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Abstract
The implementation of coatings on industrial materials has a significant impact on their tribological, corrosion, and mechani-
cal properties. This review examines the impact of coatings on these essential material properties, and the challenges of the 
implementation mechanisms are discussed. In industrial applications, coatings are essential for lowering friction, wear, and 
surface damage and enhancing the tribological performance of materials. The ability of several coating processes to improve 
the wear resistance and lubricity of materials is being investigated. Also, the study cuts across the review of literature on 
physical vapour deposition (PVD), chemical vapour deposition (CVD), and thermal spray coatings. Furthermore, using 
protective coatings can considerably increase the corrosion resistance of industrial items. The suitable coating materials 
and methods must be used to prevent corrosion over the long term effectively. Additionally, coatings significantly affect 
the mechanical qualities of industrial materials, such as toughness, strength, and hardness. Hard coatings like nitride-based 
coatings can considerably increase materials' surface hardness and wear resistance. Additionally, by mixing various mate-
rials with complementary qualities, tailored multilayer and composite coatings can improve mechanical capabilities. To 
customise coatings for particular applications, it is crucial to comprehend how coatings interact with industrial materials. 
Furthermore, challenges such as coating-substrate compatibility, durability, and cost-effectiveness are addressed to ensure 
the successful implementation of coatings in industrial applications. Overall, the review highlights the significant role of 
coatings in improving industrial materials’ tribological, corrosion, and mechanical properties and emphasises the need for 
further research and development in this field.
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1  Introduction

Industrial materials, which offer a wide range of qualities 
to match the varying needs of many industries, are essen-
tial elements in modern manufacturing processes. Industrial 
materials can be divided into several categories depending 
on their composition and characteristics, as presented in 
Fig. 1. Due to their remarkable strength-to-weight ratios, 
metals like steel and aluminium are widely employed and 
suitable for structural applications [1]. Metals and alloys 

are widely used in various industries due to their excellent 
mechanical strength, conductivity, and corrosion resistance 
[2]. Steel is used exclusively in the construction of skyscrap-
ers and bridges due to its high tensile strength and dura-
bility, while Aluminium, with its lightweight nature and 
excellent corrosion resistance alongside composites which 
are composed of two or more materials, combine the desir-
able properties of each component, making them valuable 
in industries like aerospace, automotive, and sporting goods 
[3]. Carbon fibre-reinforced polymers (CFRPs), among other 
composite materials, have become common substitutes for 
conventional materials. Due to its high strength-to-weight 
ratio, CFRPs are excellent for applications such as sporting 
goods and automotive components. CFRPs combine the high 
strength of carbon fibres with the flexibility of polymers 
to produce lightweight and durable materials [4]. Polymers 
and ceramics are also essential components in industrial 
applications. Ceramics are ideal for use in engine parts, 
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cutting tools, and electrical insulators because of their out-
standing resistance to high temperatures, wear, and corro-
sion [5]; they also find use in the electronics, aerospace, and 
energy sectors because of their high-temperature stability 
and electrical insulation [6]. Polymers like plastics and rub-
ber are lightweight and adaptable, making them appropriate 
for packaging, construction, and automotive industries [7]. 
Developments in materials science have facilitated the pro-
duction of specialised materials with distinctive features for 
particular uses. Aerospace, Defence, and high-temperature 
applications use high-performance materials such as shape 
memory alloys, carbon fibre-reinforced composites, and 
superalloys [8]. Electronics, energy storage, and medicinal 
fields use nanomaterials, including nanoparticles and nano-
composites, since they possess more excellent qualities [9]. 
Manufacturers can produce goods with particular qualities 
suited to their various industries because of the wide variety 
of industrial materials. These qualities include tribological, 
corrosion, and mechanical properties.

The mechanical properties of industrial materials play a 
crucial role in determining their behaviour and performance 
under various loading conditions. A material’s response to 
mechanical forces is described by various qualities known 
as mechanical properties. Young’s modulus, often known 
as the elastic modulus, measures a material’s stiffness and 
elastic deformability, whereas Toughness measures a mate-
rial’s ability to absorb energy before fracture [10]. A mate-
rial’s resistance to deformation and failure is indicated by 
its strength, which includes tensile, compressive, and shear 
strength [11]. According to Meyers et al. [12], ductility is the 
capacity of a material to endure plastic deformation before 
fracture. According to [13], a material's hardness reflects its 
resistance to being scratched or indented. Different materials 
have various mechanical properties as a result of these quali-
ties. The inherent strength and ductility of metals like steel 
and aluminium make them ideal for structural applications. 
Although polymers are flexible and lightweight, they typi-
cally have lower mechanical strengths than metals. Ceramics 
are very stiff and rigid but typically fragile [12]. According 

to the composition and placement of components, compos-
ites combine the desirable qualities of many materials to 
provide a wide range of mechanical characteristics. The dif-
ferent materials’ characteristics shown in Fig. 2a affect the 
stress–strain, such as ultimate strength and yield and deter-
mine the fracture point as debited in Fig. 2b.

