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Abstract
Convolutional Neural Network (CNN) is a type of artificial neural network which is trained using image data. This network 
architecture consists of a convolutional base and a dense head which helps in classification tasks. This trained networks is 
then used to solve complex problems like determining the magnitude of damage caused by corrosion. Typically the design 
of a CNN model would involve image collection, pre-processing, feature extraction and analysis. This paper presents a brief 
overview of various applications of CNN-based models to corrosion in selected industries. The use of transfer learning 
to build corrosion CNN models is also discussed. When they are combined with recursive algorithms, the application of 
CNN models to pinpoint exact locations where corrosion occurs is discussed. From the works reviewed, CNN models can 
be applied when limited data are available using the freeze transfer learning approach. Convolutional neural networks have 
shown promising applications for corrosion classification purposes with accuracies above 80%.
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1 Introduction

The word corrosion is derived from the Latin word “cor-
rodere” which means to “wear away” [1]. Corrosion can be 
described as an irreversible, spontaneous process that acts 
to cause deterioration in properties of materials (metals and 
metal alloys) through chemical or electrochemical reactions 
with the environment. This often leads to reduced life of 
components, safety concerns, economic and material losses 
[2, 3]. According to the National Association of Corrosion 
Engineers (NACE), the global estimated cost of corrosion 
was estimated as $2.5 trillion. NACE also estimates that 

about $600 billion could be saved if appropriate corrosion 
practices were implemented [4, 5]. Due to the extreme 
losses caused by corrosion, significant research has gone 
into the various methods of corrosion detection, inspection 
and protection using novel green inhibitors from products 
like expired drugs, plastic wastes and more [6–8]. There has 
been increased interest in applying deep learning techniques 
for corrosion detection with Convolutional Neural network 
(CNN) been the most widely used models [5, 9–11]. CNNs 
are a type of artificial neural network that have been shown 
to outperform other state of the art models and have found 
use for image classification [12, 13], object detection and 
tracking [14, 15], text detection and recognition [16], speech 
and natural language processing [17], radiology [18], agri-
culture [19, 20], etc. The elimination of prior knowledge and 
the effort needed to pre design the classification features is 
a major advantage that CNNs have over other deep learn-
ing methods [21]. CNN’s can automatically and efficiently 
extract features directly from the images and hence elimi-
nates the need for manual feature extraction as seen in other 
machine learning models. With the advent of large image 
datasets, parallel GPU computing and cloud computing. 
CNN’s have been shown to achieve human level accuracy in 
image classification and image segmentation tasks [10, 22].
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2  Convolutional Neural Networks—A Brief 
Introduction

To understand how a CNN works, one must first understand 
the setup of the CNN architecture. The convolutional neural 
network architecture is made of the convolutional base and 
the dense head. The convolutional base is the part of the 
convolutional neural network that is responsible for extract-
ing all the necessary features from the image data. The con-
volutional base is made up majorly of convolutional layers 
(the depth and width varies from model to model) and there 
are usually some other layers like the dropout layer, activa-
tion layers and normalization layers [23]. Immediately after 
the base section, comes the head section. The head section 
is the part of the neural network that is responsible for pro-
cessing the features and performing the required task such 
as classification and segmentation [4]. The head section of 
the CNN architecture is made up mostly of dense layers, the 
dense layer assigns each image to a class based on probabil-
ity values [1]. Each of the layers and their unique tasks and 
operations are briefly discussed:

 i. The Convolution Layer this is the most important 
layer of the CNN. In this layer, relevant features are 
automatically extracted from the image without any 
manual feature extraction. A convolutional layer con-
sists of a set of filters or kernels with trainable weights 
that perform a convolving operation on the image, to 
produce a matrix of features. The most common con-
volution used is the 2D Convolution layer in which a 
filter or kernel moves over the input image in strides 
and operates on sub arrays of the input image to pro-
duce a 2D matrix of features. It is important to note 
that, the smaller the strides, the larger the number of 
features that are extracted from the input data, but this 
also increases the time and computational resources 
required to carry out the convolution [23, 24]. Every 
image can be represented as a matrix of numbers, and 
a kernel performs a convolution operation on each sec-

tion of the image and produces an output vector as 
shown in Fig. 1.

 ii. The Pooling Layer The Pooling layer reduces the 
dimensions or size of the feature maps, and extracts 
only the most useful features from the images. In this 
layer each sub array of the data is reduced into a single 
value using a down sampling operation.

