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Abstract

The implementation of coatings on industrial materials has a significant impact on their tribological, corrosion, and mechani-
cal properties. This review examines the impact of coatings on these essential material properties, and the challenges of the
implementation mechanisms are discussed. In industrial applications, coatings are essential for lowering friction, wear, and
surface damage and enhancing the tribological performance of materials. The ability of several coating processes to improve
the wear resistance and lubricity of materials is being investigated. Also, the study cuts across the review of literature on
physical vapour deposition (PVD), chemical vapour deposition (CVD), and thermal spray coatings. Furthermore, using
protective coatings can considerably increase the corrosion resistance of industrial items. The suitable coating materials
and methods must be used to prevent corrosion over the long term effectively. Additionally, coatings significantly affect
the mechanical qualities of industrial materials, such as toughness, strength, and hardness. Hard coatings like nitride-based
coatings can considerably increase materials' surface hardness and wear resistance. Additionally, by mixing various mate-
rials with complementary qualities, tailored multilayer and composite coatings can improve mechanical capabilities. To
customise coatings for particular applications, it is crucial to comprehend how coatings interact with industrial materials.
Furthermore, challenges such as coating-substrate compatibility, durability, and cost-effectiveness are addressed to ensure
the successful implementation of coatings in industrial applications. Overall, the review highlights the significant role of
coatings in improving industrial materials’ tribological, corrosion, and mechanical properties and emphasises the need for
further research and development in this field.
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1 Introduction

Industrial materials, which offer a wide range of qualities
to match the varying needs of many industries, are essen-
tial elements in modern manufacturing processes. Industrial
materials can be divided into several categories depending
on their composition and characteristics, as presented in
Fig. 1. Due to their remarkable strength-to-weight ratios,
metals like steel and aluminium are widely employed and
suitable for structural applications [1]. Metals and alloys
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are widely used in various industries due to their excellent
mechanical strength, conductivity, and corrosion resistance
[2]. Steel is used exclusively in the construction of skyscrap-
ers and bridges due to its high tensile strength and dura-
bility, while Aluminium, with its lightweight nature and
excellent corrosion resistance alongside composites which
are composed of two or more materials, combine the desir-
able properties of each component, making them valuable
in industries like aerospace, automotive, and sporting goods
[3]. Carbon fibre-reinforced polymers (CFRPs), among other
composite materials, have become common substitutes for
conventional materials. Due to its high strength-to-weight
ratio, CFRPs are excellent for applications such as sporting
goods and automotive components. CFRPs combine the high
strength of carbon fibres with the flexibility of polymers
to produce lightweight and durable materials [4]. Polymers
and ceramics are also essential components in industrial
applications. Ceramics are ideal for use in engine parts,
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Fig. 1 Various industrial
materials

Metals

cutting tools, and electrical insulators because of their out-
standing resistance to high temperatures, wear, and corro-
sion [5]; they also find use in the electronics, aerospace, and
energy sectors because of their high-temperature stability
and electrical insulation [6]. Polymers like plastics and rub-
ber are lightweight and adaptable, making them appropriate
for packaging, construction, and automotive industries [7].
Developments in materials science have facilitated the pro-
duction of specialised materials with distinctive features for
particular uses. Aerospace, Defence, and high-temperature
applications use high-performance materials such as shape
memory alloys, carbon fibre-reinforced composites, and
superalloys [8]. Electronics, energy storage, and medicinal
fields use nanomaterials, including nanoparticles and nano-
composites, since they possess more excellent qualities [9].
Manufacturers can produce goods with particular qualities
suited to their various industries because of the wide variety
of industrial materials. These qualities include tribological,
corrosion, and mechanical properties.

The mechanical properties of industrial materials play a
crucial role in determining their behaviour and performance
under various loading conditions. A material’s response to
mechanical forces is described by various qualities known
as mechanical properties. Young’s modulus, often known
as the elastic modulus, measures a material’s stiffness and
elastic deformability, whereas Toughness measures a mate-
rial’s ability to absorb energy before fracture [10]. A mate-
rial’s resistance to deformation and failure is indicated by
its strength, which includes tensile, compressive, and shear
strength [11]. According to Meyers et al. [12], ductility is the
capacity of a material to endure plastic deformation before
fracture. According to [13], a material's hardness reflects its
resistance to being scratched or indented. Different materials
have various mechanical properties as a result of these quali-
ties. The inherent strength and ductility of metals like steel
and aluminium make them ideal for structural applications.
Although polymers are flexible and lightweight, they typi-
cally have lower mechanical strengths than metals. Ceramics
are very stiff and rigid but typically fragile [12]. According
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to the composition and placement of components, compos-
ites combine the desirable qualities of many materials to
provide a wide range of mechanical characteristics. The dif-
ferent materials’ characteristics shown in Fig. 2a affect the
stress—strain, such as ultimate strength and yield and deter-
mine the fracture point as debited in Fig. 2b.