The corrosion properties of industrial materials refer to 
their susceptibility to deterioration and degradation when 
exposed to corrosive environments. Material contact with 
the environment is a key component of the complicated 
electrochemical process termed corrosion. Corrosion can 
happen in various ways, according to Chen and He [14], 
including uniform corrosion, pitting corrosion, crevice 
corrosion, and stress corrosion cracking. Each mechanism 
has unique difficulties and calls for specialised corrosion 
mitigation techniques. A material’s microstructure, surface 
quality, and composition affect its corrosion resistance. 
Because alloying elements like chromium and nickel are 
present and form a passive oxide layer on the surface of 
stainless steel, they have high corrosion resistance [15]. 
Similarly, using corrosion-resistant alloys, including 
nickel-based or titanium alloys, may enhance the resist-
ance to corrosion in particular environments [16]. Tribo-
logical properties describe the friction, wear, and lubrica-
tion that occur when surfaces move about one another. 
Understanding the tribological properties of industrial 
materials is crucial for optimising their performance and 
ensuring efficient operation. Key tribological characteris-
tics, such as friction and wear resistance, influence the bar-
rier to motion between two surfaces and define a material’s 
capacity to tolerate surface deterioration and material loss. 
According to Sahoo and Satapathy [17], the coefficient 
of friction determines how easy or difficult it is to slide 
between surfaces. In mechanical systems, high friction can 
result in energy losses, more wear, and less efficiency. Li 
et al. [18] pointed out that elements like hardness, surface 
roughness, and the presence of protective coatings have an 
impact on wear resistance. Superior wear-resistant materi-
als provide less material loss and longer service life.

Fig. 1   Various industrial 
materials
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Industrial coatings fall into two categories: organic and 
inorganic. Due to their adaptability, simplicity of applica-
tion, and attractive finishes, organic coatings, including 
polymer-based paints and coatings, are frequently employed 
[19]. These coatings offer improved aesthetics, chemical 
resistance, UV protection, and corrosion resistance. They 
are frequently used in consumer products, construction, and 
the automotive industry. On the other hand, Metallic and 
ceramic coatings are examples of inorganic coatings. Metal-
lic coatings offer superior corrosion resistance, wear protec-
tion, and enhanced surface hardness [20]. Examples of these 
coatings include electroplating and thermal spray coatings. 
Applying thick coatings with improved mechanical and cor-
rosion properties is made possible by thermal spraying tech-
niques, such as plasma spraying, high-velocity oxygen fuel 
(HVOF) spraying, and flame spraying [21]. These coatings 
are widely employed in industries where toughness and resil-
ience over severe conditions are essential [22]. They pro-
vide superior wear resistance, muscular bond strength, and 
improved fatigue life. Ceramic coatings offer some unique 
qualities of abrasion resistance, thermal barrier capabilities, 
and high-temperature stability [23]. They have uses in the 
aerospace, energy, and automotive sectors where resistance 
to oxidation, wear, and high temperatures is crucial.

Preparing and implementing industrial coatings involve 
various materials, methods, and techniques. Some standard 
coating application techniques are spraying, dipping, roller 
coating, and electrostatic deposition, as debited in Fig. 3a–c. 
Because of their effectiveness, consistency, and simplicity 
of usage, spraying techniques, including airless and electro-
static spraying, are often used [24]. Methods like dipping or 

