
Vol.:(0123456789)1 3

Journal of Bio- and Tribo-Corrosion (2023) 9:41 
https://doi.org/10.1007/s40735-023-00765-6

A Comprehensive Review on Ceramic Coating on Steel and Centrifugal 
Thermite Process: Applications and Future Trends

U. V. Akhil1 · N. Radhika1 · L. Rajeshkumar2 · Giribaskar Sivaswamy3

Received: 9 February 2023 / Revised: 12 April 2023 / Accepted: 28 April 2023 / Published online: 7 May 2023 
© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023

Abstract
Steel substrates used in high-pressure applications or when subjected to extreme environments have the drawback of corroding 
and eroding. Extensile studies have been done related to ways to protect the surface with different types of coating, consid-
ering the downtime and extra costs associated with maintenance. Ceramic coating over steel surfaces has been extensively 
researched as it provides a practical solution for using steel in extreme working conditions with enhanced high-temperature 
oxidation resistance. Nowadays, numerous methods for applying ceramic coatings over steel substrates were explored and 
can be selected based on the characteristics of the substrate, the type of coating material, and the desirable characteristics 
of the coating. Recent research focuses on fine-tuning coating qualities for high-end applications, by adding additives, and 
optimizing process parameters to improve coating properties. In this review, the fabrication methods adopted for ceramic 
coatings over steel, as well as their microstructural characteristics, applications, and potential future trends, are presented 
and discussed.
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1 Introduction

Steels are among the engineering alloys that are most fre-
quently used in industries, mostly because of their favour-
able characteristics, such as high toughness, tensile strength, 
machinability, and low processing cost. In spite of being 

mostly used, it also has certain demerits like oxidation, ero-
sion, corrosion, and scaling. The petroleum sector has been 
dealing with a growing amount of pipeline corrosion and 
erosion, particularly in  H2S environments. Due to the unpre-
dictable nature of stoppages and the high maintenance costs, 
erosion, wear, and corrosion problems can be expensive, and 
the associated downtime has a detrimental effect [1]. Cor-
rosion reduces the mechanical properties of the materials 
while the corrosion products are discharged in various ways 
that may result in a more intensive corrosive environment 
or adverse side effects in various applications [2]. Thermal 
power plants receive Indian non-coking coal that contains up 
to 40% ash, the ash contains a significant amount of (abra-
sive/erosive) quartz. Thermal power stations produce a sig-
nificant amount of fly ash/bottom ash, which is then dumped 
into ash ponds as a (water-ash) slurry which shortens the 
pipelines' lifespans due to erosion. A minor part rupturing 
could need the urgent replacement of entire systems and 
may result in long-term harm to people and the environment. 
This calls for the usage of pipes, tubes, and other similar 
parts, all of which have resistance against (slurry) erosion 
and abrasion. Similar issues arise when water is sprayed 
upon coal slurry in thermal power generation businesses 
[3]. The major conduits for fluid flow in thermal recovery 
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wells are the downhole casing and tubing. Wall thinning, 
deformation, fracture, and corrosion of casing and tubing in 
high-pressure and high-temperature fluid can lead to string 
failure [4]. Since geothermal systems contain a variety of 
aggressive ingredients such as salt brines, hydrogen chloride 
(HCl), hydrogen sulphide  (H2S), and carbon dioxide  (CO2) 
gas from volcanic systems, corrosion, and erosion can be a 
major problem for components used in power plants. Pres-
sure, temperature, pH, and other factors may also lead to 
corrosion and erosion in geothermal power plants [5, 6]. The 
combined mechanical and chemical interaction of erosion 
or abrasion with corrosion is to blame for severe damage 
and substantial losses that occur to equipment in various 
slurry transportation and handling processes, it has become 
increasingly obvious in the oil business. When exposed to 
an erosive environment, stainless steel (SS) becomes more 
susceptible to pitting corrosion [7]. Different approaches, 
including heat treatment, alloying procedures, and coatings, 
have been proposed to address these problems and improve 
the material properties. Since coating layers can cut costs 
and ignore material scarcity due to their thickness rarely 
exceeding micrometres, coating procedures among these 
have the largest percentage of material augmentation. As 
a result, fewer elements are required to build coating on a 
significant area of the substrate. Coatings can provide a vari-
ety of characteristics, including improved surface hardness, 
altered surface roughness, thermal and electrical insulation 
properties, increased wettability, and others [8–10]. Due to 
the diversity of applications and needs in various industries, 
different coating technologies are widely available. These 
procedures involve a wide range of online and offline param-
eters and result in a wide range of material microstructure, 
efficacy, appropriateness, and durability. However, coating 
techniques are beneficial in specific applications depending 
on the desired functionality, the most important of which 
being corrosion and wear protection [11]. The choice of 
materials is the most important factor in creating a success-
ful coating, as they serve all protective functions. To create 
a protective layer, a variety of substances, such as metals, 
ceramics, and polymers, can be employed [12, 13]. Enhanc-
ing the mechanical performance of metallic substrates has 
always been possible by covering the metal surfaces with a 
thin ceramic layer, as ceramic coatings offer better resistance 
to corrosion, erosion, and provide high-temperature stability. 
There are numerous ceramic coating techniques currently 
available for the application of protective ceramic coatings. 
The achieved coating quality, deposition effectiveness, pro-
cess complexity, and investment costs of these approaches 
vary [14–16]. Successive various studies reported over the 
past 10 years have been shown in Fig. 1. This review paper 
acquaints comprehensive insights on the ceramic coating 
on steel with subsequent sections of this paper reviewing 
various fabrication processes employed, its properties, 

microstructural analysis, applications and, finally, the future 
trends and challenges.

