
∑

j=0

(

2n − 4

j

)

(−xα) j
∫ ∞

xα

tn− j−3e− t
λ dt

= α2(n − 1)2x2α−2

�(n)λn

2n−4
∑

j=0

(

2n − 4

j

)

(−xα) j�
(

n − j − 2,
xα

λ

)

.

where the last step follows by the definition of the complementary incomplete
gamma function. The expression for the MSE for ̂f (x) follows by MSE

(

̂f (x)
) =

E
(

̂f (x)
)2 − f 2(x). The proof for the expression for the MSE for ̂F(x) is similar. ��

In the following section we present percentile method of the estimation.

4 Estimators Based on Percentiles

Estimation based on percentileswas originally explored byKao ([28,29]), see also [38]
and [26]. In fact the nature of percentiles estimators is based on distribution function.
In case of a Weibull distribution also it is possible to use the same concept to obtain
the estimators of parameters based on the percentiles, because of the structure of its
distribution function. If pi denotes some estimate of F(x(i), α, λ) then the estimate of
λ (when α is known ) can be obtained by minimizing

n
∑

i=1

[

ln(1 − pi ) − xα
(i)

λ

]2

, (4.1)

where pi = i
n+1 and X(i); i = 1, . . . , n denotes the ordered sample (see [20]). So

to obtain the PC estimator of pdf and CDF, we use the same method as for the ML
estimator. Therefore

˜f pc(x) = α

˜λpc
xα−1e

− xα
˜λpc , (4.2)

˜Fpc(x) = 1 − e
− xα

˜λpc . (4.3)

Now we can simulate the expectation and the MSE of these estimators.
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5 Least Squares and Weighted Least Squares Estimators

In this section, we derive regression based estimators of the unknown parameter.
This method was originally suggested by [49] to estimate the parameters of beta
distributions. It can be used for some other distributions also.
Suppose X1, X2, . . . , Xn is a random sample of size n from a CDF F(·) and suppose
X(i), i = 1, 2, . . . , n denote the ordered sample in ascending order. The proposed
method uses F

(

X(i)
)

. For a sample of size n, we have

E
[

F
(

X( j)
)] = j

n + 1
,Var

[

F
(

X( j)
)] = j (n − j + 1)

(n + 1)2(n + 2)
,

Cov
[

F
(

X( j)
)

, F
(

X(l)
)] = j (n − l + 1)

(n + 1)2(n + 2)
, j < l,

see [26]. Using the expectations and the variances, two variants of the least squares
method follow.

5.1 Method 1: Least Squares Estimators

Obtain the estimators by minimizing
n

∑

j=1

(

F(X( j)) − j

n + 1

)2

(5.1)

with respect to the unknown parameters. Therefore in case of Weibull distribution
the least squares estimators of λ (when α is known ), say ˜λls , can be obtained by
minimizing

n
∑

j=1

(

1 − e− xα
( j)
˜λ − j

n + 1

)2

. (5.2)

So to obtain the LS estimator of pdf and CDF, we use the same method as for the ML
estimator. Therefore

˜fls(x) = α

˜λls
xα−1e

− xα
˜λls , (5.3)

˜Fls(x) = 1 − e
− xα

˜λls . (5.4)

It is difficult to find the expectation and the MSE of these estimators by mathematical
methods. So we calculate them by simulation study.

5.2 Method 2: Weighted Least Squares Estimators

The weighted least squares estimators can be obtained by minimizing
n

∑

j=1

w j

(

F(X( j)) − j

n + 1

)2

(5.5)
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with respect to the unknown parameters, where w j = 1
Var(F(X( j)))

= (n+1)2(n+2)
j (n− j+1) .

Therefore in case ofWeibull distribution the wight least squares estimators of λ (when
α is known ), say˜λwls , can be obtained by minimizing

n
∑

j=1

w j

(

1 − e− xα
( j)
˜λ − j

n + 1

)2

. (5.6)

So to obtain the WLS estimator of pdf and CDF, we use the same method as for the
ML estimator. Therefore

˜fwls(x) = α

˜λwls
xα−1e

− xα
˜λwls , (5.7)

˜Fwls(x) = 1 − e
− xα

˜λwls . (5.8)

It is difficult to find the expectation and the MSE of these estimators by mathematical
methods. So we calculate them by simulation study.