The corrosion properties of industrial materials refer to
their susceptibility to deterioration and degradation when
exposed to corrosive environments. Material contact with
the environment is a key component of the complicated
electrochemical process termed corrosion. Corrosion can
happen in various ways, according to Chen and He [14],
including uniform corrosion, pitting corrosion, crevice
corrosion, and stress corrosion cracking. Each mechanism
has unique difficulties and calls for specialised corrosion
mitigation techniques. A material’s microstructure, surface
quality, and composition affect its corrosion resistance.
Because alloying elements like chromium and nickel are
present and form a passive oxide layer on the surface of
stainless steel, they have high corrosion resistance [15].
Similarly, using corrosion-resistant alloys, including
nickel-based or titanium alloys, may enhance the resist-
ance to corrosion in particular environments [16]. Tribo-
logical properties describe the friction, wear, and lubrica-
tion that occur when surfaces move about one another.
Understanding the tribological properties of industrial
materials is crucial for optimising their performance and
ensuring efficient operation. Key tribological characteris-
tics, such as friction and wear resistance, influence the bar-
rier to motion between two surfaces and define a material’s
capacity to tolerate surface deterioration and material loss.
According to Sahoo and Satapathy [17], the coefficient
of friction determines how easy or difficult it is to slide
between surfaces. In mechanical systems, high friction can
result in energy losses, more wear, and less efficiency. Li
et al. [18] pointed out that elements like hardness, surface
roughness, and the presence of protective coatings have an
impact on wear resistance. Superior wear-resistant materi-
als provide less material loss and longer service life.
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Fig.2 a Material property chart and b Stress—Strain curve for materials [12]

Industrial coatings fall into two categories: organic and
inorganic. Due to their adaptability, simplicity of applica-
tion, and attractive finishes, organic coatings, including
polymer-based paints and coatings, are frequently employed
[19]. These coatings offer improved aesthetics, chemical
resistance, UV protection, and corrosion resistance. They
are frequently used in consumer products, construction, and
the automotive industry. On the other hand, Metallic and
ceramic coatings are examples of inorganic coatings. Metal-
lic coatings offer superior corrosion resistance, wear protec-
tion, and enhanced surface hardness [20]. Examples of these
coatings include electroplating and thermal spray coatings.
Applying thick coatings with improved mechanical and cor-
rosion properties is made possible by thermal spraying tech-
niques, such as plasma spraying, high-velocity oxygen fuel
(HVOF) spraying, and flame spraying [21]. These coatings
are widely employed in industries where toughness and resil-
ience over severe conditions are essential [22]. They pro-
vide superior wear resistance, muscular bond strength, and
improved fatigue life. Ceramic coatings offer some unique
qualities of abrasion resistance, thermal barrier capabilities,
and high-temperature stability [23]. They have uses in the
aerospace, energy, and automotive sectors where resistance
to oxidation, wear, and high temperatures is crucial.

Preparing and implementing industrial coatings involve
various materials, methods, and techniques. Some standard
coating application techniques are spraying, dipping, roller
coating, and electrostatic deposition, as debited in Fig. 3a—c.
Because of their effectiveness, consistency, and simplicity
of usage, spraying techniques, including airless and electro-
static spraying, are often used [24]. Methods like dipping or