2  Process of Ceramic Coatings

Due to the affordability and availability of steel, the pro-
cess of ceramic coatings over steel substrates has received 
remarkable attention. Ceramic materials have a variety of 
cutting-edge qualities including electrical insulation, wear 
resistance, corrosion resistance, and heat resistance [17, 
18]. Due to their superior qualities, ceramic coatings have 
wide application in the industry for the past few decades 
as metal–ceramic combinations exhibited peculiar charac-
teristics. In general, carbides like silicon carbide (SiC) and 
titanium carbide (TiC) are employed as dispersoids in the 
coating where hardness and wear resistance are the prime 
requirements. However, oxides such as titanium dioxide 
 (TiO2), silicon dioxide  (SiO2), and aluminium oxide/alumina 
 (Al2O3) are also used as dispersoids in places where resist-
ance to high-temperature oxidation is required in addition to 
improvement in hardness as well as wear [19–22]. Currently, 
many different ceramic coating methods are employed for 
various applications. The subsequent sub-sections focus on 
various methods like plasma electrolytic oxidation (PEO), 
which develops a ceramic oxide layer over the substrate 
without damaging the substrate due to thermal expansion, 
sputter deposition which aids in thin film deposition hav-
ing better adhesion to the substrate. Even materials with 
extremely high melting points can be easily sputtered, which 
is a significant benefit of sputter deposition. Laser cladding 
which has high-speed thermal cycle helps to attain higher 
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Fig. 1  Publications of ceramic coating on steel-related papers over 
the past 10 years (compiled from Scopus database during 01/2012–
12/2022)
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strength and refined microstructures, plasma spraying that 
can incorporate a wide variety of materials for coating and 
centrifugal thermite process which aid in the production of 
inner ceramic lining in pipelines.

2.1  Plasma Electrolytic Oxidation

Plasma Electrolytic Oxidation is a very efficient electro-
chemical method for treating the surface of steel. It is typi-
cally used on valve metals or their alloys, such as titanium 
(Ti) [23], aluminium (Al)[24], magnesium (Mg)[25], and 
zirconium (Zr) [26]. The component made of light metal or 
alloy is submerged in an electrolyte bath, depending on the 
desired PEO coating qualities, the bath's composition varies. 
The solution is passed through a high voltage current that 
is typically 200 V or more in voltage. A plasma discharge 
is produced on the substrate’s surface as a result of the ele-
vated temperatures on the alloy's surface brought by the high 
potentials which in turn cause the light metal substrate to 
primarily form crystalline oxides, such as corundum, peri-
clase, or rutile/anatase in the case of Al, Mg, and Ti. (Fig. 2) 
[27]. On the surface of 10B21 steel, a ceramic coating 
mostly made of α-Al2O3 with strong resistance to corrosion 
and high density was effectively created [28]. Aluminate 
and silicate electrolytes were used to prepare PEO coatings, 
the oxide particle was found to be of greater size and the 
surface of the aluminate electrolyte coating was observed 
to be rough and more porous, whereas an even coating was 
observed for silicate electrolyte with a few large, elongated 
micropores [29]. γ-Al2O3 coating was produced on carbon 
steel by initially depositing an Al film followed by MAO 
with a current density of 45 A/dm2, anodic voltage of 350 V, 
pulse frequency of ± 650 Hz, and treatment time—10 min as 
the parameters [30]. An oxide coating of 110 μm thickness 
was produced on a Q235 low-carbon steel by cathodic PEO 
treatment for 9 min (Fig. 3a, b). It was observed that an 

increase in the treatment duration had a constructive effect 
on thickness and surface roughness [31]. The XRD analysis 
indicated the presence of amorphous  SiO2 and polycrystal-
line  Fe2O3 and  Fe3O4 phases in coatings produced using 
sodium silicate and sodium carbonate electrolytes (Fig. 3c) 
[32]. Low carbon steel treated with varying wt.% of silicate 
resulted in a coating of composition ferric Oxide  (Fe2O3), 
 Fe3O4, and  SiO2. Dense microstructure and improved adhe-
sion with the substrate were observed for 30 g/L silicate con-
centration which resulted in enhanced wear and corrosion 
resistance [33]. Micro-arc discharge on the material's surface 
was increased by adding sodium carbonate  (Na2CO3) to the 
micro-arc oxidation (MAO) electrolyte which speeds up the 
production of  Al2O3. The conversion of  Al2O3 to α-Al2O3 
is promoted, and the amount of α-Al2O3 in the coating was 
enhanced due to the synergistic action of  Na2CO3, and 
sodium tetraborate  (Na2B4O7) resulted in improved surface 
quality (Fig. 3d) [34]. MAO with Lanthanum oxide  (La2O3) 
rare earth additive was used to coat N80 steel, coatings with 
1.5 g/L  La2O3 addition exhibited higher α-Al2O3 content 
and the best wear resistance as fewer grooves were present 
in worn surface analysis (Fig. 3e) [35]. Composite coating of 
composition aluminium fluoride  (AlF3), aluminium hydrox-
ide (Al(OH)3),  Al2Ti7O15, α-Al2O3, γ-Al2O3, and  SiO2 were 
produced on S355 offshore steel via laser cladding combined 
with MAO (Fig. 3f). Cladding coating was composed of 
TiC,  AlFe3,  AlNi3,  Al2O3, and AlFeNi and MAO area con-
tains the elements Ni and Fe. The findings demonstrate that 
the cladding coating's components diffuse into the compos-
ite coating, improving their capacity to link together at the 
interface between the two coatings [36].

2.2  Sputter Deposition

In sputtering, atoms or molecules are expelled from the tar-
get surface as a result of ions being propelled toward a target 
material by a plasma. These expelled atoms subsequently go 
to the substrate and deposit there, resulting in the formation 
of a thin film. The sputter deposition is further subclassified 
into DC sputtering, RF sputtering, magnetron sputtering, 
reactive sputtering, etc. (Fig.4). SS was coated with a thin 
film Lithium Niobium Oxide (LNO) using RF magnetron 
sputtering. It was revealed that the phases indulged with the 
deposited LNO layer is strongly influenced by the sample's 
position in the plane parallel to the target plane. Without any 
signs of  LiNbO3 production, the XRD pattern of the speci-
men grown 50 mm from the centre of the deposition region 
reveals two phases of NbO and  Nb2O5 oxides (Fig.5a). 
On the contrary, polycrystalline  LiNbO3 and  LiNb3O8 are 
found in the centre of the deposition area (Fig. 5b) [37]. 
On 65G steel, a 2-μm-thick, quasi-amorphous NiB-Cr7C3 
layer was deposited using magnetron deposition. It was dis-
covered that the microhardness was roughly 10 GPa at an 

