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Abstract Human immune deficiency virus results a noncurable disease acquired
immuno deficiency syndrome (AIDS). After a person is infected with virus, the virus
gradually destroys all the infection fighting cells called CD4 cells and makes the
individual susceptible to opportunistic infections which cause severe or fatal health
problems. The most effective treatment for the disease is the highly active antiretro-
viral therapy (HAART) which requires a lifelong commitment to adhere diligently to
daily medications, dosing schedules and making frequent clinic visits. Several studies
show that the CD4 cells count is the most determinant indicator of the effectiveness of
the treatment or progression of the disease. The objective of this paper is to investigate
the progression of the disease over time among patients under HAART treatment.
Two main approaches of the generalized multilevel ordinal models; namely the pro-
portional odds model and the nonproportional odds model have been applied to the
HAART data. Also, the multilevel part of both models include random intercepts and
random coefficients. In general, four models are explored in the analysis and then the
models are compared using the deviance information criteria. Of these, the random
coefficients nonproportional odds model is selected as the best model for the HAART
data used as it has the smallest DIC value. This selected model shows that the pro-
gression of the disease increases as the time under the treatment increases. In addition
it reveals that gender, baseline clinical stage and functional status of the patient have
a significant association with the progression of the disease.
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1 Introduction

Human immune deficiency virus (HIV) is a virus that causes acquired immuno defi-
ciency syndrome (AIDS). The virus attacks the body’s immune system and destroys
the CD4 cells that are crucial to the normal function of the immune system which
defends the body against illness.

AsHIV/AIDS is not a curable disease, patients are being treated by the combination
of two ormore classes of antiretroviral drugs, called highly active antiretroviral therapy
(HAART), throughout their life time. The success of this lifelongHAART treatment in
improving the health status of the patient depends on a number of factors. [5] indicated
that CD4 count, viral load, total lymphocytes, body mass index and adherence to
the treatment are significant predictors of mortality due to the disease. Of these and
other factors, several cohort studies and clinical trials have shown that CD4 count
is the strongest predictor of subsequent disease progression and survival [6,13]. For
example, CD4 counts below 200 cells per mm3 indicate occurrence of the greater risk
of the disease, while the risk of progression increases substantially at CD4 counts
<350 cells per mm3 and CD4 counts from 350 to 500 cells per mm3 are associated
with risks of ≤5 % across all ages [18]. Thus, lower CD4 counts are associated with
greater risk of disease progression.

Many researchers have carried out studies on the change in CD4 cell counts of
HIV patients. Several of these studies have look at change from the cross sectional
point of view without considering the pattern of change over the period of study.
For example, [11] used linear regression models to study some predictors of CD4
cell counts recovery in HIV-1 positive patients receiving Antiretroviral Therapy and
showed that the change in CD4 cells is linear. [1] used a longitudinal approach and
suggested that the pattern of growth in CD4 cell was not linear. In addition, [17] reveals
that the mean square root CD4 cell counts of HIV/AIDS patients has a quadratic
relationship with time. Therefore, several studies arrive at different relationship of the
CD4 count over time.

The basis of this paper is, therefore, modeling of the progression of HIV/AIDS
disease using random intercepts and random coefficients ordinal response models.
The progression of the disease represent the seriousness of HIV/AIDS sickness which
is determined by splitting the immunological indicator namely the CD4 count into
four stages as in [8]. These stages are CD4 count < 200 cells per mm3, 200 ≤ CD4
count <350 cells per mm3, 350 ≤ CD4 < 500 cells per mm3 and CD4 count ≥ 500
cells per mm3. Thus, by considering changes over time, the main focus is to compare
two approaches of the generalized multilevel ordinal models; namely the proportional
odds model and the non-proportional odds model. The random part of both models
include random intercepts and random coefficients.

Following parts of the paper are organized as follows. Section 2 describes the
materials and methods used in the study. Section 3 presents the results and discussion.
Finally, conclusions are provided in Sect. 4.
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2 Materials and Methods

2.1 Description of the HAART Data

The HAART data used for this study is the data used by [17] which was obtained from
JimmaUniversity SpecializedHospitalHIVOutpatientClinic, SouthWest of Ethiopia.
It consists of 1464 HIV/AIDS patients who were 18 years old or older, and started the
HAART treatment any time in between 1st January 2007 to 31st December 2011.