immersion provide for homogeneous coating application and 
are suited for objects with complicated shapes. For big, con-
tinuous surfaces, roller coating is frequently used. According 
to Ghasemi et al. [25], the most popular procedure is the 
dispersion of coating components in an appropriate solvent, 
followed by application methods including spraying, brush-
ing, or dipping. A common technique for applying metal 
coatings is electroplating, depositing a metal layer onto a 
substrate using an electrochemical process [26]. To ensure 
adequate adherence between the coating and the substrate, 
surface preparation is a crucial step involving cleaning, sur-
face roughening, and primers or adhesion promoters. The 
type of coating, desired thickness, and type of substrate 
all play a role in choosing the best coating technique. The 
coating thickness is also unnecessary because it influences 
the coating’s durability and protective qualities [27]. The 
thickness, content, and structure of coatings can be precisely 
controlled using cutting-edge processes, including chemical 
vapour deposition (CVD) and physical vapour deposition 
(PVD), as shown in Fig. 4. A thin layer is deposited on the 
substrate surface due to a chemical reaction between gaseous 
precursors in CVD. Contrarily, PVD entails the evaporation 
or sputtering of solid coating ingredients afterwards depos-
ited onto the substrate surface. The benefits of thin films are 
excellent wear resistance, reduced friction, and increased 
hardness [28]. These nanoscale coatings can be customised 
through various deposition processes to fit particular needs 
[29]. However, the application of multiple layers of coatings 
is know as multi-layer coatings. The majority of multi-layer 
coatings are just many repetitions of two layers, one tougher 
and one softer. They could be comprised of two separate 

Fig. 2   a Material property chart and b Stress–Strain curve for materials [12]
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ceramic layers or a combination of ceramic and metallic lay-
ers. Layer material characteristics affect the characteristics 
of multi-layer coatings.

Specialised coatings have emerged as a result of coat-
ing technology. For instance, functional coatings, such as 
self-cleaning or anti-fouling, have been developed to meet 
industrial needs [25]. These coatings offer extra features 
like water and oil repellence or microbial growth resist-
ance, which have uses in various industries like health-
care, electronics, and food processing. The application of 

coatings successfully depends on considering some vari-
ables, such as the application's specific requirements, the 
surrounding environment, and the intended performance 
characteristics. Therefore, this study aims to review the 
literature on the effect of coatings on industrial materials' 
mechanical, corrosion and tribological properties. Also, 
the study discusses the significance of coating and its chal-
lenges in the manufacturing industry.

Fig. 3   a Materials for coatings developmsent and b different method to produce [26]

Fig. 4   Coatings techniques for 
implementation [27]
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2 � Study of the Impact 
of the Implementation of Coating 
on the Mechanical Properties of Industrial 
Materials

The mechanical qualities of materials, such as hardness 
and fatigue strength, are greatly enhanced by coatings. 
According to Zhang et  al. [30], coatings can greatly 
increase the hardness of a material, offering resistance to 
abrasion and surface damage. They also help to improve 
a material's wear resistance by reducing friction and the 
impacts of wear operations. According to Li et al. [31], 
coating application permits the adjustment of surface 
roughness and topography, which can affect mechani-
cal properties, including adhesion and friction. Figure 5 
shows that the ASP30 and D2 tool steel substrates have 
higher roughness than H11 steel. After polishing the 
D2 and ASP30 tool steel substrates, shallow protrusions 
(about 8 nm in height) appeared at the sites of carbide 
inclusions, while no such protrusions were observed in 
the case of H11 tool steel. This suggests that coatings can 
increase the fatigue strength of industrial materials. Coat-
ings also serve as barrier layers that can prevent crack 
initiation and growth, extending the material fatigue life 
[31]. The bonding of coatings to the substrate is a crucial 
factor that impacts the mechanical properties. It is crucial 
to adequately prepare the surface and use the appropri-
ate coating materials to obtain good adhesion and prevent 

delamination or cracking [32]. Physical vapour deposition 
(PVD) and chemical vapour deposition (CVD) are two 
advanced techniques that precisely control coating thick-
ness and characteristics, affecting mechanical properties. 
Table 1 shows a summary of the effect of coatings on the 
mechanical properties of some industrial materials. The 
mechanical properties of industrial materials guide the 
design and engineering of components to ensure optimal 
performance and reliability. Jones [33] emphasises the 
importance of considering the mechanical properties of 
materials, such as strength, stiffness, and toughness, when 
designing structures, as it ensures that the materials can 
withstand the applied loads and forces without failure. The 
mechanical properties of industrial materials can be modi-
fied through various procedures, including alloying, heat 
treatment, and processing methods. According to Ashby 
et al. [10], alloying elements can increase strength, hard-
ness, and corrosion resistance. Quenching and tempering 
are heat treatment techniques that can alter the microstruc-
ture and improve mechanical characteristics. The mate-
rial’s grain structure and mechanical behaviour can be 
affected by processing techniques such as forging, casting, 
and extrusion. All these mentioned properties of industrial 
materials can be modified using industrial coatings.