6 Comparison of UMVU, ML, PC, LS and WLS estimators

Here, we perform a simulation study to compare the performances of the following
estimators: MLE, UMVUE, PCE, LSE and WLSE of the pdf and the CDF. The com-
parison is based on MSEs. The MSEs were computed by generating one thousand
replications of samples of size n = 5, 6, . . . , 35 from the Weibull distribution with
(α, λ) = (1, 0.5), (1, 0.75), (1, 1), (2, 1), (2, 2), (1, 2). Figures 1 and 2 plot the the
MSEs of the UMVUE, WLSE, LSE and the PCE from the MSE of the MLE versus n.

We can see from the figures that the ML estimators of the pdf and the CDF are the
most efficient for all n. We can also see that the gain in efficiency by using the MLE
over others increases with increasing λ.

7 Data Analysis

This paper takes the form of a case study, in which we examine a sample of fibre
strength data. The sample are experimental data of the strength of glass fibre of length,
1.5 cm, from the National Physical Laboratory in England. We use a real data set to
show that the comparison of MLE, PCE, LSE and WLSE of pdf and CDF. The data
is obtained from [50].

0.55, 0.74, 0.77, 0.81, 0.84, 0.93, 1.04, 1.11, 1.13, 1.24, 1.25, 1.27, 1.28, 1.29, 1.30,
1.36, 1.39, 1.42, 1.48, 1.48, 1.49, 1.49, 1.50, 1.50, 1.51, 1.52, 1.53, 1.54, 1.55, 1.55,
1.58, 1.59, 1.60, 1.61, 1.61, 1.61, 1.61, 1.62, 1.62, 1.63, 1.64, 1.66, 1.66, 1.66, 1.67,
1.68, 1.68, 1.69, 1.70, 1.70, 1.73, 1.76, 1.76, 1.77, 1.78, 1.81, 1.82, 1.84, 1.84, 1.89,
2.00, 2.01, 2.24.

Our brief calculations, shows that the Weibull distribution is fitted well to this real
data.
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Fig. 1 MSEs of the UMVUE, WLSE, LSE and the PCE from the MSE of the MLE for f (x) and (α, λ) =
(1, 0.5) (top left), F(x) and (α, λ) = (1, 0.5) (top right), f (x) and (α, λ) = (1, 0.75) (middle left), F(x)
and (α, λ) = (1, 0.75) (middle right), f (x) and (α, λ) = (1, 1) (bottom left) and F(x) and (α, λ) = (1, 1)
(bottom right)

It must be note that when we work with real data, in fact all of the parameters, α
and λ are unknown. Therefore we use the following equations for estimating unknown
parameters under different methods.

Let X1, . . . , Xn be a random sample of size n from the Weibull distribution given
by (1.1), then the log-likelihood function of the observed sample is

L(θ) = n log(α) − n log(λ) + (α − 1)
n

∑

i=1

log xi −
∑n

i=1 x
α
i

λ
. (7.1)
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Fig. 2 MSEs of the UMVUE, WLSE, LSE and the PCE from the MSE of the MLE for f (x) and (α, λ) =
(2, 1) (top left), F(x) and (α, λ) = (2, 1) (top right), f (x) and (α, λ) = (2, 2) (middle left), F(x) and
(α, λ) = (2, 2) (middle right), f (x) and (α, λ) = (1, 2) (bottom left) and F(x) and (α, λ) = (1, 2) (bottom
right)

The MLEs of α and λ, say α̃ and˜λ respectively, can be obtained as the solutions of
the equations

∂L

∂α
= n

α
+

n
∑

i=1

log xi −
∑n

i=1 x
α
i log xi
λ

= 0, (7.2)

∂L

∂λ
= −n

λ
+

∑n
i=1 x

α
i

λ2
= 0. (7.3)
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The PCEs of α and λ, say α̃pc and˜λpc respectively, can be obtained by minimizing

n
∑

i=1

[

ln(1 − pi ) − xα
(i)

λ

]2

, (7.4)

where pi = i
n+1 and X(i); i = 1, . . . , n denotes the ordered sample.