The response variable is CD4 representing the progression of the disease as
described previously. Thus, it has four values; 1 if the CD4 count < 200 cells per
mm3, 2 if 200 ≤ CD4 count < 350 cells per mm3, 3 if 350 ≤ CD4 < 500 cells per
mm3 and 4 if the CD4 count ≥ 500 cells per mm3.

This study considers 5 explanatory variables. These are CD4 observation time
in months (Time), baseline age of the patient in years (Age), gender (Female, Male),
baseline clinical stage of the patient (Stage I, Stage II, Stage III, Stage IV) and baseline
functional status of the patient (Working, Ambulatory, Bedridden).

2.2 Multilevel Ordinal Models

Multilevel data are a commonly encountered phenomenon especially in the fields of
medical, biological and social sciences. Statistical modeling of multilevel data has
been in discussion for many years and many developments have been made [2,9,10].
In such studies, the interest lies in drawing inference about the regression parameters
of a marginal model for correlated responses while the association structure between
the responses is of secondary importance [3]. As most of the early developments
are concentrated in the area of continuous response variables, the field of multilevel
modeling for discrete categorical responses is a relatively new approach [7,16].

In this study, a two-level analysis is employed. Consider a response variable Y
having k categories (s = 1, 2, . . . , k). Suppose category k is chosen as a reference
category. Let j represent the higher level (level-2) units and let i represent the lower
level (level-1) units (nested observations). In this particular study, the level-2 units are
patients (identified by card numbers) and the level-1 units are the CD4 observation
times. Thus, each observed response is identified by the combination of card numbers
and observation times.

Assume that there are j = 1, 2, . . . , N level-2 units and i = 1, 2, . . . , n j level-1
units within each patient (level-2 unit). The total number of level-1 observations across

level-2 units is given by n =
∑N

j=1
n j .

Let Yi j be the value of the ordinal response associated with level-1 unit i nested

within level-2 unit j . Thus, π(s)
i j denotes the probability of patient j having a response

variable value of s at the observation time i . The cumulative response probabilities
are:

P(Y ≤ s) = γ
(s)
i j =

s∑

h=1

π
(h)
i j , s = 1, 2, · · · , k − 1 (1)
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where γ
(s)
i j represents the expected cumulative proportion (out of the total ni observa-

tions) for the j th patient at time i . Thus, expressing the category probabilities in terms
of the cumulative probabilities:

π
(h)
i j = γ

(h)
i j − γ

(h−1)
i j ; 1 < h < k (2)

but π(1)
i j = γ

(1)
i j and γ

(k)
i j = 1.

The choice of the marginal model depends on the nature of the response scale. The
basic ordinal response model often utilize the cumulative comparisons of the ordinal
outcome with the logit link function.

logit (γ (s)
i j ) = α(s) + xi jβ + zi ju j (3)

where

γ
(s)
i j = exp(α(s) + xi jβ + zi ju j )

1 + exp(α(s) + xi jβ + zi ju j )
.

In this model, the term u j are random effects specific to the second level. The
x represents the fixed effect variables and the z (subset of the x variables) are the
variables associated with the random effects. Here, it is assumed that u j ∼ N (0,Ψ )

where Ψ is the variance covariance matrix of the random effects.
It is worth mentioning that the linear predictor differs in the marginal model (3)

above. First, the category specific intercepts need to satisfy a monotonicity condi-
tion α(1) ≤ α(2) ≤ · · · ≤ α(k−1) only when the family of cumulative link models
are employed. Second, the regression parameter coefficients (β) of the covariates are
category specific (do not vary across categories). Thus, the relationship between the
explanatory variables and the cumulative logits does not depend on s. [14] calls this
assumption of identical odds ratios across the k − 1 cut-offs the proportional odds
assumption. As written above, a positive coefficient for an explanatory variable indi-
cates that as the values of the explanatory variable increase so do the odds that the
response is greater than or equal to s.