Fig. 2  Schematic illustrating the set-up used for plasma electrolytic 
oxidation
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applied indentation load of 21.86 mN. Up to an increasing 
load of 16 N, the coating was not fully delaminating, and 
the failure turned out in the form of plastic deformation. 
When scratched, the coatings wear out but do not peel off 
because the wear in the coating regions is smooth and lacks 
distinct cleavages [38]. DC and RF magnetron sputtering 
was used to co-deposit (W, Be)—Cr2O3 and  SiO2 films on 
SS304 substrate. The overall hardness tends to increase with 
the co-deposition of Be, while it causes a negative impact 
with the co-deposition of W with oxides. The coefficient of 
friction (COF) was observed to reduce significantly in  Cr2O3 

co-deposited with W and Be having a greater reduction with 
Be deposition compared to that of  SiO2-deposited films [39]. 
Reactive magnetron sputtering was used to produce high 
entropy metal sublattice ceramic coatings (AlCrFeTiMo)
NO and (AlCrFeTiNb)NO on a 12Cr F/M steel substrate. In 
comparison to the (AlCrFeTiNb)NO coating, (AlCrFeTiMo)
NO coating demonstrated superior lead-bismuth eutectic 
(LBE) corrosion resistance with a reduced rate of oxidation 
corrosion. The (AlCrFeTiMo)NO coating exposed at 650°C 
exhibits a stable FCC structure, demonstrating the coating's 
structural resilience in a high-temperature LBE corrosion 
environment [40]. Diamond-like carbon (DLC) coating was 
produced on SS316L with Ti/TiC/TiN as interlayer. When 
methane  (CH4) was added to the deposition chamber, the 
deposition rate of DLC rose from 6.7 nm/min to 7.1 nm/min 
[41]. MgZnCa alloy coating of 4µm thickness deposited on 
SS304 was observed to reduce the corrosion current density 
by 36% compared to that of the substrate. An increment in 
the coating thickness to 6µm resulted in a further reduction 
of the corrosion current density by 47.7% compared to the 
uncoated sample [42]. Reactive co-sputtering was used to 
create (AlCrNbSiTiV-W)N films on SS304 substrates with 
variable  N2/(Ar+N2) flow ratios. The coating's mechani-
cal, tribological, and corrosion characteristics improved 
when the flow ratio of  N2/(Ar+N2) reached 20% [43]. 
CrN/CrAlN multilayer ceramic coating was deposited on 

Fig. 3  (a) SEM image, (b) line scan of oxide layer cross section on 
Q235 steel [31], (c) XRD pattern of phases formed in sodium sili-
cate and sodium carbonate electrolytes [32], (d) SEM image of uni-
form dense alumina coating produced from electrolyte composed of 

 NaAlO2,  NaH2PO4,  Na2CO3, and  Na2B4O7 [34], (e) minimal wear 
debris in ceramic coating with 1.5  g/L  La2O3 [35], (f)XRD pattern 
of the composite coating produced via laser cladding combined with 
MAO [36]

Fig. 4  Schematic illustration of sputtering deposition process
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AISI440 martensitic steel via high-power impulse (HiPIMS) 
and DC magnetron sputtering process. The coating with Cr 
as the base layer exhibited lower residual stress due to the 
stress-relieving effect caused by Cr and improved resistance 
to plastic deformation due to the harder CrAlN outer layer 
enriched by the HiPIMS process [44]. Superlattice films of 
TaC/HfC and TiC/TaC were developed on austenitic SS via 
non-reactive and pulsed DC magnetron sputtering. TiC/TaC 
superlattice was observed to have improved microhardness 
and fracture properties compared to TaC/HfC and constitu-
ent monolithic films as the cube corner imprint of TiC/TaC 
subjected to 450mN was devoid of any radial cracks (Fig.5d) 
[45]. Tri-layer (ZrNbMo–Al–N) films were deposited on 
SS using reactive magnetron co-sputtering. The absorbers 
on SS substrates exhibit greater thermal robustness after 
being annealed at 400 °C for 168 hrs in a vacuum environ-
ment. Because of grain aggregations and gaps between the 
columnar particles, annealing at 700 °C was found to signifi-
cantly reduce optical performance (Fig.5e, f) [46].

2.3  Laser Cladding

Laser deposition-related ceramic coating techniques, includ-
ing laser cladding and laser remelting, are used due to 
their versatility, coating efficiency, time savings, and high 
energy density (Fig. 6). Additionally, the surface coating's 

homogeneous, fine microstructure and strong bond that 
exists between the substrate and coating, rapid heating and 
cooling rates, make them more noticeable. TiC coating 
was produced on Ti6Al4V substrate, the ceramic coating 
was created by laser cladding with pre-placed nanoparticle 
TiC powder, and the ideal process parameters were laser 
power (300 W), scanning speed (5 mm/s), powder thickness 
(0.4 mm), and overlapping ratio (20%) [47]. Composite of 
H13 steel matrix reinforced with coarse TiC particles was 
produced by laser cladding. The produced composite layer 

Fig. 5  XRD diffraction pattern of (a) LNO layer at 50 mm from cen-
tre, (b) at centre [37], (c) (AlCrFeTiMo)NO coating LBE exposed at 
550 °C and 650 °C [40], SEM image of (d) cube corner imprint of 

TiC/TaC superlattice [45], SEM images of (ZrNbMo-Al-N) film after 
annealing at 700 °C (e) surface, and (f) cross section [46]

Fig. 6  Schematic illustration of laser cladding process
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had the highest hardness of 1365 HV, which was about twice 
that of the base substrate. An austenitic structure, in addi-
tion to the TiC phase and martensite, was found when the 
volume of TiC was increased by more than 60% (Fig. 7f) 
[48]. An improvement in the wear resistance of 316L steel 
was observed by TiC, Niobium carbide (NbC) ceramic-
reinforced composite coatings. The wear mechanism was 
observed to transform from intense adhesive wear along with 
plastic deformation to a minimum delamination mode of 
adhesive and abrasive wear [49]. Ti and Boron carbide  (B4C) 
mixed powders were used to create in-situ laser-clad TiC/
TiB composite bioinert ceramic coatings. As the heat treat-
ment temperature increased, the residual tensile stress in the 
heat-treated coatings dropped. Average residual stress val-
ues for heat-treated coatings at 400 °C, 600 °C, and 800 °C 
were 0.96, 0.66, and 0.48 GPa, respectively, compared to 
1.53 GPa for untreated coatings [50]. Fe-based fluxing pow-
der with the addition of Ti, TiN, C were mixed with differ-
ent wt.% of Cerium dioxide  (CeO2) and laser cladded on a 
steel plate, the coating's penetrating cracks are successfully 
weakened by the addition of  CeO2, which also lessens the 
sensitivity of cracks and porosities. The coating with 2.5 
wt.%  CeO2 inclusion exhibits the maximum microhard-
ness value of 709.46 HV, which is mostly brought on by 
fine grain strengthening and boosting the development of 
the hard phase [51]. Ceramic coating of  Al2O3–Titanium 
diboride  (TiB2)–TiC was fabricated over carbon steel with 