While coatings offer potential benefits in enhancing the 
corrosion resistance of industrial materials, it is essential 
to consider their associated drawbacks. One major dis-
advantage is the potential reduced material ductility and 
toughness due to a coating layer [34]. Research studies have 

Fig. 5   Atomic Force Microscope images and surface roughness (Sa) of uncoated D2 (a) ASP30 (b) and H11 (c) tool steel substrates after polish-
ing [34]
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indicated that coatings can increase brittleness and decrease 
crack propagation resistance, compromising the material's 
mechanical strength and fracture resistance [51]. Another 
drawback is the possibility of coating delamination or 
debonding from the substrate. Delamination can occur due 
to poor adhesion, thermal expansion mismatch, or mechani-
cal stress, significantly weakening the material and reducing 
its load-bearing capacity [52]. Additionally, applying coat-
ings can introduce residual stresses in the material, which 
can arise during the coating process and affect its mechani-
cal properties. These stresses can lead to dimensional insta-
bility, warping, or microcracking, impairing the material's 
structural integrity [53]. The thickness and uniformity of the 
coating layer also play a role in the material's mechanical 
behaviour. Non-uniform or excessive coating thickness can 
introduce stress concentrations and uneven load distribu-
tion, potentially resulting in premature failure or localised 
deformation [54].

Moreover, certain coating materials may not be compat-
ible with the operating conditions or environment in which 
the material is utilised. Exposure to harsh chemicals, high 
temperatures, or corrosive agents can degrade the coating, 
compromising its protective function and accelerating mate-
rial degradation [55]. The cost and complexity associated 
with applying coatings can be significant. Coating processes 
often require specialised equipment, skilled labour, and 
time-consuming procedures, increasing production costs and 
potentially limiting their feasibility in specific industries or 
applications [56].

3 � The Effects of Coating on the Corrosion 
Behaviour of Industrial Materials

Coatings and surface treatments play a crucial role in 
improving the corrosion properties of materials. Protective 
coatings, such as organic coatings or metallic coatings, cre-
ate a physical barrier between the material and the corro-
sive environment [57]. Surface treatments like passivation 
or anodising can modify surface properties and enhance 
corrosion resistance. In addition, environmental elements 
like temperature, humidity, pH, and the presence of cor-
rosive compounds affect how materials behave when they 
encounter corrosion. For instance, exposure to chloride ions 
or acidic conditions can accelerate corrosion. To choose 
materials that can endure corrosive difficulties, it is essen-
tial to understand the individual environmental conditions—
coatings shield Materials from corrosive conditions, which 
serve as protective layers. Corrosion resistance is unsatis-
factory for several coating materials, including polymers, 
ceramics, and metallic alloys [58]. Implementing coatings 
on industrial materials significantly impacts their corrosion 
properties, providing an effective barrier against corrosive Ta
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environments and enhancing their durability. Coatings serve 
as protective layers that can considerably increase the ability 
of a material to resist corrosion, prevent direct contact, slow 
down corrosion and give good finishing. Figure 6 shows 
the primary layers of coating material and their functions. 
Kim et al. [59] claim that coatings build a physical barrier 
between the material and the corrosive environment. For 
example, ceramic coatings, such as oxide or nitride, provide 
good corrosion protection due to their excellent chemical 
stability and inertness. These coatings produce a shielding 
oxide layer that prevents corrosive species from penetrat-
ing and offers long-term corrosion protection. Additionally, 
coatings can alter the electrochemical characteristics of a 
material, improving corrosion resistance. Li et al. [60] state 

that coatings can change a material’s corrosion potential and 
current density, preventing corrosion reactions. As seen in 
Fig. 7, an additional layer of defence against corrosion is 
offered by coatings such as organic coatings and inorganic 
films.

A significant factor affecting the corrosion characteris-
tics is the adherence of the coating to the substrate. Proper 
surface preparation and coating application processes are 
crucial to maintaining strong adhesion, reducing the chance 
of coating delamination and preventing the substrate from 
corrosion [61]. To achieve long-term corrosion protection, 
choose suitable coating materials and application methods 
[62]. For example, Zhang et al. [63] emphasised using cor-
rosion-resistant coatings, such as zinc-based or aluminium-
based, to provide long-term protection against corrosion. 
The combination of suitable coating materials and practical 
application techniques ensures enhanced corrosion resist-
ance and extends the service life of industrial materials. 
Table 2 illustrates a summary of the effect of coatings on 
the corrosion properties of some industrial materials.