immersion provide for homogeneous coating application and
are suited for objects with complicated shapes. For big, con-
tinuous surfaces, roller coating is frequently used. According
to Ghasemi et al. [25], the most popular procedure is the
dispersion of coating components in an appropriate solvent,
followed by application methods including spraying, brush-
ing, or dipping. A common technique for applying metal
coatings is electroplating, depositing a metal layer onto a
substrate using an electrochemical process [26]. To ensure
adequate adherence between the coating and the substrate,
surface preparation is a crucial step involving cleaning, sur-
face roughening, and primers or adhesion promoters. The
type of coating, desired thickness, and type of substrate
all play a role in choosing the best coating technique. The
coating thickness is also unnecessary because it influences
the coating’s durability and protective qualities [27]. The
thickness, content, and structure of coatings can be precisely
controlled using cutting-edge processes, including chemical
vapour deposition (CVD) and physical vapour deposition
(PVD), as shown in Fig. 4. A thin layer is deposited on the
substrate surface due to a chemical reaction between gaseous
precursors in CVD. Contrarily, PVD entails the evaporation
or sputtering of solid coating ingredients afterwards depos-
ited onto the substrate surface. The benefits of thin films are
excellent wear resistance, reduced friction, and increased
hardness [28]. These nanoscale coatings can be customised
through various deposition processes to fit particular needs
[29]. However, the application of multiple layers of coatings
is know as multi-layer coatings. The majority of multi-layer
coatings are just many repetitions of two layers, one tougher
and one softer. They could be comprised of two separate
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ceramic layers or a combination of ceramic and metallic lay-
ers. Layer material characteristics affect the characteristics
of multi-layer coatings.

Specialised coatings have emerged as a result of coat-
ing technology. For instance, functional coatings, such as
self-cleaning or anti-fouling, have been developed to meet
industrial needs [25]. These coatings offer extra features
like water and oil repellence or microbial growth resist-
ance, which have uses in various industries like health-
care, electronics, and food processing. The application of
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coatings successfully depends on considering some vari-
ables, such as the application's specific requirements, the
surrounding environment, and the intended performance
characteristics. Therefore, this study aims to review the
literature on the effect of coatings on industrial materials'
mechanical, corrosion and tribological properties. Also,
the study discusses the significance of coating and its chal-
lenges in the manufacturing industry.
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2 Study of the Impact
of the Implementation of Coating
on the Mechanical Properties of Industrial
Materials

The mechanical qualities of materials, such as hardness
and fatigue strength, are greatly enhanced by coatings.
According to Zhang et al. [30], coatings can greatly
increase the hardness of a material, offering resistance to
abrasion and surface damage. They also help to improve
a material's wear resistance by reducing friction and the
impacts of wear operations. According to Li et al. [31],
coating application permits the adjustment of surface
roughness and topography, which can affect mechani-
cal properties, including adhesion and friction. Figure 5
shows that the ASP30 and D2 tool steel substrates have
higher roughness than H11 steel. After polishing the
D2 and ASP30 tool steel substrates, shallow protrusions
(about 8 nm in height) appeared at the sites of carbide
inclusions, while no such protrusions were observed in
the case of H11 tool steel. This suggests that coatings can
increase the fatigue strength of industrial materials. Coat-
ings also serve as barrier layers that can prevent crack
initiation and growth, extending the material fatigue life
[31]. The bonding of coatings to the substrate is a crucial
factor that impacts the mechanical properties. It is crucial
to adequately prepare the surface and use the appropri-
ate coating materials to obtain good adhesion and prevent

delamination or cracking [32]. Physical vapour deposition
(PVD) and chemical vapour deposition (CVD) are two
advanced techniques that precisely control coating thick-
ness and characteristics, affecting mechanical properties.
Table 1 shows a summary of the effect of coatings on the
mechanical properties of some industrial materials. The
mechanical properties of industrial materials guide the
design and engineering of components to ensure optimal
performance and reliability. Jones [33] emphasises the
importance of considering the mechanical properties of
materials, such as strength, stiffness, and toughness, when
designing structures, as it ensures that the materials can
withstand the applied loads and forces without failure. The
mechanical properties of industrial materials can be modi-
fied through various procedures, including alloying, heat
treatment, and processing methods. According to Ashby
et al. [10], alloying elements can increase strength, hard-
ness, and corrosion resistance. Quenching and tempering
are heat treatment techniques that can alter the microstruc-
ture and improve mechanical characteristics. The mate-
rial’s grain structure and mechanical behaviour can be
affected by processing techniques such as forging, casting,
and extrusion. All these mentioned properties of industrial
materials can be modified using industrial coatings.
While coatings offer potential benefits in enhancing the
corrosion resistance of industrial materials, it is essential
to consider their associated drawbacks. One major dis-
advantage is the potential reduced material ductility and
toughness due to a coating layer [34]. Research studies have
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environments and enhancing their durability. Coatings serve
as protective layers that can considerably increase the ability
of a material to resist corrosion, prevent direct contact, slow
down corrosion and give good finishing. Figure 6 shows
the primary layers of coating material and their functions.
Kim et al. [59] claim that coatings build a physical barrier
between the material and the corrosive environment. For
example, ceramic coatings, such as oxide or nitride, provide
good corrosion protection due to their excellent chemical
stability and inertness. These coatings produce a shielding
oxide layer that prevents corrosive species from penetrat-
ing and offers long-term corrosion protection. Additionally,
coatings can alter the electrochemical characteristics of a
material, improving corrosion resistance. Li et al. [60] state