 iii. There are two main methods of carrying out this pool-
ing operation namely: mean and max pooling. In mean 
pooling the average value of each sub array is taken to 
be the new value and in max pooling, the maximum 
value in the sub array is taken to be the new value 
for that sub array as shown in Fig. 2. This pooling 
operation is carried out to reduce the computational 
requirements of the CNN [23, 25].

 iv. The Activation Layer The activation layer introduces 
non-linearity into the model. This makes the model 
capable of fitting curves and non-linear data. The 
major activation functions used in this layer are, Rec-
tified Linear Unit (ReLU), sigmoid, and tanh. This 
process is essential because real world data is barely 
ever linear hence, the model has to be capable of han-
dling these nonlinear situations [26].

 v. Auxiliary layer Convolutional neural networks are 
prone to overfitting the training data, hence auxiliary 
layers are added to reduce the risk of overfitting. One 
of the most common auxiliary layers is the dropout 
layer. The dropout layer randomly drops out a fraction 
of neurons from the model, thereby forcing the model 
to learn more stable patterns [24].

Fig. 1  Showing the convolu-
tional layers

Fig. 2  The pooling layer
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 vi. The Fully Connected Layer: These layers are responsi-
ble for mapping the features learned in the base to the 
associated output. In this layer, the feature maps from 
the previous layers are converted into a 1D feature 
vector (flattened) which can be used for classification 
of the input images and other pertinent tasks [22].

To carry out classification tasks using CNNs, the image 
data is used to train the model by feeding the labelled 
imaged data to the model. The model extracts valuable fea-
tures (shapes, lines, contours, edges, etc.) from the image in 
the convolutional layer, these features are then transferred 
to the dense layers for classification. The dense layer assigns 
each image to a class based on probability values [27]. The 
structure of the CNN layers to study corrosion is shown in 
Fig. 3.

3  Applications of Convolutional Neural 
Networks to Corrosion Studies

According to Ahuja et al. [28], the processes involved in 
using a CNN to study corrosion are:

 i. Image acquisition these are performed using drones, 
smartphone cameras, microscopes among other 
devices [29–31].

 ii. Image Pre-Processing This is the process of cleaning 
and preparing the images to be used to build the deep 
learning model. It involves carrying out a series of 
processes like resizing, image augmentation and data 
labelling [9].

 iii. Feature extraction In this stage, the features required 
from the image are extracted from the images in the 
head layer. The features contain valuable information 
from the image data.

 iv. Classification and Analysis This is the final state of the 
process, in this phase the features have been extracted 
and each image is assigned to a class based on the 
features that have been extracted from it. This phase 
could also include other corrosion analysis operations.

CNNs have been used to study corrosion in the following 
domains:

3.1  Aerospace

The most common use of convolutional neural networks in 
corrosion studies is for classification purposes. Classification 
involves the use of a CNN model to distinguish between cor-
roded and non-corroded samples using image data. Brandoli 
et al. [5] used 210 images to build a CNN model that distin-
guished between corroded and non-corroded images of dif-
ferent parts of an aircraft. The CNN model built in this study 
had an accuracy of 92.2%. Zuchniak, et al. [32] used 13,000 
fuselage images obtained using D-Sight Aircraft Inspection 
System (DAIS) to build a CNN model. They aggregated the 
results of multiple teacher models, and used the results to 
build a student model employed to detect the corroded spots 
on an aircraft fuselage and rivets.

3.2  Marine and Structures

Cha et al. [33] used a region-based CNN architecture to 
study corrosion and other structural defects as shown in 
Fig. 4. In their study 2366 images were used and precision 
ratings of 83.4%, 82.1%, 98.1% were obtained for medium 
steel corrosion, high steel corrosion and bolt corrosion cat-
egories. In another study by Rahim et al. [31] 146,688 seg-
mented images were obtained using digital cameras. These 
were used to build a custom CNN model that classified 
images into corrosion classes and was stacked on a Mask 
R-CNN model to determine the nature of the structure. The 

Fig. 3  Structure of a CNN
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model performed well with an accuracy of 93%. The study 
by Andersen et al. [34] also used a recursive algorithm to 
localize exact regions at which corrosion occurred. This 
study stacked a ResNet50 model for corrosion classifica-
tion on a Mask-RCNN to localize the exact points at which 
corrosion occurred. They used 1314 images (comprising 820 
corroded images and 494 non-corroded images) captured 
by a drone. Yao et al. [24] built a CNN model to study the 
hull structural plate corrosion using 330 images taken with 
a digital camera. An overlap-scanning sliding window algo-
rithm combined with the AlexNet for HCDR network model 
was used to improve the recognition accuracy of corrosion 
areas at sliding window boundaries. Holm et al. [35] used 
9300 bridge images in their classification study of corrosion 
and coating damage on bridges. AlexNet, VGG16, ResNet, 
GoogLeNet were used in the study. Of the CNNs trained, 
VGG-16 had best performance with average recall, preci-
sion, accuracy and F1 score of 95.45%, 95.61%, 97.74% and 
95.53%, respectively.