The thickness and uniformity of coatings play a signifi-
cant role in determining the corrosion properties of materi-
als. The choice of deposition method can influence these 
factors. Research has indicated that deposition techniques 
such as electroplating and electrochemical deposition offer 
the advantage of producing precise and controlled thick-
ness coatings, leading to enhanced corrosion resistance 
[78]. Conversely, spray or dip coating methods may result in 
uneven coating thickness, potentially undermining the pro-
tective barrier against corrosion [79]. The bonding strength 
between the coating and the substrate is a critical factor that 
impacts corrosion performance. Specific deposition tech-
niques like physical vapour deposition (PVD) and chemical 
vapour deposition (CVD) facilitate interfacial solid bonding, 
thereby contributing to improved corrosion resistance [80, 
81]. In contrast, improper adhesion caused by inadequate 
deposition methods can result in coating delamination and 
accelerated corrosion [82]. Additionally, the microstructure 
and porosity of coatings play a crucial role in determining 
their corrosion properties. Techniques such as sol–gel pro-
cessing or electrodeposition can produce coatings with a 

Fig. 6   Idealized scheme of a coating system for barrier protection of 
AA2024 [59]

Fig. 7   Effect of the corrosion 
potential in the topcoat and 
bond coat layers [60]
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dense and compact structure, thereby minimising the pen-
etration of corrosive species [83, 84]. Conversely, thermal 
spraying can introduce porosity, allowing corrosive agents to 
reach the substrate. The chemical composition and phase of 
the coating can also be influenced by the deposition method, 
thereby affecting its corrosion behaviour. Specific deposition 
techniques enable the formation of protective oxide layers 
on the coating surface, contributing to enhanced corrosion 
resistance [85, 86].

Furthermore, the deposition atmosphere and conditions 
impact the corrosion properties of the coatings. Vacuum-
based methods such as PVD provide a controlled environ-
ment, reducing the risk of contamination and ensuring 
improved corrosion resistance [87]. Conversely, atmospheric 
deposition methods may introduce impurities or moisture, 
which can affect the performance of the coating.

4 � The Effects of Coating on the Tribological 
Properties of Industrial Materials

The tribological properties of industrial materials are sig-
nificantly impacted by the application of coatings, influenc-
ing friction, wear, and lubrication. Enhancing the tribologi-
cal performance of materials is greatly helped by coatings. 
Coatings significantly influence the tribological behaviour 
of materials by reducing friction and wear. They act as pro-
tective barriers, minimising direct contact between mating 
surfaces [88]. Balint et al. [89] assert that coatings with low 
friction coefficients can greatly minimise energy losses and 
increase the effectiveness of mechanical systems. As shown 
in Fig. 8, where a polymer-based coating is used on metal, 
coatings can reduce friction and wear by acting as a protec-
tive layer between interacting surfaces. Additionally, coat-
ings can make industrial materials more resistant to wear.

According to Xia et al. [90], coatings with high hardness 
and strong adhesion can withstand wear processes such as 
abrasion, adhesion, and erosion. Coatings also play a role in 
enhancing the lubricating capabilities of materials. Coatings 
can be lubricants in sliding contact applications, decreasing 
wear and friction. They can also integrate solid lubricants or 
lubricant-infused layers to offer continuous lubrication and 
lessen the requirement for external lubrication [91]. Accord-
ing to Xie et al. [92], effective coating reduces the direct 
contact between surfaces by generating a thin film that sepa-
rates them. Lubrication also plays a key function in lowering 
friction and wear between contacting surfaces. Additionally, 
proper lubrication enhances tribological performance by 
minimising wear and friction. Several lubrication mecha-
nisms, such as boundary, mixed, and hydrodynamic lubri-
cation, may be employed. Industrial materials’ tribological 
characteristics are also influenced by surface topography. 
Due to the increased contact area and potential for abrasive Ta
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interactions, rough surfaces may experience more wear 
and friction. The surface topography can be optimised to 
improve tribological performance using surface modifica-
tion procedures like polishing or coating. Factors such as 
coefficient of friction, wear resistance, lubrication mecha-
nisms, and surface topography all contribute to the overall 
tribological performance of industrial materials. The tribo-
logical properties of coatings are significantly influenced by 
their adherence to the substrate. To promote strong adhesion 
and ensure the longevity and integrity of the coating, it is 
essential to prepare the surface and choose the suitable coat-
ing materials properly. The choice of coating material and 
deposition technique plays a crucial role in determining the 
tribological properties of the coated surfaces [93]. Table 3 
highlights some coatings, their application methods and their 
effect on the tribological properties of the substrate.

