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Abstract
In the present work, a new benzimidazole derivative, namely 1, 5-bis-2-[benzimidazol-2-yl] mercapto diethylene glycol 
(OSBZ) was synthesized and examined as a corrosion inhibitor for mild steel (MS) of type C38 in a very aggressive medium 
(1 M HCI) using weight loss and electrochemical (PDP and EIS) techniques, the surface of the metal was characterized by 
EDX, and SEM. The reagents used in the synthesis of OSBZ are available, their synthesis yield is important, and is char-
acterized by 1H, 13C NMR and FTIR. The OSBZ is applicable in therapeutic chemistry. It was found that the inhibitory 
efficiency increases with the concentration of OSBZ to reach a maximum value of 94.78% for the concentration 3 ×  10−4 M. 
The temperature effect on the inhibition performance was studied in the interval (298–318 K) and OSBZ adsorption on the 
surface of MS in the corrosive environment followed the Langmuir isotherm. The results were supported by density func-
tional calculations (DFT) and molecular dynamics simulation (MD).

Keywords Corrosion inhibition · C38 steel · Benzimidazole’s derivatives · Electrochemical test · DFT · MD

1 Introduction

Mild steel (MS) is a popular iron alloy, the least expensive 
and most mechanically resistant, which explains its numer-
ous industrial applications, from building to installations 
such as nuclear power plants, chemical plants, oil instal-
lations. However, MS is very susceptible to corrosion, a 
problem of great concern to manufacturers [1]. In industrial 

processes, the use of steel hydrochloric acid is very frequent 
[2–6].

Corrosion is a natural process that causes the degradation 
of metals and alloys by chemical or electrical interaction 
with their environment [7].

Inhibition by organic compounds remains an adequate 
remedy. Several organic compounds have double bonds 
and contain heteroatoms such as nitrogen, sulfur, oxygen 
or phosphorus, functional groups such as –OH, –COOH, 
–NH2, (acids, amino acids, amines, phenols….)these active 
polar groups play an important role in adsorption of inhibi-
tory molecules in neutral form or in the form of ions on the 
metal surface [8]. The determination of the types of interac-
tions between the inhibitor molecule and the metal surface 
is influenced by several parameters such as the physical and 
chemical properties of the molecule, the metal surface, and 
the electrolyte medium.

Organic corrosion inhibitors to protect iron and its alloys 
in acidic environments are numerous, particularly benzimi-
dazoles. A group of studies showed that different types of 
benzimidazoles and its derivatives are good corrosion inhibi-
tors in the extremely corrosive medium [9], based on the 
structure spatial molecular structure, surface charge density, 
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electronic parameters and their affinity for the metal [6, 
10]. We mention for example a saline environment (NACE 
brine ID196 and 3% NaCl) [10, 11], and the acidic medium 
(10–20–30% acetic medium; 0.5 M  H2SO4; 1 M  HNO3) 
[12–14] (1–0.5–0.1 M HCl) [15–17]. The metals used are 
as diverse as mild and carbon steel, steels, pure metals such 
as Zn, Al, Fe, Cu and alloys [6, 14, 18–21].

The inhibitory efficiency reaches important values for 
these different materials in different media. In particular 
for MS and in 1 M HCl medium, the inhibitory efficiency 
of some benzimidazole derivatives reaches 97% and 98% 
[22–25].

Considerable attention has been paid to benzimidazoles 
because they represent an important multiple biological 
activities as antimicrobial, anti-inflammatory, analgesic, 
antidiabetic, anticonvulsant, antioxidant, antiulcer, antihy-
pertensive, antiparasitic, antiviral and anticancer activities 
[26].

The search for new benzimidazole derivatives is still 
experiencing a very significant growth based on applica-
tions a large number of fields especially biological and 
industrial. The present study aims to correlate the molecu-
lar structure of the newly benzimidazole derivative OSBZ 
and its effectiveness in inhibiting the iron corrosion in an 
acid environment. The inhibitory action was evaluated using 
electrochemical techniques (polarization curves, imped-
ance spectroscopy) by the gravimetric method, and scan-
ning electron microscopy (SEM). These techniques enabled 
us to determine the inhibitory effect of this compound, its 
mode of action and certain parameters specific to corrosion. 
The interpretation of the inhibiting power is explained using 
quantum calculation.

2  Experimental Procedure

2.1  Materials, Specimens, and Electrolyte

The composition of C38 is summarized in Table 1.
The MS specimens were abraded using (400–1200 grade) 

emery paper, washed with distilled water, and degreased 
with acetone, and finally air-dried. By dilution of the com-
mercial hydrochloric acid (37%) with distilled water, we 
prepared the corrosive medium (1 M HCl).

2.2  Synthesis of Inhibitor

Chemicals and solvents for this study were obtained from 
Aldrich and of analytical grade. Into a 50 ml Erlenmeyer 
flask, (0.01 mol) of benzimidazole-2-thiones, (0.005 mol) 
bis(chloroethyl) ether or 1, 2-bis (2-chloroethoxy) ethane 
(0.02 mol) of potassium bicarbonate  (K2CO3), and 20 ml of 
dimethyl formamide (DMF) were introduced. The mixture 
is left under magnetic stirring, at room temperature for 72 h. 
The progress of the reaction is followed by thin layer chro-
matography. After stopping the reaction, water was added 
to the reaction mixture, which resulted in the appearance of 
a white precipitate. The precipitate, thus obtained, was fil-
tered, wrung out and dried in the oven. The crude product is 
then recrystallized in ethanol and filtered to give compound 
OSBZ  (C18H22N4OS2; MW = 370 g/mol), this reaction is 
summarized in Fig. 1.