The LSEs of α and λ, say α̃ls and˜λls respectively, can be obtained by minimizing

n
∑

j=1

[

(

1 − e− xα
( j)
λ

)α

− j

n + 1

]2

. (7.5)

The weighted least squares estimators of the unknown parameters, α and λ, say
α̃wls and˜λwls respectively, can be obtained by minimizing

n
∑

j=1

w j

[

(

1 − e− xα
( j)
λ

)α

− j

n + 1

]2

, (7.6)

where w j = 1
Var(F(Y( j)))

= (n+1)2(n+2)
j (n− j+1) .

The Weibull distribution was fitted to the strength data by MLE, PCE, LSE and
WLSE. Table 1 gives the estimates of α, λ and the corresponding log-likelihood
values. The log-likelihood value is the largest for the MLE.

We also compared the estimation methods by means of model selection criteria.
The ones we considered are:

‘pure’ maximum likelihood (ML) = −2 ln L(θ),

Akaike information criterion (AIC) = −2 ln L(θ) + 2k,

corrected AIC (AICc) = −2 ln L(θ) + 2k
n

n − k − 1
,

Bayes information criterion (BIC, also known as Schwarz criterion)

= −2 ln L(θ) + k ln n,

Hannan-Quinn criterion (HQC) = −2 ln L(θ) + 2k ln ln n,

where ln L(θ) denotes the log-likelihood, n denotes the number of observations (i.e.,
the length of x) and k denotes the number of parameters of the distribution. The smaller

Table 1 Estimates of the
parameters and the
corresponding log-likelihood

Estimate of α Estimate of λ Log-Likelihood

MLE 5.780838 16.738778 −15.20684

PCE 5.416832 14.274335 −15.46494

LSE 7.41296 39.63391 −18.95243

WLSE 7.01648 32.13855 −17.3895
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the values of these criteria the better the fit. For more discussion on these criteria, see
[10] and [17].

Figures 3, 4 and 5 show the Q–Q plots (observed quantiles versus expected quan-
tiles), the density plots (fitted pdf versus empirical pdf) and the distribution plots
(fitted CDF versus empirical CDF) for the four different estimation methods. The
figures show that the ML estimators provide the best fit.
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Fig. 3 Q–Q plots for the fit for the four different estimation methods
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Fig. 5 Fitted CDF versus the empirical CDF for the four different estimation methods

Table 2 The values of model
selection criteria

ML AIC BIC AICc HQC

MLE 30.41368 34.41368 38.69995 34.61368 36.09949

PCE 30.92989 34.92989 39.21616 35.12989 36.61570

LSE 37.90485 41.90485 46.19112 42.10485 43.59066

WLSE 34.77900 38.77900 43.06526 38.97900 40.46481

Table 2 gives values of the model selection criteria for the four different estimation
methods. We can see that the ML estimators give the smallest values for all five model
selection criteria.

Hence, evidence based on the MSEs in the simulation study, the log-likelihood
values, the Q–Q plots, the density plots, the distribution plots and the model selection
criteria show that the ML estimators for the pdf and the CDF are the best.

8 Discussion

We have compared five different estimators (the UMVU estimator, the ML estimator,
the LS estimator, the WLS estimator, and the PC estimator) for the pdf and the CDF
of the Weibull distribution when the shape parameter is assumed to be known.

We have compared the performances of the five estimators by simulation and a real
data application. The results show that the ML estimator performs the best in terms of
theMSEs in the simulation study, the log-likelihood values, the Q–Q plots, the density
plots, distribution plots, AIC, AICc, BIC and HQC.