varying concentrations of  Al2O3. The coating with 30% 
concentration depicted superior quality while the increased 
concentration of  Al2O3 resulted in the less dense coating 
due to reduced wettability between  TiB2 and  Al2O3 during 
solidification [52]. A Synergistic effect of precipitation hard-
ening, and microstructural refinement achieved by coating 
TiC on AISI 410 martensitic SS provided improved micro-
hardness and wear resistance [53]. The inclusion of  B4C 
in the composite ceramic coating of  Ni204 improved the 
wear resistance due to fine grain strengthening, solid solu-
tion strengthening, and dispersion strengthening. The worn 
surface was smoother and had shallow wear marks (Fig. 7e) 
[54]. Ni–Tungsten carbide (WC)–calcium fluoride  (CaF2) 
coating was produced on medium carbon steel via laser clad-
ding assisted with ultrasonic vibration processing and the 
cross-section analysis revealed that the coating produced is 
devoid of crack or porosity (Fig. 7a) [55]. The addition of 
 La2O3 in Ni-based ceramic coating resulted in producing 
a crack-free coating combined with microstructural refine-
ment (Fig. 7b) which improved the corrosion resistance and 
microhardness [56]. The increased microhardness of the 
 Al2O3–Ni composite coating was due to the hard phases 
formed as Ni combined with Fe, Al, and Cr as inferred from 
the cross-sectional XRD (Fig. 7c) [57]. Analysis of wear 
mechanism of the Vanadium carbide (VC)- Chromium car-
bide  (Cr7C3) coating proved the wear mechanism to be a 
mixed adhesive and micro-polishing type (Fig. 7d) [58].

Fig. 7  SEM micrographs of (a)laser cladded dense Ni–WC–CaF2 
[55], (b) dense microstructure with  La2O3 inclusion [56], (c) XRD 
pattern of hard phases formed in  Al2O3–Ni Coating [57], (d) worn 

surface of VC-Cr7C3 coating [58], (e) worn surface of coating with 10 
wt% TiC, TiN, and  B4C [54], (f) XRD pattern indicating the phases 
formed in TiC/H13 deposit with 60% volume fraction of TiC [48]
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2.4  Plasma Spraying

Spraying technique that is frequently employed in ceramic 
coating is plasma spraying. The direct current plasma arc 
sprays and deposits coating ingredients on the substrate 
(Fig. 8). Plasma spraying technique was used to coat car-
bon steel with  Al2O3-40 wt.%  TiO2, which reduced the 
splat delamination and wear rate compared to the uncoated 

samples [59].  Al2O3-40 wt.%  TiO2 was coated on AISI 1045 
steel roller, and the influence of rolling stress was investi-
gated, spalling, surface abrasion, and delamination were the 
modes of failure observed. The mechanism of delamination 
was observed to be a combination of interfacial cracks and 
fatigue micro-cracks from micro-defects within the coating 
(Fig. 9d) [60]. Plasma-sprayed  Al2O3 coating on austenitic 
SS was laser processed with varying parameters and θ-Al2O3 
was observed in the laser-remelted samples (Fig. 9e). The 
sample was remelted with 600W power, and 5 mm/s laser 
velocity showed improved fracture toughness and tribologi-
cal properties as compared to the as-sprayed samples [61]. 
The various benefits of the low-pressure plasma-sprayed 
thin-film coating technique and chances to alter the features 
of the coating as well as its consequent microstructure were 
studied. Vapour depositions tend to produce columnar coat-
ings, whereas dense coatings were produced by droplet dep-
osition. The size of the plasma plume was increased by low 
operating pressure which resulted in homogenous coatings 
[62]. Steel substrate was coated with WC-12% cobalt (Co) 
with two types of particle size and morphology. The powder 
size of 45 μm and spherical morphology resulted in a dense 
structure and less porosity providing increased microhard-
ness. The effect of heat treatment was analysed at 500, 900, 
and 1100 °C and the coated sample heat treated at 500 °C Fig. 8  Experimental set-up used for Plasma Spraying Process

Fig. 9  SEM image of (a) homogeneous distribution of alumina in 
composite coating [66], (b)cross-sectional view of composite coating 
with Cu layer [67], (c) diamond-reinforced composite coating [68], 
(d) Surface morphology of longitudinal cracks in  Al2O3-40 wt.% 
 TiO2 coating on AISI 1045 steel [60], (e) XRD analysis: a) the as-

sprayed coated; b) laser re-melted LP coated, and c) laser re-melted 
HP coated [61], (f) XRD pattern of atmospheric plasma-sprayed 
(APS) WC–Co coating, before and after heat treatment in atmosphere 
[63]
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exhibited improved microhardness due to the formation of 
η-carbides (Fig. 9f) [63]. AISI 304 steel was coated with 60 
wt.% NiCrSiB-40 wt.%  Al2O3 with an average density of 
6 g/cm3, surface roughness 8.5 μm, and adhesion strength 
18.2–22.4 MPa [64]. SS304 was coated with chromium (III) 
oxide  (Cr2O3)–Al2O3 which was then sealed by Aluminium 
Phosphate  (AlPO4) with little amount of  Al2O3 nanoparti-
cles. The subsequent heat treatment at 600 °C for 30 min was 
carried out and was tested for the corrosion. It was noted that 
the sealant effectively resists corrosion [65]. Addition of 3 
wt.% Carbon nanotubes (CNT) to alumina feedstock powder 
resulted in a coating with increased homogeneity in alumina 
dispersion (Fig. 9a) as CNT have higher heat capacity which 
maintains alumina in molten state for longer periods [66]. 
As the voids in the ceramic layer act as fracture sources due 
to stress concentration, adding a copper (Cu) metal barrier 
layer (Fig. 9b) to an  Al2O3-40 wt.%  TiO2 ceramic coating 
improved the anti-crack propagation ability. The Cu layer 
also assisted with crack deflection, bridging, and particle 
pull-out. [67]. Successful retention of diamond was observed 
in bearing steel coated with diamond reinforced molybde-
num feedstock (Fig. 9c) with a minute graphite content pre-
sent in the coating due to the partial degradation of diamond 
because of exposure to high-temperature arc [68]. Mild car-
bon steel was coated with Titanium Carbo-Nitride (TiCN) 
and the effect of spray distance on mechanical properties 
were evaluated. Due to the particles' complete melting 
and homogeneous spread-out, which resulted in a closely 
bonded structure, the maximum hardness, elastic modu-
lus, and bonding strength were seen for a spray distance of 
100 mm [69]. Micropores were observed in AISI 1020 steel 
coated with  Al2O3 +  TiO2, CNT were added to the feed stock 
and subsequently micropores and the percentage of poros-
ity were reduced as the fraction of CNT is increased. This 
results from the surface reaction and metallurgical fusion 
of CNT with  Al2O3 and  TiO2, which in turn increase the 
surface hardness [70]. The properties and additional char-
acteristics of the coatings fabricated via various processes 
are given in Table 1.