For categorized each compounds used NMR, IR and 
mass spectra. The following instruments were used: melt-
ing points (Köfler Apparatus, uncorrected); IR spectra (FTIR 
Shimadzu, 4000–400  cm−1); NMR spectra (Bruker ARX 
200, 200 MHz for 1H and 50.3 MHz for 13C, δ ppm/TMS, J 
in Hz); mass spectra (Varian MAT 311A, EI); column chro-
matography (silica gel 60, 230–400 mesh).

The structure of compound OSBZ established on the 
basis of NMR spectral data of proton and carbon 13. The 
spectroscopic characteristics of the product are as follows: 
The NMR spectrum of compound OSBZ shows two tri-
plets at 3.44 and 3.74 ppm corresponding to the methylene 

Table 1  Nominal composition 
of used C38

Elements Fe Si C Mn S P

Content (%) Balance 0.16 0.38 0.41 0.02 0.01
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Fig. 1  Synthesis of 1.5-bis-2-[benzimidazol-2-yl] mercapto diethyl-
ene glycol
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groups, a mass corresponding to the 3 aromatic protons cen-
tered at 6.98 ppm, another corresponding to an aromatic 
proton centered at 7.27 ppm and a singlet at 12.58 ppm cor-
responding to the proton bound to nitrogen.

Yield = 69% as a white solid, m.p. 225 °C.

2.2.1  1H‑NMR (DMSO‑d6/TMS)

3.44 (t,  SCH2CH2, 3JHH = 6.0 Hz), 3.74 (t,  OCH2CH2–, 
3JHH = 6.0 Hz), 7.27 (m, 1H), 6.98 (m, 1H), 12.58 (s, NH).

2.2.2  13C‑NMR (DMSO‑d6/TMS)

31.7. (t,  SCH2CH2), 70.1 (t,  OCH2CH2), 109.6 (CH), 113.6 
(CH), 122.4 (CH), 122.5 (CH), 132.4, 134.6, 149.7  (C2).

2.2.3  IR (KBr)

3380, 2870, 1584, 1450, 1297, 1198  cm−1; MS [m/z, (%)]: 
370  [M]+ [27].

2.3  Gravimetric Measurements

It consists in measuring the mass loss Δm of the surface 
samples S during the time t immersion of the sample in a 
corrosive solution. The corrosion rate is given by the rela-
tion: W =

Δm

S.t
.

The inhibitory efficacy of an organic compound is deter-
mined by the following relationship [28]:

where W and Winh are the corrosion rates respectively in the 
absence and in the presence of the inhibitor.

The MS samples used, rectangular in shape and measur-
ing 1 cm × 2 cm are prepared, weighed, and immersed in 
an inclined position for 6 h in the corrosive solution, in the 
absence of agitation, and maintained at a constant tempera-
ture (25 °C). At the end of the experiment, the corrosion 
products are discarded and the samples are weighed again.

The main disadvantage of this method lies in the difficulty 
of completely eliminating the corrosion products without 
removing unattacked metal.

2.4  Electrochemical Methods

Electrochemical methods allow the characterization of the 
metal/electrolyte interface. We can classify these methods 
according to two main categories: stationary and transient 
methods. The application of electrochemical techniques 
offers several advantages. In particular, it is noted that elec-
trochemical methods provide information concerning the 

IE(%) =
W −Winh

W
× 100,

activities of chemical species rather than their concentra-
tions. Indeed, the electrochemical methods used to charac-
terize the metal/electrolyte interface [29] are based on the 
drawing of polarization curves on a logarithmic scale, which 
allows us to directly access the value of the corrosion cur-
rent, and transient electrochemical methods among which 
electrochemical impedance measurements. The transient 
electrochemical technique is still a relevant method to study 
the mechanism that takes place at the metal/electrolyte inter-
face, based on the analysis of the double layer formed at the 
MS/electrolyte interface [30]. The experimental device used 
for all the stationary and transient tests is a voltalab poten-
tiostat controlled by a computer using Versastudio software. 
The cell is thermostatically controlled and double-walled 
containing three electrodes, a C38 steel working electrode 
with a surface area of 0.27  cm2, a platinum counter electrode 
and a saturated calomel electrode (SCE) as reference elec-
trode. Before each electrochemical test the surface of the 
working electrode it undergoes polishing with abrasive paper 
with a grain size of up to 1200, then it is rinsed with distilled 
water and dried with hot air. The working electrode is sub-
jected to its free corrosion potential for 30 min under nor-
mal ventilation conditions at the chosen temperature. For the 
polarization measurement the cathodic and anodic curves 
were scanned from − 900 to − 100 mV/SCE with a scan rate 
1 mV/s. For the impedance study we used a frequency range 
from 10,000 Hz to 0.01 Hz with a wave amplitude of 10 mV.

2.5  Surface Analysis: SEM, EDX

The surface analysis of modified samples was characterized 
by field-emission SEM (JEOL JSM 6480LV) at an energy 
of 20 kV.

The C38 samples were immersed in the 1 M HCl contain-
ing and lacking an optimum concentration of OSBZ for 6 h 
at 298 K.