Assuming an underlyingmultinomial distribution for the category probabilities, the
covariance matrix of the the cumulative proportions is given by:

cov(y(s)
i j , y(r)

i j ) = γ
(s)
i j (1 − γ

(r)
i j )

ni
; s ≤ r (4)

As noted by [15], violation of the proportional odds assumption is common. Thus,
they described a (fixed-effects) partial proportional oddsmodel in which the covariates
are allowed to have differential effects on the t −1 cumulative logits. Hence, this non-
proportional odds model is widely used in situations where there is no evidence to
suggest the effect of certain variables do not behave proportionality across response
categories. In such case, the cumulative proportions is modeled as:
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logit (γ (s)
i j ) = α(s) + xi jβ(s) + zi ju j (5)

where the term β(s) depict the estimated coefficients that vary across the logits.

2.3 Bayesian Estimation and the Likelihood Function

Estimation of both proportional and nonproportional odds models are estimated under
a Bayesian framework through Markov chain Monte Carlo (MCMC) methods using
the specialized software package for fitting multilevel models MLwiN [4]. For this
study, I used the Stata command runmlwin to fit the models in MLwiN 2.32 seam-
lessly from within Stata. The command allows to fit models by both the IGLS and
MCMC algorithms and provides full control over all aspects of model specification
and estimation [12].

Bayesian inference is based on the posterior distribution given the observed data.
For the ordinal models, the probability of a response in category s for a given level-2
unit j , conditional on the random effects θ is equal to

π
(s)
i j = P(Yi j = s|θ) = γ

(s)
i j − γ

(s−1)
i j .

In what follows, the general model allowing for nonproportional odds is considered,
since the more restrictive proportional odds model is just a special case.

Let Y j denote the vector of ordinal responses from level-2 unit j (for the n j level-1
units nested within). The probability of any pattern Y j conditional on θ is equal to the
product of the probabilities of the level-1 responses,

�(Y j |θ) =
n j∏

i=1

k∏

s=1

(γ
(s)
i j − γ

(s−1)
i j )

y(s)
i j

where y(s)
i j = 1 if Y (s)

i j = s and 0 otherwise (i.e., for each i j-th observation y(s)
i j = 1

for only one of the k categories).
Since Bayesian analysis combines the prior distribution of parameters with the

likelihood function of the observed data, the marginal density of Y j in the population
is expressed as the integral of the likelihood �(·) weighted by the prior density g(·),

h(Y j ) =
∫

θ

�(Y j |θ)g(θ)dθ

where g(θ) is prior distribution of the parameters. For this study, multivariate normal
and inverse gamma priors are used for the fixed effects parameter vector and the
variance of the random effects, respectively. Hence, g(θ) represents the multivariate
standard normal and inverse gamma densities.

The marginal loglikelihood from the N level-2 units is then given by,
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log L =
N∑

j=1

log h(Y j ) =
N∑

j=1

log

(∫

θ

�(Y j |θ)g(θ)dθ

)
.

which should be maximized to obtain the MCMC parameter estimates.

3 Results and Discussion

TheHAARTdata used consists of N = 1464 patients (level-2 units). Also the indicator
of the progression of the disease, the CD4 count, was measured approximately every
six months for a maximum of successive five years. Thus, there are 1–10 (n j =
1, 2, . . . , 10; j = 1, 2, . . . , 1464) level-1 units (recoded responses) for each patient.
Therefore, there are about n = 4655 observations across all 1464 patients.

The four categories of the response variable (CD4) can be viewed as being increas-
ingly good progression of the disease. The lowest value of the response variable
(CD4i j = 1) represents the bad progression and the largest value (CD4i j = 4)
represents good progression of the disease. The fourth category of the response
(CD4i j = 4 or CD4 > 500 cells per mm3) is taken as the reference category. Thus,

CD4i j ∼ Multinomial
(
π

(1)
i j , π

(2)
i j , π

(3)
i j

)
where π

(1)
i j , π(2)

i j and π
(3)
i j denote the prob-

abilities of having CD4 < 200, 200 ≤ CD4 < 350 and 350 ≤ CD4 < 500 for the
jth patient at the ith observation time, respectively.

To assess the progression of the HIV/AIDS disease, two ordinal multilevel models
are fitted to the HAART data, the first assuming a proportional odds model and the
second relaxing this assumption. For both analyses, the repeated ordinal responses
(progression stages) are modeled in terms of the time-varying observation time effect
and the other baseline covariates. In terms of the multilevel part of the model, both a
random intercept (patient) effect and random coefficient (random intercept for each
patient and random slope for the observation time) are included in both analyses.