Topcoat
appearance

Primer
corrosion protection

Pre-treatment
adhesion
corrosion protection

Fig. 6 Idealized scheme of a coating system for barrier protection of
AA2024 [59]

that coatings can change a material’s corrosion potential and
current density, preventing corrosion reactions. As seen in
Fig. 7, an additional layer of defence against corrosion is
offered by coatings such as organic coatings and inorganic
films.

A significant factor affecting the corrosion characteris-
tics is the adherence of the coating to the substrate. Proper
surface preparation and coating application processes are
crucial to maintaining strong adhesion, reducing the chance
of coating delamination and preventing the substrate from
corrosion [61]. To achieve long-term corrosion protection,
choose suitable coating materials and application methods
[62]. For example, Zhang et al. [63] emphasised using cor-
rosion-resistant coatings, such as zinc-based or aluminium-
based, to provide long-term protection against corrosion.
The combination of suitable coating materials and practical
application techniques ensures enhanced corrosion resist-
ance and extends the service life of industrial materials.
Table 2 illustrates a summary of the effect of coatings on
the corrosion properties of some industrial materials.

The thickness and uniformity of coatings play a signifi-
cant role in determining the corrosion properties of materi-
als. The choice of deposition method can influence these
factors. Research has indicated that deposition techniques
such as electroplating and electrochemical deposition offer
the advantage of producing precise and controlled thick-
ness coatings, leading to enhanced corrosion resistance
[78]. Conversely, spray or dip coating methods may result in
uneven coating thickness, potentially undermining the pro-
tective barrier against corrosion [79]. The bonding strength
between the coating and the substrate is a critical factor that
impacts corrosion performance. Specific deposition tech-
niques like physical vapour deposition (PVD) and chemical
vapour deposition (CVD) facilitate interfacial solid bonding,
thereby contributing to improved corrosion resistance [80,
81]. In contrast, improper adhesion caused by inadequate
deposition methods can result in coating delamination and
accelerated corrosion [82]. Additionally, the microstructure
and porosity of coatings play a crucial role in determining
their corrosion properties. Techniques such as sol—gel pro-
cessing or electrodeposition can produce coatings with a

Fig. 7 Effect of the corrosion

potential in the topcoat and Electrolyte ] o
bond coat layers [60] " C 0:{93!1’552!2
8042 o o‘:‘
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Table 2 (continued)

&

Findings

Mode of applications

Corrosion analysis

Industrial materials

Type of coating materials

used

Authors details

Springer

Corrosion tests showed that the

Reactive high-power impulse

Potentiodynamic polarization

Film substrate 316 1

ZrNxOy

Castro et al. [75]

film densification controlled
the corrosion resistance

magnetron sputtering

and electrochemical imped-

ance spectroscopy

Weight loss and electrochemi- Immersion process of deposi- Solid corrosion products might

Basalt fibre

Zirconium dioxide and tita-

Rybin et al. [76]

vary in form and composi-

tion

cal sol-gel method

nium dioxide coated

tion depending on the kind of

alkaline medium

Chemical vapour deposition ~ Implementing carbon nano-

Electrochemical impedance

Woven-type basalt fabric

Carbon nanotubes (CNTSs)

Mittal et al. [77]

tube coating on basalt fabric

spectroscopy and linear
polarisation resistance

improves the material’s corro-

sion resistance

dense and compact structure, thereby minimising the pen-
etration of corrosive species [83, 84]. Conversely, thermal
spraying can introduce porosity, allowing corrosive agents to
reach the substrate. The chemical composition and phase of
the coating can also be influenced by the deposition method,
thereby affecting its corrosion behaviour. Specific deposition
techniques enable the formation of protective oxide layers
on the coating surface, contributing to enhanced corrosion
resistance [85, 86].