There are several methods to produce ceramic coatings on 
steel and the choice of method relies on the specific require-
ments of the application, including the desired properties 
of the coating and the behaviour of the substrate. Among 
these methods, thermal spray and plasma spraying are gen-
erally considered the best method to produce oxide ceramic 
coatings on steel compared to chemical vapour deposition 
(CVD), sol–gel, anodizing, etc., due to their ability to pro-
duce dense and uniform coatings with high bond strength 
and corrosion resistance [71]. The inter-lamellar bonding 
of the ceramic coating can be improved by raising the depo-
sition temperature of the coating. When an oxide ceramic 
coating is being deposited at a temperature greater than 
the critical bonding temperature, the bonding ratio of the 

coating considerably rises, improving the coating's adhesive 
strength [72]. The intersplat bonding quality, which predom-
inates in the mechanical properties, determines the cohesive 
strength of ceramic coatings. Higher particle velocities result 
in stronger cohesion, which may be explained by a high 
interface bonding ratio. Higher dynamic pressure results 
in closer contact between the spreading spray particles and 
the splats below due to higher particle velocity impact [73]. 
Carbon steel (C45) was coated with  Al2O3–TiO2 utilizing 
the high-velocity oxy-fuel (HVOF) and plasma spraying. 
In contrast to HVOF coating technique, high temperature 
generated in the plasma coating method resulted in the 
melting of ceramic powders and the development of totally 
melted patches on the coated surfaces [74]. The production 
of carbide coatings over steel substrates can be achieved 
via thermal spraying, physical vapour deposition (PVD), 
CVD, electroplating, etc. When the current-to-flow vol-
ume ratio is high and the ratio of secondary hydrogen flow 
to the total flow is also high, carbide coatings exhibit bet-
ter powder deposition, fewer porosities, and more molten 
particles [75]. The formation of an oxide layer during the 
spraying process is a critical factor, as the thickness, sta-
bility, and mechanical strength of the oxide layer protect 
the underlying surface from degradation [76]. The spray-
ing process caused the oxide phases to change from crys-
talline to amorphous condition. The high particle-in-flight 
velocities cause the splats to spread out and expand, creating 
lamellae with vast surface areas. This makes it possible for 
the subsequent rapid solidification to occur quickly enough 
to create an amorphous phase [77]. Due to the high tem-
perature generated while deposition, the transition of  Cr3C2 
from feed stock into  Cr7C3 and  Cr23C6 crystalline phases 
was observed in SS410 APS coated with  Cr3C2-25NiCr [78]. 
Dense and uniform nitride coatings with high hardness and 
wear resistance can be produced on steel via PVD and CVD. 
At elevated temperature conditions, multilayer coatings of 
nitride with nanoscale bilayer thickness exhibit exceptional 
hardness and increased resistance to wear. The creation of 
a protective surface oxide and the multilayer structure work 
together to prevent cracks from spreading, and additional 
oxidation increases wear resistance [79]. With a 25%  N2 gas 
flow ratio, the Mo–Si–N coating produced by DC magnetron 
sputtering demonstrated exceptional mechanical properties. 
The fabrication of the Mo–Si–N coatings involved managing 
chamber pressures between 1 and 10 mTorr at a 25%  N2 gas 
flow ratio at room temperature in order to increase coating’s 
density and decrease the likelihood of contamination while 
preserving an amorphous structure. An increase in coating 
density, hardness, and elastic modulus, as well as a drop 
in O content, were caused by a reduced working pressure 
of 1–2.5mTorr [80]. Very hard and self-lubricating TiSiCN 
coatings were produced on H13 steel using plasma-enhanced 
CVD, and they had a nanocomposite structure made of an 
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amorphous SiCN matrix that contains TiCN nanocrystals. 
Coating adhesion improves significantly in the presence of 
the graded interlayer (Ti/TiN/TiCN) exhibiting improved 
mechanical properties [81]. Overall evaluation of coating 
deposited over steel reveals that thermal spray processing 
best suits to produce oxide and carbide coating while PVD 
and CVD can be employed for the production of nitride coat-
ings to best suit the desired applications.

2.5  Self‑Propagating High‑Temperature 
Synthesis—Centrifugal Thermite Process

The processes discussed so far hold good for developing 
a ceramic coating over outer surfaces. However, pipelines 
used for the transport of slurry, reactive materials, chemi-
cals, etc., also undergo extensive abrasion, erosion, and 
corrosion. Thus, it is very much required to coat the inner 
surface of the pipelines, thereby reducing its maintenance 
and downtime. The centrifugal thermite process involves 
producing a ceramic lining inside a hollow cylinder/pipe 
by virtue of thermite reaction or self-propagating high-
temperature synthesis (SHS) where the reactant mixtures 
are loaded in the tube and rotated at high speed and then 
the mixture will be ignited using a heated tungsten fila-
ment or by burning magnesium ribbon once the required 
velocity is reached. The reaction increases the temperature 
due to its exothermic nature and propagates throughout, 
the density difference between the formed products results 
in forming an inner ceramic lining and an intermediate 
intermetallic layer (Fig. 10) [97]. The production of cast 
granules with particle sizes ranging from 0.2 to 4.0 mm 
was accomplished using thin-layer SHS reactions of the 
thermite type made of Nickel oxide (NiO) and Alumin-
ium (Al) powders at atmospheric pressure. Variations 
in the layer thickness of the mixture employed and the 
amount of neutral diluent (αAl2O3) used had an impact 
on the structure and size of SHS-generated granules [98]. 
Dendritic-structured  Al2O3 was observed as the dominant 
phase due to the rapid heat dissipation from the outer 

pipe surface and  Al2O3 was surrounded by spinal-shaped 
hercynite  (FeAl2O4) due to the higher melting point of 
 Al2O3, which resulted in nucleation and growth of alumina 
followed by the solidification of  FeAl2O4 [99]. Abrasion 
test conducted on the ceramic lined pipe with  SiO2 slurry 
flowing at 2.5 m/s for 900 h revealed that the wear loss of 
ceramic lined pipe was lower than 10% of SS41 and 12.5% 
of S45C steel pipes [100].