3.3  Oil and Gas

Bastian et.al [36] used 140,000 images from water and oil 
pipeline videos to create a CNN classifier that was able to 
distinguish between four different levels of corrosion (no-
corrosion, low-level corrosion, medium-level corrosion, 
high-level corrosion). The authors built a custom CNN archi-
tecture for image classification rather than using publicly 
available image classification CNN architectures. A recur-
sive region-based algorithm was used to determine the exact 
points at which corrosion occurred. Ejimuda and Ejimuda 
[9] used CNN to improve corrosion risk management for 
oil and gas facilities. In this study, 36 galvanic and pitting 
corrosion images were scraped from the internet. Image 
augmentation was applied to increase the size of the data-
set. The study used a Faster R-CNN with ResNet50 model 
trained on the MsCoCo dataset. Bhowmik [37] built a CNN 
model using 4000 offshore pipeline inspection images taken 
from the video frames of a Remotely Operated Underwater 

Vehicle (ROV). These studies demonstrate the power of 
CNN to improve offshore asset management at minimal cost. 
A similar work was carried out by Soares et al. [38] used a 
CNN model that could classify underwater images of oil and 
gas infrastructure taken by an ROV into four corrosion levels 
(high, medium, low and no-corrosion).

3.4  Others

Petricca et al. [39] used a deep learning model to classify 
corrosion into corroded and not-corroded. The deep learn-
ing model built in this study had a confidence level of 80%. 
Similar localization algorithms have been used by other 
researchers to determine the exact regions where corro-
sion occurred [1, 33, 40]. Yu et al. [41] demonstrated how 
CNNs could improve corrosion detection capabilities of 
Micro Aerial vehicles (MAVs) using Yolov3-tiny network. 
The image dataset from the field were labelled with four 
types of corrosions i.e. nubby, bar corrosion, exfoliation 
and fastener corrosion were used for training and testing the 
model. The model had a mean average precision of 84.96% 
when compared to existing detectors. In some cases, a single 
CNN model might not produce the best results depending 
on the task to be solved and there might be a need to use 
more than one model to solve the task. A machine learning 
model that utilizes two or more models to make a decision 
is called an ensemble model [42]. The study by Xu. et al. 
[43] compared the performance of an ensemble mode to 
single stack models. The ensemble models performed bet-
ter in all corrosion recognition tasks. In another study by 
Idusuyi et al. [44], CNN was used to classify corrosion on 
mild steel samples in a laboratory setting using images from 
a digital camera and a mobile phone. The study showed that 
CNN corrosion classifiers had accuracies above 80%. Ta 
and Kim [11] used a regional CNN network to monitor cor-
roded bolts on steel structures. From their study the model 
could distinguish rusted bolts from those without rust for 
light intensities greater than 63 lx. The classification accura-
cies in the studies presented above show that the method of 

Fig. 4  CNN Model for detecting corrosion damage types [33]
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using convolutional neural networks to study and identify 
corrosion in metal components is both viable and promising.

3.5  Corrosion Training Dataset for CNN

From the studies reviewed it is evident that data acquisi-
tion (in terms of quality and quantity) is vital to building an 
accurate CNN corrosion model. The general rule of thumb 
is that the more the data the better. In other words, the more 
the data samples used to create a model the better the gener-
alization ability of such a model. In a research by Ejimudua 
and Ejimuda [9] only 36 images were used to create a model 
to classify between corroded and non-corroded steel, the 
model performed well on the test set with an accuracy of 
83.3%, but when the model was used for other types of cor-
rosion defects the model did not generalize well. The poor 
generalization ability of the model was due to the fact that 
the dataset was too small to create a robust model that could 
handle a multitude of use cases. It is also important to note 
that as the size of the dataset increases, the time required to 
train the model, the computational resources and cost also 
increases. This additional cost could be a drawback in using 
the CNN methods in resource limited settings. Low quality 
data will act as noise to the CNN model and form patterns 
based on these noise attributes. For this reason, the image 
capture process is sensitive and should be done using appro-
priate devices and in the right environment conditions [33, 
45, 46]. In cases where the corrosion data is insufficient, 
manual data augmentation techniques like rotating, mirror-
ing, sampling, shifting, etc., are used to turn the available 
corrosion data into a new set of data without any alteration 
to the original data. This again can increase computational 
cost when the dataset is large [13]. Using CNN for corro-
sion modelling can be quite challenging due to the pres-
ence of scales and patterns that could be hard to distinguish 
from corrosion products on the corrosion image. This would 

require high resolution image capture, additional expertise 
and computational skill.