Each model is, first, fitted by iteratively generalized least squares (IGLS) to obtain
starting values for the model parameters for the Markov Chain Monte Carlo (MCMC)
estimation. In all of the models, the MCMC estimation is based on a sampling of
50,000 iterations following a 25,000 iteration “burn-in” period.

3.1 Random Intercepts Model

Random intercepts model (i.e., z j = 1n j ) is used for both the proportional odds model
and nonproportional odds model. The random intercepts proportional odds model is
of the form:
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log
(
π

(1)
i j /π

(2,3,4)
i j

)
= α

(1)
0 + β1Timei j + β2Age j + β3Gender j

+ β4Stage II j + β5Stage III j + β6Stage IV j

+ β7Ambulatory j + β8Bedridden j + u0 j

log
(
π

(1,2)
i j /π

(3,4)
i j

)
= α

(2)
0 + β1Timei j + β2Age j + β3Gender j

+ β4Stage II j + β5Stage III j + β6Stage IV j

+ β7Ambulatory j + β8Bedridden j + u0 j

log
(
π

(1,2,3)
i j /π

(4)
i j

)
= α

(3)
0 + β1Timei j + β2Age j + β3Gender j

+ β4Stage II j + β5Stage III j + β6Stage IV j

+ β7Ambulatory j + β8Bedridden j + u0 j

(6)

whereu0 j is the randomeffect associatedwith eachpatient (cardnumber). It is assumed
that u0 j ∼ N (0, σ 2

u0).
Since the response variable has four categories, themodel is set up as three log-odds

contrasts (logits). The first log odds contrast model is the log odds of CD4 < 200
versus CD4 ≥ 200 which can be interpreted as the logit of the expected probability
that patient j has CD4 count less than 200 at time i , given the values of the explanatory
variables. The second log odds contrast model, the log odds of CD4 < 350 versus
CD4 ≥ 350 compares the log odds of that patient j has CD4 count less than 200
instead of having CD4 count 200 or more at time i , given the values of the explanatory
variables. Similarly, the third log odds contrast model, the log odds of CD4 < 500
versus CD4 ≥ 500 shows, for given the values of the explanatory variables, the logit
of the expected probability that patient j has CD4 count less than 500 at time i . Also,
separate intercepts (threshold parameters) are estimated in each log-odds contrast. The
effects of all predictor variables are assumed constant across the log-odds contrasts
(proportional odds assumption).

Similarly the nonproportional random intercepts model is of the form:

log
(
π

(1)
i j /π

(2,3,4)
i j

)
= α

(1)
0 + β

(1)
1 Timei j + β

(1)
2 Age j + β

(1)
3 Gender j

+ β
(1)
4 Stage II j + β

(1)
5 Stage III j + β

(1)
6 Stage IV j

+ β
(1)
7 Ambulatory j + β

(1)
8 Bedridden j + u0 j

log
(
π

(1,2)
i j /π

(3,4)
i j

)
= α

(2)
0 + β

(2)
1 Timei j + β

(2)
2 Age j + β

(2)
3 Gender j

+ β
(2)
4 Stage II j + β

(2)
5 Stage III j + β

(2)
6 Stage IV j

+ β
(2)
7 Ambulatory j + β

(2)
8 Bedridden j + u0 j

log
(
π

(1,2,3)
i j /π

(4)
i j

)
= α

(3)
0 + β

(3)
1 Timei j + β

(3)
2 Age j + β

(3)
3 Gender j

+ β
(3)
4 Stage II j + β

(3)
5 Stage III j + β

(3)
6 Stage IV j

+ β
(3)
7 Ambulatory j + β

(3)
8 Bedridden j + u0 j

(7)
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where u0 j ∼ N (0, σ 2
u0).

The parameter estimates ofModel (6) andModel (7) together with their 95% credi-
ble interval are presented inTable 1. In bothmodels, the result show that all explanatory
variables, except age, are significant at 5 % level of significance in the proportional
oddsmodel.But in the nonproportional oddsmodels, at least one of the design variables
of the corresponding categorical variable is significant. Even, age is significant in the
third contrast of the nonproportional odds model. Thus, all variables are significantly
associated with the progression of the disease in the proportional odds model.