The inclusion of  Al2O3 in the thermite mixture and the 
use of tungsten filament for ignition instead of oxyacety-
lene flame reduced the risks of violent reaction, splashing 
of molten particles and fumes evolved [101]. The addition of 
4 wt.%  SiO2 in the reactant mixture improved the density to 
3.69 g  cm− 3 and reduced the porosity to 3.1% of the ceramic 
lining. It also increased the microhardness to  1566HV1 and 
fracture toughness values to 4.125 MPa  m1/2, exhibiting low-
est crack length (Fig. 11f) [102].  Al2O3 and Zirconium diox-
ide  (ZrO2) were crystallized as leading phases in hypoeu-
tectic and hypereutectic multiphase melt, respectively, as 
observed in  Al2O3 +  ZrO2 multiphase ceramic-lined compos-
ite pipes [103]. The microstructural analysis of the fractured 
specimens indicated that the fracture was not initiated at the 
interface of substrate and transition layer due to the strong 
metallurgical bonding as observed in  Al2O3–TiO2–TiC mul-
tiphase ceramic layer with AlFe–AlCrFe–NiFe intermetallic 
layer (Fig. 11e) [104]. The addition of Cerium oxide  (CeO2) 
and glass powders to the thermite mixture resulted in the 
production of  FeAl2O4 free ceramic lining that aid in the 
application in corrosive environment [105]. Effect of centrif-
ugal force was analysed for Ti–B–C system, producing  TiB2 
and TiC via combustion synthesis. It was revealed that the 
faster reaction propagation occurs under inverse centrifugal 
direction [106]. It was discovered that preheating the car-
bon steel pipe prior to the process lengthens the period that 
molten products would remain in a liquid form. Additionally, 
increasing the molten products’ fluidity by adding Calcium 
fluoride  (CaF2) to the thermite can assist in reducing inclu-
sions.  CaF2 had further desulphurizing and dephosphoriz-
ing effects. The inclusions in the SS were greatly decreased 
once the method was improved [107]. Pre-coating of the 
substrate with NiCrAl and NiO + Al showed improvement 
in thermal shock resistance and nickel oxide (NiO) + Al pre-
coat had improved bonding with the surface having Ni and 
Fe diffused across the interface (Fig. 11b, c) [108]. Under 
the influence of the centrifugal acceleration field, a func-
tionally graded coating was generated. The  Al2O3, Fe, and 
byproducts of the thermite process, entered the TiC pellet to 
form a robust intermetallic layer. The XRD pattern revealed 
tetragonal titanium aluminide (TiAl,  Ti3Al) intermetallic in 
the compound (Fig. 11d). Intermetallic compounds that are 
present improve crystal characteristics by creating ordered 
crystal formations [109]. The ideal combination of hard-
ness, crushing strength, fracture toughness, and mechanical 

Fig. 10  Schematic illustrating the experimental set-up of centrifugal 
thermite process
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shock resistance was produced by adding 4–6%  ZrO2 to an 
Al–Fe2O3 thermite mixture [110].

Zirconia-toughened alumina ceramic lining was found to 
have  Al2O3,  FeAl2O4, and t-ZrO2 phases, the t-ZrO2 phase 
was accountable for improved fracture toughness [111]. 
Replacement of Al partially by silicon sludge with a compo-
sition of 30% Si and 70% SiC in thermite mixture increased 
the ceramic layer density to 3.5 g/cm3 due to the formation 
of mullite  (Al6Si2O13), maximum hardness of the ceramic 
layer was found to be 1780HV. Using 10% silicon sludge, a 
dense ceramic layer with α -Al2O3 grains in dendritic struc-
ture surrounded by  FeAl2O4 was formed (Fig. 11f) [112]. 
It was discovered that the mechanism of molten Fe depo-
sition and penetration into TiC was majorly dependent on 
temperature, density as well as time profile in the reactions 
 Fe2O3 + Al and Ti + C under centrifugal force. [113]. Crack 
pinning by fine  TiB2 platelets and crack bridging by (Ti,W)
C grains were the toughening mechanisms responsible for 
superior fracture toughness and hardness as observed in 
 TiB2–(Ti,W)C ceramics [114]. An increment in centrifu-
gal force to 200G resulted in an improvement in density to 
98.6% as observed in  Al2O3/YSZ composite ceramic lin-
ing with a composition of α-Al2O3, t-ZrO2, m-ZrO2, and Cr 
[115]. Combustion synthesis of TiC–xFe revealed that the 
increase the Fe content resulted in a drop in the combustion 
temperature and wave velocity. The microstructural analysis 

revealed that the carbide grains were of spherical in shape 
surrounded by Fe as a binder (Fig. 11a). The addition of 60 
wt.% Fe was found to be the limit as more than that self-
propagating nature of the reaction was lost [116]. Calcium 
peroxide  (CaO2) and Al additives in Fe–WB ceramic lining 
reduced the porosity and improved toughness and adhesion 
between coating and substrate [117]. N80 steel pipe coated 
with  Al2O3 exhibited a fracture strength of 269 MPa and 
improved wear resistance with a reduced volumetric loss of 
3.6 ×  10−13m3  m−1 [118]. It was discovered that addition of 
 Cr2O3 increased abrasion resistance,  SiO2 addition reduced 
the lining's surface roughness, and graphite addition boosted 
the lining's strength and reduced separation from steel walls 
[119].  Fe2O3 and Al powders were mixed to obtain a coat-
ing of  Al2O3 on a carbon steel pipe of which the charac-
terization revealed the ceramic layer primarily had α-Al2O3 
and  FeAl2O4 and the grain size expands to the inner part 
where thermite mixture is high. The hardness and density 
of the produced ceramic layer were 1430HV and 2.9 g/cm3 
without  SiO2 additive, whereas 1700HV and 3.7 g/cm3 with 
 SiO2 additive [120]. When TiC–TiB2 ceramics solidified, 
the TiC spherical grain matrix showed the leading growth 
in hypoeutectic composite, whereas the  TiB2 platelets with 
small aspect ratio showed the leading growth in the hypere-
utectic composite [121]. The use of high gravity field of 
200 g centrifugal force aided in the production of 99% dense 