2.6  Molecular Modeling

2.6.1  Quantum Chemistry Calculations

The GAUSSIAN 09W program [31] and Gauss View 5.0.8 
software were used for all quantum chemistry computations 
and result display. The calculated vibrational frequencies are 
calculated using the DFT (density functional theory) method 
at the B3LYP (Becke-3-parameter-Lee–Yang–Parr) level 
with the 6-311G (d,p) basis in the aqueous state to produce 
the optimal geometrical structure of the studied molecules 
[32].

The energy of the most occupied molecular orbital 
(EHOMO) and the energy of the lowest unoccupied molecular 
orbital (ELUMO) were used to calculate the quantum chemi-
cal parameters, including the energy gap (ΔEgap), absolute 
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electronegativity (χ), absolute hardness (η), softness (σ), 
overall electrophilicity index (ω), and fraction of transferred 
electrons (ΔN) [33], using the following Eqs. 1–6.

where ØFe is the work function of the iron, and χinh is the 
absolute electronegativity of the inhibitor molecule, ηFe and 
ηinh are the overall hardnesses of iron and the inhibitor mol-
ecule, respectively. Using a theoretical value of the work 
function of iron equal to ØFe = 4.82 eV [34]. and an overall 
hardness at ηFe = 0 eV for the calculation of the fraction of 
transferred electrons [35].

2.6.2  Fukui Functions and Locale Reactivity

Condensed Fukui functions have been elucidated toward an 
understanding many information’s about local reactivity. The 
finite difference approximation can be used to determine the 
nucleophilic f+ and electrophilic f− Fukui functions, which 
are responsible for the change in electron density. These 
induces were calculated using the following Eqs. 7–8.

where q(N), q(N + 1) and q(N − 1) are the electronic popu-
lation of the atom in neutral, anionic and cationic systems, 
respectively [36].

2.6.3  Molecular Dynamics Simulations

The Materials Studio program 7.0 created by Accelrys, 
Inc., was applied to simulate the molecular dynamics 
(MD) simulations [37]. We used two modules in this 
study. First one, the molecular structure of the inhibitor is 
geometrically fully optimized using the Forcite module, 
then, the adsorption localization module was used to iden-
tify the possible adsorption configurations mechanism. 
In this study, for the MD simulations of the interaction 
between the molecule inhibitor and the iron surface of 

(1)ΔEGAP = ELUMO − EHOMO,

(2)� = (ELUMO − EHOMO)∕2,

(3)� = 1∕�,

(4)� = −(ELUMO + EHOMO)∕2,

(5)� = �2∕2�,

(6)ΔN = (�Fe − �inh)∕2(�Fe + �inh),

(7)f + = q(N + 1) − q(N),

(8)f − = q(N) − q(N − 1),

Fe, a simulation box of three-dimensional geometry with 
dimensions (17.20 22.93 22.93) was utilized (110) [38]. 
The equations of motion were integrated using the canoni-
cal set NVT and the periodic boundary conditions were 
employed in all three directions. The Fe layer, the water 
layer containing the studied inhibitor and a vacuum layer 
were included in the simulation box. We used the COM-
PASS force field with a time step of 0.1 fs and a simulation 
time of 15 ps while working at a temperature of 293 K 
adjusted by the Noze technique [39].

The following expression (Eq. 9) was used to evaluate 
the interaction energy (Einteraction) between the inhibitor 
molecule and the surface of Fe (110).

such as: Ebinding = −Einteraction

Etotal : the total energy of the simulation system.
Esurface : the energy of the iron surface together with  H2O 

molecules.
Einhibitor : the energy of the free inhibitor molecule.

3  Results and Discussion

3.1  Weight Loss Measurements

The W and IE (%) without and with OSBZ of various con-
centrations (5 ×  10−5 to 3 ×  10−4 M) in 1 M HCl solution 
at 298 K were calculated using of the weight loss experi-
ments (WL), the results represented in Table 2 show that 
after adding the OSBZ molecule the w values are decreas-
ing and IE are increasing. The OSBZ showed the best IE 
of 94.78% at 3 ×  10−4 M. when the concentration of the 
inhibitor in the corrosive solution increases the coverage 
of the surface of the metal increases hence the increase in 
the inhibition efficiency [40].

(9)Einteraction = Etotal − (Esurface + Einhibitor )

Table 2  Corrosion rate and inhibition efficiency at various concentra-
tions of OSBZ in 1 M HCl at 298 K

Concentration (M) W (mg/cm2/h) I E(%)

Blank 0.46 –
5 ×  10−5 0.075 83.69
10−4 0.048 90.65
2 ×  10−4 0.043 92.39
3 ×  10−4 0.024 94.78



Journal of Bio- and Tribo-Corrosion (2023) 9:59 

1 3

Page 5 of 17 59

3.2  Electrochemical Study

3.2.1  Potentiodynamic Polarization (PDP)

Figure 2 illustrates the polarization curves of MS in HCl 
(1 M) at 25 °C without and with addition of the com-
pound at concentration between 5 ×  10−5 and 3 ×  10−4 M. 
The setting electrochemical deduced from these curves are 
reported in Table 3.

The inhibition efficiency of an organic compound is 
determined by the following relationship (Eq. 10) [41]:

where Icorr and Icorrinh are the corrosion current density in the 
absence and in the presence of the inhibitor, respectively.