Furthermore, the deposition atmosphere and conditions
impact the corrosion properties of the coatings. Vacuum-
based methods such as PVD provide a controlled environ-
ment, reducing the risk of contamination and ensuring
improved corrosion resistance [87]. Conversely, atmospheric
deposition methods may introduce impurities or moisture,
which can affect the performance of the coating.

4 The Effects of Coating on the Tribological
Properties of Industrial Materials

The tribological properties of industrial materials are sig-
nificantly impacted by the application of coatings, influenc-
ing friction, wear, and lubrication. Enhancing the tribologi-
cal performance of materials is greatly helped by coatings.
Coatings significantly influence the tribological behaviour
of materials by reducing friction and wear. They act as pro-
tective barriers, minimising direct contact between mating
surfaces [88]. Balint et al. [89] assert that coatings with low
friction coefficients can greatly minimise energy losses and
increase the effectiveness of mechanical systems. As shown
in Fig. 8, where a polymer-based coating is used on metal,
coatings can reduce friction and wear by acting as a protec-
tive layer between interacting surfaces. Additionally, coat-
ings can make industrial materials more resistant to wear.
According to Xia et al. [90], coatings with high hardness
and strong adhesion can withstand wear processes such as
abrasion, adhesion, and erosion. Coatings also play a role in
enhancing the lubricating capabilities of materials. Coatings
can be lubricants in sliding contact applications, decreasing
wear and friction. They can also integrate solid lubricants or
lubricant-infused layers to offer continuous lubrication and
lessen the requirement for external lubrication [91]. Accord-
ing to Xie et al. [92], effective coating reduces the direct
contact between surfaces by generating a thin film that sepa-
rates them. Lubrication also plays a key function in lowering
friction and wear between contacting surfaces. Additionally,
proper lubrication enhances tribological performance by
minimising wear and friction. Several lubrication mecha-
nisms, such as boundary, mixed, and hydrodynamic lubri-
cation, may be employed. Industrial materials’ tribological
characteristics are also influenced by surface topography.
Due to the increased contact area and potential for abrasive



Journal of Bio- and Tribo-Corrosion (2024) 10:2

Page 110f20 2

Fig.8 Generalised effect of 1
polymer-based coating on the

tribological properties of metals

[89] i

0.6

0.4

Relative Friction

interactions, rough surfaces may experience more wear
and friction. The surface topography can be optimised to
improve tribological performance using surface modifica-
tion procedures like polishing or coating. Factors such as
coefficient of friction, wear resistance, lubrication mecha-
nisms, and surface topography all contribute to the overall
tribological performance of industrial materials. The tribo-
logical properties of coatings are significantly influenced by
their adherence to the substrate. To promote strong adhesion
and ensure the longevity and integrity of the coating, it is
essential to prepare the surface and choose the suitable coat-
ing materials properly. The choice of coating material and
deposition technique plays a crucial role in determining the
tribological properties of the coated surfaces [93]. Table 3
highlights some coatings, their application methods and their
effect on the tribological properties of the substrate.
Diamond-like carbon (DLC) coatings have emerged as
a promising coating option for preserving the tribological
properties of industrial materials. DLC coatings exhibit
desirable attributes such as exceptional hardness and low
friction, rendering them suitable for applications where wear
resistance plays a vital role [108]. Research findings have
consistently indicated that DLC coatings can effectively
sustain low levels of friction and wear, thereby minimising
any adverse effects on the tribological properties of the base
materials [109]. Certain ceramic coatings have demonstrated
limited impact on the tribological properties. Notably, alu-
mina (Al,O3) coatings have exhibited exceptional wear
resistance and low friction coefficients, positioning them as
viable options for applications where tribological perfor-
mance is paramount [110]. Likewise, titanium nitride (TiN)
coatings have exhibited favourable tribological character-
istics by maintaining low levels of friction and wear [111].
Furthermore, certain polymer-based coatings, including
polytetrafluoroethylene (PTFE) coatings, have demonstrated
negligible influence on tribological properties. PTFE coat-
ings are characterised by their low friction and impressive
wear resistance, rendering them well-suited for applications

B Standard Tribological System
Up to 50% @ Tribo-Mate Upgraded System
Friction
reduction
Up to 75%
wear

reduction

Relative Wear

necessitating low friction and lubrication [112]. Moreover,
self-lubricating coatings, like molybdenum disulfide (MoS,)
coatings, have exhibited encouraging outcomes in preserv-
ing the tribological properties of industrial materials. MoS,
coatings possess exceptional lubricating properties and can
mitigate friction and wear across various operating condi-
tions [113].