Diamond-like carbon (DLC) coatings have emerged as 
a promising coating option for preserving the tribological 
properties of industrial materials. DLC coatings exhibit 
desirable attributes such as exceptional hardness and low 
friction, rendering them suitable for applications where wear 
resistance plays a vital role [108]. Research findings have 
consistently indicated that DLC coatings can effectively 
sustain low levels of friction and wear, thereby minimising 
any adverse effects on the tribological properties of the base 
materials [109]. Certain ceramic coatings have demonstrated 
limited impact on the tribological properties. Notably, alu-
mina (Al2O3) coatings have exhibited exceptional wear 
resistance and low friction coefficients, positioning them as 
viable options for applications where tribological perfor-
mance is paramount [110]. Likewise, titanium nitride (TiN) 
coatings have exhibited favourable tribological character-
istics by maintaining low levels of friction and wear [111]. 
Furthermore, certain polymer-based coatings, including 
polytetrafluoroethylene (PTFE) coatings, have demonstrated 
negligible influence on tribological properties. PTFE coat-
ings are characterised by their low friction and impressive 
wear resistance, rendering them well-suited for applications 

necessitating low friction and lubrication [112]. Moreover, 
self-lubricating coatings, like molybdenum disulfide (MoS2) 
coatings, have exhibited encouraging outcomes in preserv-
ing the tribological properties of industrial materials. MoS2 
coatings possess exceptional lubricating properties and can 
mitigate friction and wear across various operating condi-
tions [113].

From the various studies, one of the significant coatings 
employed to reduce friction and wear rate is silicone coat-
ing made of resin, additives, solvent, pigment and fillers, as 
shown in Fig. 9. All these components of the coating agent 
assist in improving the performance of coatings in engineer-
ing applications.

5 � Effects of Coating on the Tribo‑corrosion 
Mechanism of Industrial Materials

Tribo-corrosion is the word used to describe the mecha-
nisms of surface deterioration resulting from the interac-
tion of mechanical wear with chemical and electrochemical 
reactions [114]. Time-dependent and nonlinear mechano-
electrochemical interactions occur every day in tribo-cor-
rosion. Research on tribo-corrosion has recently focused on 
the need to choose or create new surfaces for equipment in 
the future and how to reduce operating costs and increase 
the lifespan of machinery and medical equipment already 
in use [115–120]. The research area thus covers the inter-
actions between corrosion and erosion (solids, liquid flow, 
and droplet impingements or cavitation bubbles) and pro-
cesses such as abrasion, adhesion, fretting, and fatigue wear. 
Tribo-corrosion is frequently associated with the interaction 
of mechanical and environmental forces and the consequent 
synergy or antagonistic consequences [121]. For instance, 
chemical influences frequently impact the adhesive dissipa-
tion of energy during friction. Panda et al. [122] Studied 
the tribo-corrosion circumstances of iron boride coatings 
on carbon steel (CS) made through thermal diffusion, and 

Fig. 8   Generalised effect of 
polymer-based coating on the 
tribological properties of metals 
[89]
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it was contrasted with that of bare CS and 316L stainless 
steel. The reciprocating tests used in the tribological trials 
had a ball-on-flat geometry and were conducted under dry 
sliding and tribo-corrosion conditions. The coatings showed 
improved wear resistance because the iron boride protec-
tive layer is harder and more chemically inert. Compared 
to CS, a multi-layered structure of h-BN or other BN-based 
compounds over boronised steel reduced the potential for 
crack propagation and helped reduce the friction coefficient 
(COF) by about 20% to 40%. Evaluation of the worn sur-
faces’ microstructure and surface morphology helped clarify 
the tribo-corrosion mechanisms in the studied samples.

Beliardouh et al. [123] created multilayer thin coatings 
using reactive radio frequency magnetron sputtering with 
a thickness of around 3 m on a Ti–6Al–4V substrate for 
biomaterial applications. Hard zirconium nitride and pure 
tantalum are combined to create films, which are utilised to 
control interfacial tension and prevent crack development. 
A biomimetic design (nacre-inspired materials) alternates 
hard/ductile material. A ball-on-disk reciprocating tribom-
eter was used for tribo-corrosion testing in Hank's solution 
at 37 °C and open circuit potential. All the samples had a 
propensity to have strong corrosion resistance. Coatings with 
a top ZrN layer 100 nm thick demonstrated more significant 
noble potential and decreased wear rate and friction coef-
ficient during the sliding phase. The wear process appears 
to consist of three main steps: (i) Rubbing under applied 
OCP (and normal load), (ii) causes the coating covered by 
a tribo-corrosion layer to thin, which causes fractures and 
rifts, and (iii) causes pieces to develop and separate (coat-
ing delamination), which allows the electrolyte to access the 
substrate as presented in Fig. 10.