The first remark is that the nature of the anodic and 
cathodic Tafel curves was affected by the addition of 
OSBZ inhibitor, implying that the anodic dissolution of 
C38 is done slowly, and also at cathode, the release of 
hydrogen gas is reduced [42–44]. The cathodic evolution 
of hydrogen can be explained by the following mechanism 
[2]:

(10)IE(%) =
Icorr − Icorrinh

Icorr
× 100,

The anodic dissolution of iron can be expressed as fol-
lows [2]:

In the anodic domain, we note that beyond − 250 mV 
the presence of the OSBZ no longer has any effect on the 
anodic dissolution, suggesting a desorption of this inhibi-
tor. The variation of the corrosion potential with variation 
of concentration is very little, it is equal to the maximum 
ΔEcorr = 34.87 mV, meaning that The compound OSBZ can 
be classified as mixed inhibitor in 1 M HCl with a cathodic 
predominance [45, 46].

The examination of Fig. 2 and Table 3 shows that the 
cathodic curves present a range where the log I vary lin-
early with E, implying that Tafel’s law hold in the cathodic 
domain. Thus, the discharge of the proton  H+ on the sur-
face of the steel is done according to a mechanism pure 
activation, also the Tafel cathodic slope (βc) shows a slight 
modification with the addition of the inhibitor tested in this 
corrosive medium indicating that the hydrogen reduction 
mechanism is not affected by OSBZ [25]. The inhibition 
efficiency reaches 84.86% with a low concentration OSBZ 
(3 ×  10−4 M) indicating that OSBZ is an excellent inhibitor 
of C38 in the 1 M HCl medium.

3.2.2  Nyquist Impedance Diagram (EIS)

The Nyquist plots for C38 in 1 M HCl medium in presence 
and absence of OSBZ inhibitor at different concentrations 
are presented in Fig. 3. The impedance parameters are given 
in Table 4.

The inhibition efficiency of an organic compound is 
determined by the following relationship (Eq. 11):

where R−1
ct

 and R−1
ctinh

 are the charge transfer resistance respec-
tively in the absence and in the presence of the inhibitor.

From Fig. 3, it is notice able that the impedance lines 
have a similar shape in all concentrations tested, indicating 

FeH(ads) + H+ + e− → Fe + H2.

FeCl+
(ads)

↔ Fe2+ + Cl−.

(11)IE(%) =
R−1
ct

− R−1
ctinh

R−1
ct

× 100,

Fig. 2  Polarization curves of MS in 1 M HCl without and with addi-
tion of OSBZ at different concentrations at 298 K

Table 3  Electrochemical indices 
and IE (%) of MS in 1 M HCl 
at 298 K without and with 
addition of OSBZ at different 
concentrations

Concentration (M) Ecorr (mV∕SCE) �c(mV∕dec) �a(mV∕dec) Icorr (μA∕cm
2) IE(%)

Blank  − 479.68  − 93.33 129.10 501.19 –
5 ×  10−5  − 462.74  − 80.77 135.45 151.38 69.80
10–4  − 497.61  − 90.00 126.25 120.20 76.02
2 ×  10−4  − 481.53  − 74.35 112.31 85.11 83.02
3 ×  10−4  − 487.69  − 76.25 122.22 75.86 84.86
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that almost no change in the corrosion mechanism occurs 
due to the addition of inhibitor [47] also the loops are not 
standard semicircles at high frequencies generally attributed 
to the frequency dispersion which can be correlated with 
roughness, and heterogeneity of the metal surface such as 
impurities, grains boundaries, adsorption of the inhibitor and 
formation of porous layers [48, 49]. The equivalent circuit 
used to fit the experimental impedance data is represented 
in Fig. 4. This circuit consists of an electrolyte resistance 
(Rs) related in series with a constant phase elements (CPE) 
for double layer capacitance (Cdl) in parallel with a charge 
transfer resistance (Rct).

The CPE was calculated by the following equation 
(Eq. 12) [50]:

Q represent a factor of proportionality designate the 
greatness of CPE, i is the imaginary number, w is the angular 
frequency, and the exposant n is interlinked to the heteroge-
neity of the surface of metal, in the case of an ideal capacitor 
(n = 1) and for a CPE (n < 1) [50, 51].

The double layer capacitance (Cdl) is calculated by 
Eq. (13)

(12)ZCPE = Q−1(iw)−n.

where Rct is the charge transfer resistance.
Table 4 shows that the values of charge transfer resist-

ance Rct increase with increasing concentration of the OSBZ 
compound, hence the increasing of the inhibition efficiency, 
suggesting the adsorption of OSBZ molecules at the metal 
surface [52]. In the other hand and in general, the estimated 
values of Cdl proves a decrease in the presence of OSBZ 
compound, indicate the formation of a protective film on 
the surface of the metal C38, and thus the OSBZ inhibi-
tor replace the  H2O molecules present on the metal/solu-
tion interface. This decrement in the capacitance Cdl can 
be attributed to a lessening in the local dielectric constant 
or be referred to an elevation of the impact of electrostatic 
interaction [53].

The best inhibition efficiency calculated by this measure-
ment was 83.16% at 3 ×  10−4 M dose, which proves an excel-
lent inhibition of the product studies. It is clear that there is a 
good agreement between this result and that obtained by the 
method of polarization curves; we also note that it is close 
to that of the mass loss measurement.

3.3  Adsorption Isotherm

The electrochemical reaction is done with a certain mecha-
nism, to describe it, it is necessary to study the isotherm 
of adsorption [54]. There are many factors influencing the 
adsorption process such as temperature, surface character-
istics of the metal, as well as the electronic properties of the 
inhibitor which are related to its structure [55].