From the various studies, one of the significant coatings
employed to reduce friction and wear rate is silicone coat-
ing made of resin, additives, solvent, pigment and fillers, as
shown in Fig. 9. All these components of the coating agent
assist in improving the performance of coatings in engineer-
ing applications.

5 Effects of Coating on the Tribo-corrosion
Mechanism of Industrial Materials

Tribo-corrosion is the word used to describe the mecha-
nisms of surface deterioration resulting from the interac-
tion of mechanical wear with chemical and electrochemical
reactions [114]. Time-dependent and nonlinear mechano-
electrochemical interactions occur every day in tribo-cor-
rosion. Research on tribo-corrosion has recently focused on
the need to choose or create new surfaces for equipment in
the future and how to reduce operating costs and increase
the lifespan of machinery and medical equipment already
in use [115-120]. The research area thus covers the inter-
actions between corrosion and erosion (solids, liquid flow,
and droplet impingements or cavitation bubbles) and pro-
cesses such as abrasion, adhesion, fretting, and fatigue wear.
Tribo-corrosion is frequently associated with the interaction
of mechanical and environmental forces and the consequent
synergy or antagonistic consequences [121]. For instance,
chemical influences frequently impact the adhesive dissipa-
tion of energy during friction. Panda et al. [122] Studied
the tribo-corrosion circumstances of iron boride coatings
on carbon steel (CS) made through thermal diffusion, and

@ Springer
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Table 3 (continued)

Findings

Mode of applications

Tribological properties

Industrial materials

Type of coating materials used
PVD -CrN/TiAICrSiN nano-

Authors details

The TiAIN monolayer coating

sputtering

‘Wear resistance

Glass fibre-reinforced plastics

Silva et al. [107]

demonstrated the best wear

structured multilayer coating

resistance performance in labo-
ratory wear testing, whereas

the CrN/TiAICrSiN nanostruc-

tured multilayer coating dem-

onstrated the best performance

in industrial wear tests

it was contrasted with that of bare CS and 316L stainless
steel. The reciprocating tests used in the tribological trials
had a ball-on-flat geometry and were conducted under dry
sliding and tribo-corrosion conditions. The coatings showed
improved wear resistance because the iron boride protec-
tive layer is harder and more chemically inert. Compared
to CS, a multi-layered structure of h-BN or other BN-based
compounds over boronised steel reduced the potential for
crack propagation and helped reduce the friction coefficient
(COF) by about 20% to 40%. Evaluation of the worn sur-
faces’ microstructure and surface morphology helped clarify
the tribo-corrosion mechanisms in the studied samples.

Beliardouh et al. [123] created multilayer thin coatings
using reactive radio frequency magnetron sputtering with
a thickness of around 3 m on a Ti—-6Al-4V substrate for
biomaterial applications. Hard zirconium nitride and pure
tantalum are combined to create films, which are utilised to
control interfacial tension and prevent crack development.
A biomimetic design (nacre-inspired materials) alternates
hard/ductile material. A ball-on-disk reciprocating tribom-
eter was used for tribo-corrosion testing in Hank's solution
at 37 °C and open circuit potential. All the samples had a
propensity to have strong corrosion resistance. Coatings with
atop ZrN layer 100 nm thick demonstrated more significant
noble potential and decreased wear rate and friction coef-
ficient during the sliding phase. The wear process appears
to consist of three main steps: (i) Rubbing under applied
OCP (and normal load), (ii) causes the coating covered by
a tribo-corrosion layer to thin, which causes fractures and
rifts, and (iii) causes pieces to develop and separate (coat-
ing delamination), which allows the electrolyte to access the
substrate as presented in Fig. 10.