Fig. 11  (a)SEM image showing spherical TiC binded by Fe in TiC–
xFe combustion synthesis [116], cross-sectional SEM image of (b) 
substrate and coating without transition layer, (c) coated sample with 
transition layer [108], (d) XRD pattern indicating the presence of 

TiAl,  Ti3Al intermetallic in TiC,  Al2O3, Fe ceramic coating [109], 
(e) Fracture image of  Al2O3–TiO2–TiC multiphase ceramic layer 
with crack-free intermetallic region [104], (f) SEM image indicating 
indentation cracks on 4 wt.%  SiO2-added ceramic coating [102]
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 TiB2–TiC composite [122]. The circumferential thermal 
stress and interfacial stress values increased with an increase 
in the thickness of the SHS layer. The circumferential ther-
mal stress in the ceramic coating increased by 84.28 MPa 
as thickness increased from 3.5 to 4 mm [123]. Table 2 pro-
vides the SHS-CT process ceramic coating evaluation.

3  Applications

Surface coatings are widely employed in the fields of elec-
tronics, food, mining, aviation, and transportation as well as 
in the chemical and petroleum sectors. In several specialist 
fields, surface coatings have recently seen an increase in 
use, such uses include thermal-sprayed coatings in sports 
sector, automotive, aerospace, marine, petroleum, mining, 
and power production industries (Fig. 12). Surface coatings 
offer a variety of options for changing the component quali-
ties. Common coatings include oxides, nitrides, carbides, 
DLC, decorative coatings, and thermal barrier coatings. 
Without covering the tools with a thin layer of ceramic, it is 
impossible to complete modern cutting applications. Some 
applications include cutting non-ferrous abrasive materi-
als at high speeds and machining extremely hard materials 
like Ti and AlSi alloy. Typically, the coatings used on tool 
surfaces are several microns thick. They lessen friction and 
minimize diffusion, improving cutting-edge wear resistance 
[125]. Erosion–corrosion issues frequently degrade boiler 
walls in power stations and other utility components of coal-
fired industries affecting the dependability and economics of 
these systems. High temperatures and hostile atmospheres 
are characteristics of the environment within the furnaces, 
which cause corrosive deposits to adhere to the walls and get 
eroded due to ash particles [126]. Composite coatings based 
on Al-SiC were found to be applicable in the automotive 
industry that have better wear resistance [127].

In a coal-fired boiler environment,  Cr3C2–NiCr ceramic 
coatings resulted in enhancing erosion as well as corrosion 
resistance [128]. NiTi alloy coating was found to reduce ero-
sive wear in aerospace applications in compressor blades of 
aircraft [129]. CrN coating over SS304 was found to pos-
sess superior corrosion resistance and is hence suitable for 
marine applications [130].  Al2O3–13TiO2 coatings were 
fabricated over C45 steel pipe that was proven to have sig-
nificant applications in the petroleum industry [74]. Yttria-
stabilized zirconia coating was found to have significant 
use in high-temperature applications by virtue of its porous 
microstructure which reduce thermal conductivity [131]. 
 Cr3C2-20NiCr and  Al2O3-40%TiO2 coatings were found to 
increase the life span of oil piping and related devices in 
the oil and gas industry [132]. Ceramic coating had been 
used to protect the tube material such as carbon and CrMo 
steels from corrosion in the biomass energy industry [133]. 

WC–(W,Cr)2C–Ni coating on SS was found to provide bet-
ter resistance in high-temperature wear conditions having 
potential applications in aerospace and automotive industries 
[134]. Preoxidized SS was coated with (Co,Mn)3O4 which 
was used as interconnects in solid oxide fuel cell [135]. Cast 
iron coated with  Al2O3,  Cr2O3,  ZrO2 was analysed for vari-
ous properties and  ZrO2 coating was found to have improved 
thermal shock resistance, having potential application in 
piston rings, cylinder liners, piston crown surface, cylin-
der cover, and valve parts as in automotive industry [136]. 
The combination of surface mechanical attrition treatment 
(SMAT) and low-temperature annealing at 400 °C resulted 
in greater resistance to corrosion for SS316. The annealing 
process relieved residual stress and freed trapped high strain 
energy, facilitating the creation of nucleation sites. This ena-
bled Cr to migrate to the surface of the material more easily 
and form a thick oxide layer, resulting in a reduced corro-
sion rate at the surface having potential application in manu-
facturing and automotive industries [137].  Al2O3–13wt.% 
 TiO2 ceramic coatings were fabricated on austenitic SS 
which improved its hydrogen permeation resistance having 
extensive application in petroleum and chemical engineer-
ing industries [138]. Q235 steel coated with  Al2O3–13 wt.% 
TiO2 was found to have superior corrosion resistance hav-
ing potential application in power transmission systems and 
the marine industry [139]. 316L austenitic steel coated with 
 Al2O3 had improved corrosion resistance in high-tempera-
ture atmospheres, which can be of greater help in boilers, 
furnaces, and nuclear installations [140]. SS304 coated with 
 Al2O3-40 wt.%  TiO2 had improved wear resistance which 
points out the potential applications in thermal power plants 
and textile industries [141]. The SHS C-T process is a useful 
method for creating composite pipes with ceramic lining that 
solves drawbacks of several existing methods such as thin 
ceramic layer thickness (1 mm), inferior interface bonding, 
and high investment. The products of these techniques have 
been widely used as conduits for coal slurry, oil, and cement 
industries [99].