6 � Interaction Study of Coatings Materials 
and Industrial Material Surfaces/
Substrates and Pretreatment

In general, there are interactions between the coating 
materials and the substrate of the industrial materials. Dif-
ferent materials behave differently during the deposition of 
the coatings on the substrate [124]. Regarding mechanical, 
corrosion and tribological properties, the substrate has to 
be well-prepared to have a firm grip on the coating materi-
als. Also, the thickness of the coatings plays a vital role 
in the coated materials having viable properties in terms 
of adequate hardness, high resistance to wear rate and 
corrosion properties of the coated substrate [125]. The 
deposition of the coating assists in improving the surface 
morphology of the industrial materials either by physi-
cal or chemical deposition process. The plasma-sprayed 
coated of different substrates’ tribological characteristics 
are discovered to be only somewhat superior in different Ta
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concentrations on the substrate. This might be because of 
mechanical stability and strong atomic coherence connec-
tion between physical and chemical properties, as reported 
in books [126–128]]. Lowered Atomic coherence corre-
sponds to diminished coating’s chemical connection. The 
contracting microstructure characteristics include grain 
size, density, and porosity. Process parameters impact 
these; for instance, the coatings produced by PVD and 
thermal spraying processes differ significantly [129].

Every effective pretreatment procedure for coatings appli-
cation on a substrate starts with a straightforward cleaning 
step. The stages that should be completed before any other 
procedures are.

	 i.	 The cleaner stage
	 ii.	 The rinse stage
	 iii.	 The dry-off oven
	 iv.	 The conditioning stage

Fig. 9   Coating agent and applications [103]

Fig. 10   The illustration of the 
tribo-corrosion mechanism 
[116]
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	 v.	 The zinc phosphate stage
	 vi.	 The sealer stage
	vii.	 Shot blasting as pretreatment
	viii.	 Shot plus primer

After this general pretreatment stage, other pretreatment 
and functional agents have also been involved in the coat-
ing’s application of industrial materials, as presented in 
Fig. 11.

7 � Challenges of the Implementation 
of Coatings on Industrial Manufacturing 
Products and the Way Forward

Key issues must be resolved when using industrial coatings 
on manufactured items for practical application and optimal 
performance. The compatibility of coatings with the sub-
strate material is one of the primary challenges. Numerous 

materials, including metals, polymers, and composites, each 
with unique qualities, are used to create various manufactur-
ing products. Long-term performance depends on adequate 
adherence and compatibility between the coating and the 
substrate material [130]. Adhesion and compatibility can be 
improved using effective surface preparation processes, such 
as cleaning, roughening, and applying primers or adhesion 
promoters. The coating resilience and lifespan in challeng-
ing operating environments is another issue. Industrial items 
frequently operate in hostile conditions, including extreme 
heat, corrosive chemicals, and abrasive wear. In order to 
remain protective over time, coatings must be resistant to 
certain elements [131]. Advanced coating technologies, 
such as multilayered structures or nanocomposite coat-
ings, offer increased performance and endurance in harsh 
environments.

Another difficulty is ensuring constant and uniform coat-
ing application throughout extensive manufacturing pro-
cesses. The coating thickness, coverage, and uniformity are 
essential elements that affect the coated product's general 
performance and appearance. To obtain consistent and 
uniform coating, methods like robotic coating application, 
automated spraying systems, and dip coating can be applied 
[132]. Coatings can increase production costs overall. As 
presented in Fig. 12, The market for industrial coatings, 
which had a value of USD 97.33 billion in 2021, is antici-
pated to expand at a Compound annual growth rate (CAGR) 
of 3.1% during the next five years. Figure 13 debited the 
global analysis of coatings and paint. The increased require-
ment for improved aesthetics combined with rising general 
industry, automotive, and aerospace demand is anticipated 
to accelerate the product’s uptake. Due to growing concerns 
and awareness about environmental and health risks, the 
demand for ecologically friendly coatings is anticipated to 
rise throughout the prediction period [133]. Thus, weighing Fig. 11   Different types of pretreatments and functional agents [129]

Fig. 12   U.S industrial coating market from 2018 to 2030in USD billion [132]
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the advantages of better performance against the related 
costs is crucial. Cost-related issues can be reduced by inves-
tigating cost-efficient coating materials, streamlining coating 
procedures, and considering life cycle cost analyses [134].