6 Interaction Study of Coatings Materials
and Industrial Material Surfaces/
Substrates and Pretreatment

In general, there are interactions between the coating
materials and the substrate of the industrial materials. Dif-
ferent materials behave differently during the deposition of
the coatings on the substrate [124]. Regarding mechanical,
corrosion and tribological properties, the substrate has to
be well-prepared to have a firm grip on the coating materi-
als. Also, the thickness of the coatings plays a vital role
in the coated materials having viable properties in terms
of adequate hardness, high resistance to wear rate and
corrosion properties of the coated substrate [125]. The
deposition of the coating assists in improving the surface
morphology of the industrial materials either by physi-
cal or chemical deposition process. The plasma-sprayed
coated of different substrates’ tribological characteristics
are discovered to be only somewhat superior in different

@ Springer
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The coating agents are made from 4 types of
components: Resins, Additives, Pigments &
Fillers and Solvents.

.".
Solvents '

[j -+ Silicone applicable components

Fig.9 Coating agent and applications [103]

Fig. 10 The illustration of the
tribo-corrosion mechanism
[116]

Substrate

Tribo-corrosion

m.uvmv-

concentrations on the substrate. This might be because of
mechanical stability and strong atomic coherence connec-
tion between physical and chemical properties, as reported
in books [126—-128]]. Lowered Atomic coherence corre-
sponds to diminished coating’s chemical connection. The
contracting microstructure characteristics include grain
size, density, and porosity. Process parameters impact
these; for instance, the coatings produced by PVD and
thermal spraying processes differ significantly [129].

@ Springer

I - Cracks formation

\\l"ll"

Sl

There are a wide array of coating applications.

Used as the resin itself

Used! toimprove otherresins and impart
them with the properties of siicones

Used as additives to improve

Additives the surface conditons of coatings

Used to modify the surface of filrs

Pigments & Fillers S o ki s

Stop
Sliding

II - Delamination III - Substrate

deterioration

Every effective pretreatment procedure for coatings appli-
cation on a substrate starts with a straightforward cleaning
step. The stages that should be completed before any other
procedures are.

i. The cleaner stage
ii. The rinse stage
iii. The dry-off oven
iv. The conditioning stage
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v. The zinc phosphate stage
vi. The sealer stage
vii. Shot blasting as pretreatment
viii. Shot plus primer

After this general pretreatment stage, other pretreatment
and functional agents have also been involved in the coat-
ing’s application of industrial materials, as presented in
Fig. 11.

7 Challenges of the Implementation
of Coatings on Industrial Manufacturing
Products and the Way Forward

Key issues must be resolved when using industrial coatings
on manufactured items for practical application and optimal
performance. The compatibility of coatings with the sub-
strate material is one of the primary challenges. Numerous

Anti Anti
foulin
9 fogging
Adhesive Lubrication

Pretreatment agents
Functional agents

Hydrophilic

Odor
resistance

Snow-
sliding

Anti
bacterial

Fig. 11 Different types of pretreatments and functional agents [129]
97.33

2018 2019 2020 2021 2022 2023

W North America W Europe

W Asia Pacific

materials, including metals, polymers, and composites, each
with unique qualities, are used to create various manufactur-
ing products. Long-term performance depends on adequate
adherence and compatibility between the coating and the
substrate material [130]. Adhesion and compatibility can be
improved using effective surface preparation processes, such
as cleaning, roughening, and applying primers or adhesion
promoters. The coating resilience and lifespan in challeng-
ing operating environments is another issue. Industrial items
frequently operate in hostile conditions, including extreme
heat, corrosive chemicals, and abrasive wear. In order to
remain protective over time, coatings must be resistant to
certain elements [131]. Advanced coating technologies,
such as multilayered structures or nanocomposite coat-
ings, offer increased performance and endurance in harsh
environments.

Another difficulty is ensuring constant and uniform coat-
ing application throughout extensive manufacturing pro-
cesses. The coating thickness, coverage, and uniformity are
essential elements that affect the coated product's general
performance and appearance. To obtain consistent and
uniform coating, methods like robotic coating application,
automated spraying systems, and dip coating can be applied
[132]. Coatings can increase production costs overall. As
presented in Fig. 12, The market for industrial coatings,
which had a value of USD 97.33 billion in 2021, is antici-
pated to expand at a Compound annual growth rate (CAGR)
of 3.1% during the next five years. Figure 13 debited the
global analysis of coatings and paint. The increased require-
ment for improved aesthetics combined with rising general
industry, automotive, and aerospace demand is anticipated
to accelerate the product’s uptake. Due to growing concerns
and awareness about environmental and health risks, the
demand for ecologically friendly coatings is anticipated to
rise throughout the prediction period [133]. Thus, weighing

2025 2026 2027 2028 2029 2030

m Latin America  mMiddle East & Africa

Fig. 12 U.S industrial coating market from 2018 to 2030in USD billion [132]
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Fig. 13 The global market for 250
paints and coatings from 2018
to 2028 [133]

Market value of coatings mn billion U.S dollars

2018 2019 2020

@ Waterborne
@ High solids

the advantages of better performance against the related
costs is crucial. Cost-related issues can be reduced by inves-
tigating cost-efficient coating materials, streamlining coating
procedures, and considering life cycle cost analyses [134].