4  Future Trends and Challenges

Even though various coatings had been reported using a 
wide variety of materials using various processes, there 
exists some analysis needed to be completed to get the 
required coatings with the desired properties. Changes in 
the duty cycle will have an impact on the way the pores 
develop and lead to connected pores transforming to isolated 
pores. The intensity of the spark discharge during the PEO 
process can be attributed to the various pore shapes of coat-
ings, thus optimization of the process is to be considered 
for getting tailor-made properties and surface morphology 
[142]. Bioactive glass-based and silicate ceramic coatings 
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have shown promise as coating materials for orthopaedic 
and dental applications through mechanical and in-vitro 
biological investigations. The primary disadvantages associ-
ated with the usage of the earlier generations of hydroxyapa-
tite implants appear to be resolved when new coatings are 
applied to metallic implants with sufficient adhesive prop-
erties to the substrates [143]. For both military and civil-
ian purposes, the use of meta-surfaces to achieve the free 
regulation of electromagnetic wave scattering has attracted 
substantial recognition. Low dielectric CaO–B2O3–SiO2 
(CBS) glass–ceramic/Al2O3 composite coating processed 
by plasma spraying showed that an increase in CBS content 
effectively lowers the density and porosity. This enhances 
sintering densification which helps to be used for aircraft 
stealth applications and can be further explored for defence 
applications [144].

The coating microstructure being affected by particle 
properties, deposition temperature, and deposition had 
reduced impact due to accumulated stress and developed 
coating modulus. The stress developed during the deposition 
process and the deposition layer thickness are the crucial 
variables that determine the segmentation features of coat-
ing. Raising the deposition stress may reduce both the crack 
spacing and the thickness to cracking, although increased 
layer thickness by altering the parameters of the deposition 
process might increase the thickness of cracking, it can also 

result in smaller cracks [145]. The various qualities of coat-
ings can be improved by adding additional feedstocks as seen 
in yittria and zirconia ceramic-reinforced WC–10Co4Cr cer-
met coatings. Additionally, there are not enough thorough 
investigations looking into the interfacial zone, micro/macro 
characteristics as well as tribo-mechanical properties of 
ceramic-reinforced cermet coatings [146]. Because of their 
lower dielectric constant, insulating properties at elevated 
temperatures, and superior thermal conductivity, the metal-
lization of ceramics has grown to be a considerable factor for 
their application in the electronic sectors. In the temperature 
range of -60 to + 150 °C,  Al2O3 and AlN ceramics with cold-
sprayed Cu coatings could endure greater than 100 thermal 
cycles. By measuring the bonding strength of Al coatings 
on  Al2O3 substrates, it was discovered that mechanical inter-
locking and heteroepitaxy bonding were key factors keeping 
Al coatings adhered to the ceramic surfaces. Understanding 
of the bonding mechanisms between metallic coatings and 
ceramics is still limited, hence more research with differ-
ent materials and techniques needs to be done in order to 
advance the industry [147, 148].

Inefficient interfacial bonding that occurs between the 
lubricants and ceramics, along with mechanical property 
degradation brought on by tribological design, limit the 
practical applications of self-lubricating ceramic coatings. 
As a result, the first study with thermally sprayed ceramic 

Fig. 12  Applications of ceramic 
coating in various fields
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coatings by creating crystalline–amorphous heterojunctions 
was conducted to address these issues. This prevents the 
mechanical property degradation of conventional ceramic 
self-lubricating coatings brought on by tribological design. 
Additional research is still required to fully explore the 
domain and its many potential practical applications [149]. 
The process of surface nanocrystallization produces a pas-
sive film at the nanometer scale, which reduces the corrosion 
current density and increases the corrosion potential and 
impedance. As a result, the material becomes more resist-
ant to corrosion. This improved resistance is likely due to 
the refinement of the grain structure and the reduction in 
surface roughness achieved during the surface treatment 
[150]. The use of SMATed SS301 can provide superior 
protection against corrosion compared to untreated SS304 
and SS316. This makes it a suitable substitute in manufac-
turing processes that require high resistance to corrosion. 
Furthermore, the environmental impact and potential harm 
to human health can be minimized since 301 SS contains 
fewer heavy metals such as Cr, Ni, and Co when compared 
to SS304 and SS316 [151]. Considering the perspectives of 
fuel loss and also radiological safety, tritium permeability 
in structural materials is a main concern in blanket systems 
of fusion reactors. The installation of a tritium permeation 
barrier (TPB) over components of metal pipes and blanket 
chassis is one of the technical approaches that helps in solv-
ing the issue. Various coating materials and procedures 
have been used to study ceramic coatings as TPBs, and they 
successfully reduced penetration. However, it is inevitable 
that liquid tritium breeders (Li–Pb alloy) will corrode the 
TPB. It is discovered that the coating deterioration occurs 
when Li–Pb is exposed to high temperatures. Additionally, 
as the number of ceramic surfaces increased, the coating 
deteriorates more severely during static Li–Pb exposure after 
the permeation test which revealed that in order to keep the 
ability of coatings to minimize permeability, fewer contacts 
between the various ceramics should be provided; more 
explorations are to be made to enhance the corrosion resist-
ance of the TPBs [152].

5  Conclusions

The ceramic coating on steel refers to the application of a 
thin layer of ceramic material onto the surface of steel. This 
coating acts as a barrier that provides protection against 
wear, corrosion, and high temperature. The ceramic coating 
enhances the durability and longevity of the steel by reduc-
ing friction, improving thermal stability, and providing a 
smooth and hard surface. The application of ceramic coat-
ings on steel is widely used in the automotive, aerospace, 
and industrial sectors. Ceramic coating over steel surface, 
properties, and applications have been reviewed in this work. 

Various methods of fabrication of coatings, significant pro-
cess parameters, the influence of additives, metallurgical 
characterization, the effect of post-treatments are analysed. 
The corresponding improvements in the microstructures 
obtained, phases formed, and properties enhanced were eval-
uated. The microstructure of a ceramic coating is determined 
by several factors including the composition of the coating, 
the method of application, and the processing conditions. 
Typically, ceramic coatings have a homogeneous and dense 
microstructure with well-bonded ceramic particles. The 
size and distribution of the ceramic particles, as well as the 
presence of any porosity or defects, can greatly affect the 
performance of the coating. Ceramic coatings have proven 
to be a practical solution for improving functional properties 
like corrosion resistance, wear resistance, biocompatibility, 
anti-fouling, self-cleaning, and high-temperature stability. 
Numerous combinations of ceramic coatings over steel had 
already been produced but still there are numerous studies 
ongoing to optimize the parameters, enhance the proper-
ties, and to tailor make the coating for desired applications. 
Given the encouraging results, there is still a strong need 
to discover new composite ceramic coatings and improve 
their properties. Ceramic coatings can be utilized for highly 
advanced applications, such as fuel cells, nuclear power 
plants, and high-temperature applications.
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