Indeed to approach the adsorption mechanism of OSBZ 
on the surface of C38 we tried different adsorption iso-
therms, based on the results obtained through the PDP 

(13)Cdi =
(

QR1−n
ct

)

1∕n,

Fig. 3  Impedance diagrams of MS in 1  M HCl without and with 
addition of OSBZ at different concentrations at 298 K

Table 4  Electrochemical 
indices and IE (%) of MS in 
1 M HCl without and with 
addition of OSBZ at different 
concentrations (at 298 K)

Concentration (M) Rct (Ωcm2) Rs (Ωcm2) Cdl (μF∕cm
2) Q(SW−1∕cm2

.10
−4) n IE(%)

Blank 20.83 0.6937 384.70 7.597 0.859 –
5 ×  10−5 57.18 0.6988 258.50 6.895 0.7672 63.57
10−4 77.95 0.6836 158.10 3.973 0.7904 73.28
2 ×  10−4 121.70 0.7454 248.80 6.214 0.7383 82.88
3 ×  10−4 123.70 0.7278 245.50 5.811 0.7534 83.16

Fig. 4  Equivalent circuit for MS in 1 M HCl with addition of OSBZ 
at different concentrations at 298 K
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study. It was found that the Langmuir’s isotherm presents 
the best fit. This implies that the adsorption of inhibitor 
molecules on the surface of the metal is monolayer.

The Langmuir isotherm is the first choice for most 
models of adsorption and has many applications in sur-
face kinetics.

The equation of this adsorption isotherm is [56]:

� is the fraction of the surface sites covered, can be deter-
mined as follows (Eq. 15):

where Icorr(�=0) and Icorr(�) are the corrosion current density in 
the absence and in the presence of the inhibitor at different 
concentrations, respectively.

Icorr(�=1) is the corrosion current density in the presence 
of the inhibitor at optimum concentration. Cinh is the con-
centration of the inhibitor in the solution, Kads is the equi-
librium constant OSBZ adsorption–desorption processes.

The free energy of adsorption can be defined by the 
following relation (Eq. 16) [57]:

where R is the universal gas constant (R = 8.314 J/mol/K), T 
is the temperature (K), and 55.55 value represent the molar 
concentration of water (mol/L).

The Langmuir plots ( Cinh

�
 = f ( Cinh)) is illustrated in 

Fig. 5. It is clear that the curve as a straight line with a 
value of linear regression factor (R2) closer to 1 (0.999). 
The calculated free energy value is − 37.62 kJ/mol.

In the one hand, this value is negative means that the 
interaction between the OSBZ inhibitor molecule and the 
surface of the C38 metal is strong, also indicating that 
this adsorption is done automatically [58]. In the other 
hand, the free energy value can tell us about the kind of 
adsorption of this inhibitor on the metal surface. Indeed, 
if the value of the free energy ΔG° in the domain of, or 
higher than − 20 kJ/mol means that there is an electro-
static interaction between the charged inhibitor molecules 
and the charged metal, it is a physisorption [59], and if 
ΔG° value in the horizon lower than − 40 kJ/mol indicates 
that there is a formation of a coordinate bond, the inhibi-
tor shares charge with the metal surface, it is a chemisorp-
tion [60, 61]. In our case ΔG° =  − 37.62 kJ/mol proves 
that our OSBZ inhibitor adsorbs on the surface of the C38 
metal according to the two mechanisms chemisorption 
and physisorption [62].

(14)
Cinh

�
=

1

Kads

+ Cinh.

(15)� =
Icorr(�=0) − Icorr(�)

Icorr(�=0) − Icorr(�=1)
,

(16)ΔG◦ = −RTLn
(

55.55 × Kads

)

,

3.4  Temperature Effect

The temperature of the corrosive medium is a main param-
eter which acts on the phenomenon of corrosion, the study 
of this effect can inform us about the mechanism of adsorp-
tion of the inhibitor and as well as the determination of the 
thermodynamic parameters. Figures 6 and 7 successively 
show the polarization curves of C38 in the absence and pres-
ence of OSBZ at 2 ×  10−4 M (at different temperatures) the 
electrochemical parameters are presented in Tables 5 and 6.

It is clear that the gain in the current density within creas-
ing temperature in the absence and in the presence of the 
OSBZ inhibitor, Hence the decrease in inhibition efficiency 
as a function of increasing temperature, which confirms that 
the increase in temperature induces an increase in the disso-
lution of the metal C38. This dissolution can be explained 
by a desorption or/and decomposition of the OSBZ inhibitor 
molecules.

3.5  Thermodynamic and Activation Parameters

The following equations (Eqs. 17–18) present the thermody-
namic parameters.

(17)Arrhenius law ∶ Icorr = Aexp

(

−
Ea

R.T

)

,

ln
(

Icorr
)

= ln(A) −
Ea

R.T
,

(18)
Equation Arrhenius ∶ Icorr =

KBT

h
exp

(

ΔS∗

R

)

exp

(

−
ΔH∗

R.T

)

,

Fig. 5  Langmuir adsorption isotherm of OSBZ compound on the C38 
at 298 K
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ln

(

Icorr

T

)

= A −
ΔH∗

R.T
,

where Icorr the corrosion current density, T the absolute 
temperature, Ea the activation energy, ΔH* enthalpy, ΔS* 
entropy, R (R = 8,314 J/mol/K) is the universal gas constant, 
KB (KB = 1.38066 ×  10−23 J/K)is the Boltzmann constant, h 
(h = 6.62 ×  10−34 J s) is the Plank constant.