Collaboration between researchers, manufacturers, and
coating suppliers is essential to address these challenges
[135]. The creation of specialised coating solutions that
are adapted to particular product needs and manufacturing
techniques can be facilitated by close collaboration. Addi-
tionally, there are promising possibilities for application in
the future owing to continuing research and development in
coating technologies, such as sophisticated surface modifica-
tion methods or self-healing coatings. Future research may
also focus on developing novel coating materials, exploring
advanced deposition techniques, and evaluating the long-
term performance of coatings in diverse industrial applica-
tions [136].

8 Conclusion

The important influence of coatings on the mechanical, cor-
rosion, and tribological characteristics of industrial materials
has been underlined in this research. In many industrial uses,
coatings have demonstrated their effectiveness in improv-
ing materials’ performance, toughness, and durability. The
study of several research tests has shown that various coating
types, such as organic, metallic, and ceramic coatings, each
offer special benefits in enhancing particular material attrib-
utes. Metallic coatings offer sacrificial protection, ceramic
coatings demonstrate great chemical stability, and organic
coatings offer a defence barrier against corrosive chemicals.
Coating application requires careful consideration of coating
choice, surface cleaning, adherence, and thickness. Addi-
tionally, it is important to regularly inspect and maintain
coated surfaces to detect and resolve any symptoms of wear,
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corrosion, or damage. Emerging trends in coating technolo-
gies, such as Nanocomposite and self-healing coatings, can
potentially improve industrial material characteristics and
extend their service life. The findings from this study high-
light how crucial it is to incorporate coatings in developing
and producing industrial materials. Industries can increase
the overall performance of their goods, minimise friction
and wear, and reduce the harmful effects of corrosion by
using the right coatings. Industrial materials’ mechanical,
corrosion, tribological and tribo-corrosion properties can be
continuously improved and optimised if more studies inves-
tigate innovative coating materials, deposition methods,
durability assessment methodologies and multilayer coat-
ings methods which consisting of using pure metallic and
ceramic layers with different designs thickness, to improve
the wear rate and corrosion rate of the industrial materials.

9 Recommendations

Based on extensive research on the effect of coating on the
tribological, corrosion, and mechanical properties of indus-
trial materials, it is advised to carefully analyse the use of
coatings in various industrial applications. These material
qualities have seen considerable advancements thanks to
coatings, which have improved performance, dependabil-
ity, and durability. The following recommendations may be
considered further to optimise the properties of industrial
materials by coating:

i. First, the particular needs of the application and the
anticipated operating conditions should be considered
while choosing the right coating type and material.
Different organic, metallic, and ceramic coatings have
unique advantages. Thus, they should be selected as
such.
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ii. Secondly, proper surface preparation and application
techniques are essential to guarantee adequate adher-
ence and uniformity of the coating. To achieve the
best performance, adherence to industry standards
and recommendations for surface cleaning and coat-
ing application is strongly advised.

iii. Regular inspections should be done to find any indi-
cations of wear, corrosion, or damage, and the coated
surfaces should undergo routine maintenance and
examination. The intended qualities can be main-
tained, and further deterioration can be avoided by
promptly repairing or recoating damaged areas.

iv. Following up with the most recent developments in
coating technology is also essential. The tribologi-
cal, corrosion, and mechanical qualities of industrial
materials can be further improved by new trends such
as nanocomposite coatings, self-healing coatings, and
enhanced deposition processes.

v. Lastly, cooperation with coating producers, industry
professionals, and research organisations can offer
helpful insights and direction in choosing, using, and
assessing coatings for particular industrial applica-
tions.

Following these recommendations can help industries
take advantage of the benefits of coating and improve their
materials’ tribological, corrosion, and mechanical character-
istics, resulting in better performance, a longer service life,
and lower maintenance costs.
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