4  Transfer Learning and the Effect 
on the Accuracy of Corrosion CNN Models

Convolutional neural networks are generally designed to 
solve a specific task; such models are built from the ground 
up using large datasets and high computational resources 
which might not always be available. Classification CNN 
models also require labelled data which can be expensive. 
This problem can be addressed with the use of transfer learn-
ing, where the knowledge gained from one task is transferred 
and reused in another task [47]. The use of transfer learn-
ing for CNN corrosion applications has been made possible 
with the availability of large annotated image datasets like 
the ImageNet dataset [48] and the MSCoco dataset [9]. The 
ImageNet dataset is a large dataset that contains over 1.2 
million images with about 1000 classes, this large collection 
of labelled data has been used to build several CNN models 
which serve as the backbone for many image classification 
and object detection problems [49]. Some of these models 
have been made easily available and can be modified to suit 
the required needs of a specific domain. The AlexNet and 
GoogleNet are some of the most popular CNN models built 
on the ImageNet dataset [35]. The transfer learning approach 
to solving machine learning problems is very attractive in 
the field of CNN modelling due to the high requirements 
needed to build a solid CNN model from scratch. It is how-
ever important to understand the rudiments of the transfer 
learning method and when to use it for a given task [50]. The 
source domain and the target domain must be sufficiently 
related or else little to no useful information will be trans-
ferred which leads to the problem of negative transfer [47]. 
A diagrammatic representation of transfer learning is shown 
in Fig. 5.

Fig. 5  Diagrammatic representation of the transfer learning process
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One of the most common methods of applying transfer 
learning to image classification is the freeze method [1]. 
In the freeze method the base layer of the CNN is kept 
unmodified and only the head (classifier) is trained on the 
new data as shown in Fig. 6.

The freeze approach is very useful in situations where 
limited data are available. Ejimuda and Ejimuda [9] used 
the freeze approach to create a corrosion classifier. In 
this study, only 36 images were available, using some 
data augmentation techniques like flipping and rotat-
ing the images through angles, the number of images 
was increased to 336. The study used a transfer-learned 
ResNet model trained on the MsCoco dataset as the basis 
for the model. An 83.3% accuracy was achieved for using 
the model. Holm et al. [35] also used the freeze trans-
fer learning approach to create a corrosion classifier. In 
this study, the base of the CNN model was not altered 
but some layers of the head had to be dropped to solve 
the target task. One of the pre-built models used in this 
study was the AlexNet model. In another study by Mat-
thaiou and Papalambrou [1] the convolutional base of 
the ResNet50 was frozen and the head was replaced with 
two dense layers to fit the required task. The study by 
Bastian et al. [36] made a comparison between the use 
of the transfer learning approach and building a custom 
CNN for the task of classifying corrosion into four dif-
ferent classes. A total of 1,200,000 images were created 
using augmentation techniques. In this study ZFNet, and 
VGGNet were the pre-trained networks on which transfer 
learning was applied. To use transfer learning effectively 
the domains must be sufficiently related to ensure there 
is no case of negative transfer and thereby ruin the model 
[47].

5  Future Work

Although CNNs have been successfully used to model cor-
rosion for different infrastructures, there is still a dearth 
of information on applying CNN for structures like LPG 
tanks, crude storage facilities and gas gathering stations, 
etc. Designing and implementing remote data collection 
for these facilities would aid in the development of reliable 
CNN models useful for maintenance and planning.

6  Conclusion

From the review presented, the following conclusions can 
be drawn:

 i. Convolutional Neural Networks can be used to detect 
corrosion following these steps- Image acquisition, 
image pre-processing, feature extraction and analysis.

 ii. Convolutional Neural Networks with Recursive algo-
rithms could be used to pinpoint exact locations where 
corrosion occurs.

 iii. Quality and sufficient data needed to build reliable 
Convolutional Neural Network models.

 iv. CNN models using the Freeze transfer learning 
approach is useful when limited data are available.

 v. Convolutional networks have shown promising appli-
cations for corrosion classification purposes with 
accuracies above 80%.
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Fig. 6  Freeze transfer process
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