In terms of the random patient effects, the estimated between-patient variance for
the proportional odds model is 2.3416 with the 95% credible interval (1.9809, 2.7434)
and for the nonproportional oddsmodel is 2.4712with its corresponding 95% credible
interval (2.1018, 2.8891). It can be easily observed that the estimated between patient
variance is smaller in the proportional odds model than that of the nonproportional
odds model. And also the credible interval in the proportional odds model is wider
than that of the nonproportional odds model. Therefore, the credible intervals for
the between patient variance in both models clearly indicate that the between patient
variance is significant or the data are correlated within patients.

Generally, for a random intercepts model, it is often of interest to express the level-
2 variance in terms of an intra-class correlation. For the ordinal multilevel model
assuming normally distributed random effects, the estimated intra-class correlation is
σ̂ 2
u0/(σ̂

2
u0 + π2/3) where the term in the denominator represents the variance of the

underlying latent response tendency.
As said before, the significance of the random patient effects in Table 1 shows that

the data are correlated within subjects. Expressing this as an intra-class correlation, the
attributable variance at the patient level equals 0.4158 (41.58%) and 0.4289 (42.89%)
for proportional odds and nonproportional odds models respectively. This means that
about 41 % of the variation in the response (progression of the disease) is explained
by the difference among patients.

3.2 Random Coefficients Model

Similar to the random intercepts model, both the proportional and nonproportional
odds models are also fitted in a random coefficients form. The random coefficients
model fitted, here, includes a random slope for each observation time in addition to
a random intercept for each patient. The proportional odds model analysis assumes
the effects of the explanatory variables are the same across the three cumulative logits
of the model, whereas the nonproportional odds model analysis estimates effects for
each explanatory variable on each of the three cumulative logits.

The random coefficients proportional odds model has the form:
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where u0 j and u1 j are the random intercept for each patient and random slope asso-
ciated with the observation time. Here u0 j ∼ N (0, σ 2

u0), u1 j ∼ N (0, σ 2
u1) and

cov(u0 j , u1 j ) = σ01.
Similar to the random coefficients proportional odds models, the random coeffi-

cients nonproportional odds model is expressed as:
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where as usual u0 j ∼ N (0, σ 2

u0), u1 j ∼ N (0, σ 2
u1) and cov(u0 j , u1 j ) = σ01.

The parameter estimates of both of the models in a random coefficient terms are
summarized in Table 2. Again when the random coefficient models are considered,
the random patient effect is significant in both models. Also, the random linear time
effect is significant in both analysis. The estimated covariance between the subject
and time effects is negative but it is not significantly different from zero.
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Table 3 Comparison of the estimated models using DIC

Model D̄ pD DIC

Random intercepts proportional odds (6) 9341.86 880.09 10221.95

Random intercepts nonproportional odds (7) 9192.82 906.10 10098.92

Random coefficients proportional odds (8) 8105.76 1383.61 9489.37

Random coefficients nonproportional odds (9) 8033.55 1304.46 9338.01

3.3 Model Comparison

Having fitted models by MCMC, then comparison of the models is done via the hier-
archical modeling generalization of the Akaike Information Criterion (AIC) called
deviance information criterion (DIC) [19]. The DIC is the sum of the posterior
expectation (mean) of the deviance function (D̄) and the effective number of parame-
ters (pD). The term D̄ measures the goodness-of-fit of the model and the term pD
measures the model complexity. Since a smaller D̄ indicates a better fit and a smaller
pD indicates a parsimonious model, small value of the sum (DIC) indicates preferred
model.

Table 3 presents D̄, pD and DIC values for the four models fitted previously.
When the posterior mean of the deviance function is examined, the value decreases
from Model (6) to Model (9), it seems that the random coefficient nonproportional
odds model fits the HAART data better. Turning to the effective number of parameters,
the values increase from Model (6) to Model (9). But to select a model as best among
other candidate models, both of the values should be small. Hence, when the sum of
the two (DIC) is considered, the random coefficient nonproportional odds model has
the smallest value. Therefore, among the four candidate models, the nonproportional
odds model in a random coefficients basis fits better for the HAART data used.