Collaboration between researchers, manufacturers, and 
coating suppliers is essential to address these challenges 
[135]. The creation of specialised coating solutions that 
are adapted to particular product needs and manufacturing 
techniques can be facilitated by close collaboration. Addi-
tionally, there are promising possibilities for application in 
the future owing to continuing research and development in 
coating technologies, such as sophisticated surface modifica-
tion methods or self-healing coatings. Future research may 
also focus on developing novel coating materials, exploring 
advanced deposition techniques, and evaluating the long-
term performance of coatings in diverse industrial applica-
tions [136].

8 � Conclusion

The important influence of coatings on the mechanical, cor-
rosion, and tribological characteristics of industrial materials 
has been underlined in this research. In many industrial uses, 
coatings have demonstrated their effectiveness in improv-
ing materials’ performance, toughness, and durability. The 
study of several research tests has shown that various coating 
types, such as organic, metallic, and ceramic coatings, each 
offer special benefits in enhancing particular material attrib-
utes. Metallic coatings offer sacrificial protection, ceramic 
coatings demonstrate great chemical stability, and organic 
coatings offer a defence barrier against corrosive chemicals. 
Coating application requires careful consideration of coating 
choice, surface cleaning, adherence, and thickness. Addi-
tionally, it is important to regularly inspect and maintain 
coated surfaces to detect and resolve any symptoms of wear, 

corrosion, or damage. Emerging trends in coating technolo-
gies, such as Nanocomposite and self-healing coatings, can 
potentially improve industrial material characteristics and 
extend their service life. The findings from this study high-
light how crucial it is to incorporate coatings in developing 
and producing industrial materials. Industries can increase 
the overall performance of their goods, minimise friction 
and wear, and reduce the harmful effects of corrosion by 
using the right coatings. Industrial materials’ mechanical, 
corrosion, tribological and tribo-corrosion properties can be 
continuously improved and optimised if more studies inves-
tigate innovative coating materials, deposition methods, 
durability assessment methodologies and multilayer coat-
ings methods which consisting of using pure metallic and 
ceramic layers with different designs thickness, to improve 
the wear rate and corrosion rate of the industrial materials.

9 � Recommendations

Based on extensive research on the effect of coating on the 
tribological, corrosion, and mechanical properties of indus-
trial materials, it is advised to carefully analyse the use of 
coatings in various industrial applications. These material 
qualities have seen considerable advancements thanks to 
coatings, which have improved performance, dependabil-
ity, and durability. The following recommendations may be 
considered further to optimise the properties of industrial 
materials by coating:

	 i.	 First, the particular needs of the application and the 
anticipated operating conditions should be considered 
while choosing the right coating type and material. 
Different organic, metallic, and ceramic coatings have 
unique advantages. Thus, they should be selected as 
such.

Fig. 13   The global market for 
paints and coatings from 2018 
to 2028 [133]
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	 ii.	 Secondly, proper surface preparation and application 
techniques are essential to guarantee adequate adher-
ence and uniformity of the coating. To achieve the 
best performance, adherence to industry standards 
and recommendations for surface cleaning and coat-
ing application is strongly advised.

	 iii.	 Regular inspections should be done to find any indi-
cations of wear, corrosion, or damage, and the coated 
surfaces should undergo routine maintenance and 
examination. The intended qualities can be main-
tained, and further deterioration can be avoided by 
promptly repairing or recoating damaged areas.

	 iv.	 Following up with the most recent developments in 
coating technology is also essential. The tribologi-
cal, corrosion, and mechanical qualities of industrial 
materials can be further improved by new trends such 
as nanocomposite coatings, self-healing coatings, and 
enhanced deposition processes.

	 v.	 Lastly, cooperation with coating producers, industry 
professionals, and research organisations can offer 
helpful insights and direction in choosing, using, and 
assessing coatings for particular industrial applica-
tions.

Following these recommendations can help industries 
take advantage of the benefits of coating and improve their 
materials’ tribological, corrosion, and mechanical character-
istics, resulting in better performance, a longer service life, 
and lower maintenance costs.
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