Figure 8 shows the variation of Ln (Icorr) as a function of 
1000/T of C38 in 1 M HCl with and without 2 ×  10−4 M of 
OSBZ. These curves are linear which proves the verifica-
tion of the Arrhenius law with a good correlation coeffi-
cient R2. The activation energy was calculated from the slope 
(− Ea/R). The results are presented in Table 7.

Figure 9 shows the variation of Ln (Icorr/T) as a function 
of 1000/T of C38 in 1 M HCl with and without 2 ×  10−4 M 
of OSBZ, these curves are linear. The slope is −ΔH∗

R
 and the 

ordinate at origin is LnKB

h
+
(

ΔS∗

R

)

 , from where the enthalpy 

Fig. 6  Effect of temperature on steel polarization curves in 1 M HCl

Fig. 7  Effect of temperature on steel polarization curves in 1  M 
HCl + OSBZ 2 ×  10−4 M

Table 5  Effect of temperature on the electrochemical parameters of 
steel in 1 M HCl

Temperature 
(°C)

Ecorr (mV/ECS) βc (mV/dec) Icorr (µA/cm2)

25  − 479.68  − 93.33 510.19
35  − 478.87  − 74.78 954.99
45  − 477.13  − 72.96 1698.24

Table 6  Effect of temperature on the electrochemical parameters of 
steel in 1 M HCl + OSBZ 2 ×  10−4 M

Tempera-
ture (°C)

Ecorr (mV/ECS) ��(mV/dec) Icorr (µA/cm2) � (%)

25  − 481.53  − 74.35 85.11 83.02
35  − 491.59  − 110 239.88 74.88
45  − 490.13  − 96 575.43 66.12

Fig. 8  The relationship between Ln(Icorr) as a function of 1/T of C38 
in 1 M HCl without and with 2 ×  10−4 M in OSBZ

Table 7  The corrosion activation energies of C38 in 1 M HCl without 
and with 2 ×  10−4 M in OSBZ

Corrosive solution Activation 
energy (kJ/
mol)

HCl 1 M 48.20
HCl 1 M + 2 × 10−4 M OSBZ 71.00
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ΔH* as well as the entropy ΔS* according to the results 
presented in Table 8, we observe that the activation energy 
in the presence of the OSBZ inhibitor is superior to that of 
white which means that OSBZ is an excellent inhibitor. This 
increase in activation energy indicates that the presence of 
the inhibitor OSBZ in the medium causes a slowdown in the 
process of corrosion of the metal C38 which is explained by 
the formation of an energy barrier without influencing the 
mechanism of dissolution of the metal [63, 64].

The values of ΔH* taken from Fig. 9 are positive which 
shows that the process of the metal dissolution reaction is 
endothermic [65]. According to Table 8, the entropy value 
ΔS* in the presence of OSBZ inhibitor is greater than in its 
absence, which means an increase in the disorder occurring 
between the steps from the reactants to the formation of the 
activated complex.

This increase in the entropy ΔS* which is due to the adsorp-
tion of inhibitor molecules on the surface of C38 metal could 
be estimated as a quasi-substitution between the inhibitor mol-
ecules in the aqueous phase and the  H2O molecules located on 
the surface electrodes [48]. Therefore the adsorption of OSBZ 
molecules obeys desorption of  H2O molecules from the sur-
face of the electrode and subsequently deceases the electrical 
capacity of the metal.

We also note that the activation energies Ea higher than 
the analogous values of the enthalpy ΔH* indicating that the 
corrosion process includes a gaseous reaction it is the forma-
tion of  H2, moreover the difference of (Ea − RT) is close to the 
value of ΔH* where the temperature T is between 298 and 
318 K, expressing that the corrosion process is a unimolecular 
reaction [66].

3.6  Surface Analysis

3.6.1  SEM Analysis

The morphology of the studied surface has been analyzed 
by the scanning electron microscope (SEM) technique. This 
examination is carried out before and after immersion of sam-
ples in the corrosive medium without and with inhibitor. The 
corresponding images are grouped together. In Fig. 10A of 
the blank sample is characterized by simple scratches due to 
abrasion. Moreover, the image (B) which represents the metal 
immersed in the HCl medium (1 M) is very corroded by sev-
eral deepits. On the other hand, image C of sample C38 after 
immersion in the medium (HCl + OSBZ) shows that there is 
a remarkable improvement in the surface of the metal, which 
is more protected by the formation of a protective layer in the 
presence of OSBZ.

3.6.2  EDS Analysis

The observations made by the image (SEM) are confirmed 
by the technique of energy dispersive X-ray spectrometry 
(EDS), according to the spectra mentioned in Fig. 11A, B 
represent successively the sample of the abraded steel and the 
one immersed in the 1 M HCl solution and also the results of 
Table 9, it is noticed that there is a decrease in the percent-
age of iron (98.70%/75.47%). This is explained by the trans-
fer of iron in hydrochloric acid solution. On the other hand 
the spectra represented in image C corresponds to the metal 
immersed in the medium (HCl + OSBZ) as well as Table 9 
shows a decrease in the corrosion rate. This is illustrated by 
the increase in the percentage of iron (96.70%) and a remark-
able decrease in the percentage of oxygen (14.60% in HCl 
alone/0.86% in HCl + OSBZ) which implies a decrease in the 
formation of iron oxide, thus fighting against corrosion. This 
proves that the OSBZ compound is a good inhibitor for this 
steel in the 1 M HCl medium.