4 Conclusions

In this study, a novel application of Bayesian multilevel modeling for an ordinal
categorical response has been discussed. Proportional odds and nonproportional odds
models are considered for the analysis of the HAART data. In terms of the multilevel
part of the model, both random intercepts models and models incorporating random
patient intercepts and linear trends are investigated.

Specifically, four different two-level ordinal models are explored. Then, the models
are compared using the Deviance Information Criteria. Of the fourmodels, the random
coefficients nonproportional odds model is the best fit for the HAART data as it has
the smallest DIC value.

All the variables included in the model, except age, are found to be significantly
associatedwith the progression of theHIV/AIDSdisease. In particular, the progression
of the disease increases as the time under HAART increases, assuming all the other
variables constant. Also, male patients are more likely to have better progression as
compared to female patients if all the other explanatory variables are assumed to be
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fixed. Similarly the baseline clinical stage and functional status of the patients have
differential effects on the progression of the disease.

In general, the modeling technique used in this study has not been widely used
for modeling medical data with hierarchical structures. Hence the contribution of the
paper would be invaluable for medical researchers and statisticians.

Appendix

Stata’s runlmwin Codes

// Two-Level Proportional Odds Model - Random Intercepts Model
xi: runmlwin CD4 Cons (ObsTime Age Sex i.ClinStag i.FunStat, ///

contrast(1/3)), level2(CardNum:(Cons, contrast(1/3))) ///
level1(Obs:) discrete(dist(multinomial) link(ologit) ///
denom(Cons) basecategory(3)) nopause

xi: runmlwin CD4 Cons (ObsTime Age Sex i.ClinStag i.FunStat, ///
contrast(1/3)), level2(CardNum:(Cons, contrast(1/3))) ///
level1(Obs:) discrete(dist(multinomial) link(ologit) ///
denom(Cons) basecategory(3)) ///
mcmc(burnin(25000) chain(50000)) initsprevious nopause

// Two Level Nonproportional Odds Model - Random Intercepts Model
xi: runmlwin CD4 Cons ObsTime Age Sex i.ClinStag i.FunStat, ///

level2(CardNum:(Cons, contrast(1/3))) ///
level1(Obs:) discrete(dist(multinomial) link(ologit) ///
denom(Cons) basecategory(3)) nopause

xi: runmlwin CD4 Cons ObsTime Age Sex i.ClinStag i.FunStat, ///
level2(CardNum:(Cons, contrast(1/3))) ///
level1(Obs:) discrete(dist(multinomial) link(ologit) ///
denom(Cons) basecategory(3)) ///
mcmc(burnin(25000) chain(50000)) initsprevious nopause

// Two Level Proportional Odds Model - Random coefficients Model
xi: runmlwin CD4 Cons (ObsTime Age Sex i.ClinStag i.FunStat, ///

contrast(1/3)), level2(CardNum:(Cons ObsTime, contrast(1/3))) ///
level1(Obs:) discrete(dist(multinomial) link(ologit) ///
denom(Cons) basecategory(3)) nopause

xi: runmlwin CD4 Cons (ObsTime Age Sex i.ClinStag i.FunStat, ///
contrast(1/3)), level2(CardNum:(Cons ObsTime, contrast(1/3))) ///
level1(Obs:) discrete(dist(multinomial) link(ologit) ///
denom(Cons) basecategory(3)) ///
mcmc(burnin(25000) chain(50000)) initsprevious nopause

// Two Level Nonproportional Odds Model - Random coefficients Model
xi: runmlwin CD4 Cons ObsTime Age Sex i.ClinStag i.FunStat, ///

level2(CardNum:(Cons ObsTime, contrast(1/3))) ///
level1(Obs:) discrete(dist(multinomial) link(ologit) ///
denom(Cons) basecategory(3)) nopause

xi: runmlwin CD4 Cons ObsTime Age Sex i.ClinStag i.FunStat, ///
level2(CardNum:(Cons ObsTime, contrast(1/3))) ///
level1(Obs:) discrete(dist(multinomial) link(ologit) ///
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denom(Cons) basecategory(3)) ///
mcmc(burnin(25000) chain(50000)) initsprevious nopause
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