Comparisons of the kind performed in Section 6 can be useful to find the best
estimators for the pdf and the CDF. The best estimators for the pdf can be used to
estimate functionals of the pdf like

• the differential entropy of f defined by

−
∫ ∞

−∞
f (x) ln f (x)dx;
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• the negentropy defined by

∫ ∞

−∞
f (x) ln f (x)dx −

∫ ∞

−∞
φ(x) ln φ(x)dx,

where φ(·) denotes the standard normal PDF;
• the Rényi entropy defined by

1

1 − γ
ln

∫ ∞

0
f γ (x)dx

for γ > 0 and γ �= 1;
• the Kullback-Leibler divergence of f from an arbitrary PDF f0 defined by

∫ ∞

−∞
f (x) ln { f (x)/ f0(x)} dx;

• the Fisher information defined by
∫ ∞

−∞

[

∂

∂θ
f (x; θ)

]2

f (x; θ)dx,

where θ is a parameter specifying the pdf.

Estimation of differential entropy is considered by [42] for data located on embed-
ded manifolds and by [21] for positive random variables. The latter paper illustrates
an application in computational neuroscience. Estimation of negentropy is considered
by [12] for time series models. This paper illustrates an application to environmental
data. Estimation of Rényi entropy is considered by [30] for exponential distributions.
UMVU and ML estimators are given. Estimation of Kullback-Leibler divergence is
considered by [24] for autoregressive model selection in small samples, by [25] for
change detection on SAR images, and by [43] for a class of continuous distributions.
Estimation of Fisher information is considered by [37] for model selection, and by
[36] for image reconstruction problems based on Poisson data.

The best estimators for the CDF can be used to estimate functionals of the CDF
like

• cumulative residual entropy of F defined by
∫ ∞

0
[1 − F(λ) + F(−λ)] ln [1 − F(λ) + F(−λ)] dλ;

• the quantile function of F defined by F−1(·);
• the Bonferroni curve defined by

1

pμ

∫ p

0
F−1(t)dt,

where μ = E(X);
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• the Lorenz curve defined by

1

μ

∫ p

0
F−1(t)dt,

where μ = E(X).

Estimation of cumulative residual entropy is considered by [9] for the Rayleigh
distribution. Estimation of quantiles is considered by Ehsanes Saleh et al. (1983) for
a location-scale family of distributions including the Pareto, exponential and double
exponential distributions, by [15] for the normal distribution, by Rojo (1998) for an
increasing failure rate distribution, by [5] for a two-parameter kappa distribution, by
[40] for a three-parameter gamma distribution, by [35] for the normal, log-normal and
Pareto distributions, by [46] for the generalized Pareto distribution, and by [41] for a
three-parameter lognormal distribution. Ehsanes Saleh et al. (1983) use order statistics,
[15] use asymptotically best linear unbiased estimators and UMVUEs, [5] use MLEs,
[35] uses small sample estimators, and Nagatsuka and Balakrishnan ([40,41]) use
statistics invariant to unknown location. Estimation of the Lorenz curve is considered
by [52] for a Pareto distribution. See also [18].

The best estimators for both the pdf and the CDF can be used to estimate functionals
of the pdf and the CDF like

• probability weighted moments defined by

∫ ∞

−∞
xFr (x) f (x)dx;

• the hazard rate function defined by

f (x)

1 − F(x)
;

• the reverse hazard rate function defined by

f (x)

F(x)
;

• the mean deviation about the mean defined by

2μF (μ) − 2μ + 2
∫ ∞

μ

x f (x)dx,

where μ = E(X).

Unbiased estimation of probability weighted moments is considered by [51]. Esti-
mation of hazard rate functions is considered by [47] for two-parameter decreasing
hazard rate distributions, by [23] for the inverse Gaussian distribution, by [34] for
the linear hazard rate distribution, and by [1] for a mixture distribution with censored
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lifetimes. [47] useMLEs, [23] uses MLEs and UMVUEs, [34] useMLEs obtained via
the EM algorithm, and [1] use MLEs and a Bayesian approach. Estimation of mean
deviation is considered by [22] for the normal distribution and by [48] for the Pearson
type distribution. The estimators given by the latter are consistent.
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