3.7  Quantum Chemical Calculations

3.7.1  Global Reactivity

Figure 12 represent the geometrical structure of the inhibitor 
molecule in the neutral state in aqueous phase are obtained 
by a global optimization characterized by a calculation of 

Fig. 9  The relationship between Ln(Icorr/T) as a function of 1/T of 
C38 in 1 M HCl without and with 2 ×  10−4 M in OSBZ

Table 8  The corrosion activation parameters of C38 in 1  M HCl 
without and with 2 ×  10−4 M in OSBZ

Medium ΔH* (kJ/mol) ΔS* (J/mol/K) Ea (kJ/mol) Ea − RT

Blank 45.40  − 40.40 48.20 45.60
2 × 10−4 68.30 21.70 71.00 68.40
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the vibration frequencies using DFT B3LYP/6-311G (p,d) 
level in the neutral phase.

It is well established in the literature that conjugated com-
pounds containing heteroatoms such as nitrogen, oxygen, 
sulfur or phosphorus in their molecular structures are often 
very good corrosion inhibitors [67].

Indeed, this compound can adsorbs on iron surface by the 
double boundary п, blocking active sits and slowing corro-
sion rates. A number of studies haves how that nitrogen-con-
taining heterocyclic compounds remain excellent inhibitors 
of iron surface in corrosive environments [68].

It can be seen that the electron density of the HOMO and 
LUMO location has been distributed almost on the whole 
molecule, due to the presence of nitrogen atoms, oxygen 
and carbon atoms with several electrons π and n in the 
chemical structure of OSBZ. Moreover, electrons from the 
inhibitor molecule can be taken up by the iron atom's empty 
(d) orbital to create a coordination bung. Additionally, the 
inhibitor molecule's anti-bonding orbitals can receive elec-
trons from the iron atom to create a binding bung back [69]. 
Which can be useful for the adsorption mechanism of the 
inhibitor on the iron surface.

The DFT parameters of neutral forms of OSBZ are given 
in Table 10.

The result in Table 10: demonstrate that OSBZ has a low 
value for the energy gap (EGAP) between EHOMO and ELUMO, 
a high value for the HOMO energy, and a high value for the 

LUMO energy, all of which increase its inhibitory influence 
on the surface of the iron [70].

A molecule's dipole moment is the factor that is most fre-
quently employed to characterize its polarity. It is the meas-
ure of the polarity of a dipolar covalent bond. It is defined as 
the product of charge in the atom and the distance between 
two polar covalent bonds [71]. However, the total dipole 
moment just reflects the overall polarity of the molecule.

The literature has conclusively demonstrated that mol-
ecules with higher dipole moments are more reactive. The 
dipole moment in our investigation has a value of 94.050 
Debye [72].

3.7.2  Local Molecular Reactivity

Inhibitor molecules interact with metallic surfaces in a 
donor–acceptor manner to adsorb on them. Analyzing 
which atoms in the molecules mostly participate in this 
donor-accepter sort of interaction is therefore, crucial. We 
learned in general if inhibitor compounds are able to give 
and take electrons from the preceding discussion (the sec-
tion on quantum chemical calculations) [73] However, it 
is crucial to locate the matching active sites that are in 
charge of this electron donation and acceptance. A use-
ful approach for determining the local active regions of 
an inhibitory chemical is called local reactivity [74]. For 
OSBZ, the estimated Fukui indices of simplified functions 

Fig. 10  SEM micrographs of A polished sample, B, the sample in 1 M HCl, and C the sample in 1 M HCl in the presence of OSBZ
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(f+ and f−) are shown in Figs. 13 and 14 In contrast to the 
active centers used in nucleophilic attacks, which have a 
greater  f+ value, electrophilic attacks' active centers have a 
higher f− value [75]. The results demonstrate that the C(2) 
and C(5) atoms were involved in electrophilic assaults, 
demonstrating its propensity to contribute electrons to the 
formation of more stable coordination bonds with the metal 
surface. During nucleophilic assaults, atoms like C(17) and 
C(29) can accept electrons from the metal surface. These 
findings imply that these locations local responsiveness to 
participating in.

Fig. 11  EDS spectra of A polished sample, B, the sample in 1 M HCl, and C the sample in 1 M HCl in the presence of OSBZ

Table 9  Elementary composition of different sample of C38 with and 
without OSBZ inhibitor

Sample condition Fe O

The sample polished 98.70 0.00
The sample in 1 M HCl 75.47 14.16
The sample in 1 M HCl + OSBZ 96.96 0.86

Fig. 12  Geometry-optimized structures, HOMO, LUMO orbitals, and 
MEP of OSBZ at the DFT B3LYP/6-311G (p,d) level in the neutral 
phase
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3.8  Molecular Dynamics Simulations MDs

To investigate and understand the interactions between 
inhibitor molecules and the surface of carbon steel, MD 
simulations are frequently performed. In this section, the 
interaction system has been modeled in both the absence of 
the solvent molecules  (H2O) and the presence of the solvent 
molecules [76].

The molecular structure of the inhibitor reveals that the 
development of coordination bonds between iron and the 
aromatic cycles included in the inhibitor and adsorption 
on the surface of carbon-containing metals are made pos-
sible by sharing the azote's electrons. On the other hand, 
the attraction of the surface of the net molecule may be 
influenced by the physical contacts between the inhibitor 
molecules and the metal surface, caused by Van Der Waals 

dispersion forces [77]. The strong contact between the two 
aromatic rings of the investigated molecule and the metal 
surface is responsible for this method of adsorption. As was 
already established, the iron's vacant d orbital can accept 
electrons from the nitrogen atoms in the inhibitor molecule 
to create coordination bonds [78]. Figure 15 shows a paral-
lel adsorption of the molecule OSBZ in both aqueous and 
vacuum medium, wish mean the efficient adoption mode 
the de OSBZ inhibitor. Moreover the distance between iron 
surface and OSBZ inhibitor (3.18 A) are smaller in aqueous 
medium than the vacuum medium (3.8 A) wish indicate the 
water molecules increase the binding interactions between 
iron surface and OSBZ molecules.

In this part, we estimated the interaction and bind-
ing energies between the molecule under investigation 
and iron in both the presence and absence of the solvent 
 (H2O), and the findings are organized in Table 11. The iron 
atoms and inhibitor molecules' negative interaction ener-
gies − 603.347 kJ/mol and − 796.956 kJ/mol indicate the 
spontaneity of the adsorption process [79]. A more persis-
tent inhibitor/surface contact results from an inhibitor mol-
ecule's highest binding energy and most negative interaction 
energy [79].

4  Conclusion

The inhibitory activity of MS type C38 in acidic medium 
of 1 M HCl of a new synthesized compound 1,5-bis-2-
[benzimidazol-2-yl]mercaptodiethyleneglycol of benzimi-
dazole type was studied, it was found that the latter is a good 
inhibitor which is in agreement with the literature that states 
that benzimidazoles are better inhibitors of MSs to different 
acidic media.

Table 10  DFT parameters in eV of neutral forms of OSBZ

Inhibitor ELUMO (eV) EHOMO (eV) ΔE (eV) η (eV) σ  (eV−1) χ (eV) ω (eV) ΔN Dipole moment (Debye)

OSBZ  − 1.3456  − 6.6338 5.2882 2.6441 0.3781 3.9897 3.010 0.1570 94.050

Fig. 13  Fukui functions condensed on f+ and f− atoms of OSBZ estimated by DFT/GGA/DNP using Materials Studio software

Fig. 14  Graphical graph of the Fukui indices for OSBZ
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Experimental studies show that:

• The gravimetric study showed that the OSBZ compound 
protected the C38 metal surface in 1 M HCl which is 
confirmed by the decrease of the corrosion rate.

• From the polarization method it could be concluded that 
the OSBZ compound is a good inhibitor of the studied 
steel due to the decrease of the corrosion density.

• The gravimetric and electrochemical study showed that 
the efficiency increases with the increase of the concen-
tration of the OSBZ compound in the corrosive environ-
ment (to reach a neighborhood of 90%).

• And from the study of the effect of temperature it was 
found that the inhibitory efficiency decreases with 
increasing temperature.

• It was deduced that the adsorption isotherm is obey-
ing the Langmuir model and the value of free energy 
informed us that the inhibitor adsorbs on the surface with 
both chemisorption and physisorption mechanisms.

• The analysis of polarization curves at different concen-
trations of OSBZ inhibitor showed that this inhibitor is 
of mixed cathodic and anodic type with a cathodic pre-
dominance. The discharge of the proton  H+ on the sur-
face of the steel is done according to a mechanism pure 
activation, also the hydrogen reduction mechanism is not 
affected by OSBZ.

• The results from the impedance curves reported a 
decrease in the double layer capacitance which is justified 
by the adsorption of the OSBZ molecules on the metal 
surface resulting in the formation of a protective layer.

• SEM pictures showed that the surface of the metal 
immersed in the solution containing OSBZ compound is 
less corroded rather more uniform than the one immersed 
in the corrosive medium without OSBZ, this proves that 
the inhibitor molecules are adsorbed on the surface of 
the metal to form a protective layer. These results are 
confirmed by EDS analysis where the percentage of iron 
on the metal surface is increased in the presence of the 
inhibitor but the percentage of oxygen is decreased, thus 
forming a protective barrier which is in agreement with 
the previous results.

Theatrical studies show that:

• Corrosion inhibitory efficiency increases with higher 
values of EHOMO, µ, σ and ΔN and lower values of 
ΔEGAP, ELUMO, ω and η.

Fig. 15  The inhibitor molecule in equilibrium adsorption configurations on the surface of Fe (110): A without solvent and B with water. Right: a 
side view; left: a top view

Table 11  The interaction and binding energies between the OSBZ 
inhibitor molecule and the surface of Fe (110)

Systems EInteraction (kJ  mol−1) Ebinding (kJ/mol)

Fe + OSBZ  − 603.347 603.347
Fe + OSBZ + water  − 796.956 796.956
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• The principal adsorption centers include S, N, and O 
as well as the aromatic rings found in the inhibitor's 
molecular structure, according to the predicted areas 
of molecular electrostatic potential.

• The results of MD simulations indicate that the inhibi-
tor is adsorbed in a quasi-parallel mode with respect to 
the metal surface, which confirms the strong interaction 
between the inhibitor and the iron atoms. On the other 
hand, in an aqueous solution the inhibitor adsorbed by 
the Fe (110) surface is oriented almost horizontally. 
In addition, the most negative adsorption energy and 
high binding energy values led to more stable inhibitor/
surface interactions;

• It is concluded that quantum chemical calculations and 
MD simulations are in perfect harmony with the experi-
mental study.
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