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Abstract
Aluminum matrix hybrid composites (AMHCs) in the current generation materials category are becoming a potential for 
many advanced engineering applications requiring customized properties. The selection of an acceptable reinforcement agent 
for the chosen aluminum alloy matrix, as well as a suitable processing approach and conditions, allows for customization 
of the attributes of these materials. As a result, hybrid composites have gained increasing attention more than traditional 
aluminum matrix composites with single reinforcement due to their ability to achieve superior custom properties. In addi-
tion, hybrid composites can be processed utilizing traditional metal matrix composite processing procedures and equipment, 
which has the advantage of lowering production costs while achieving superior qualities. The investigations have given the 
derived properties for the use of several reinforcement agents accessible on the commercial market, to achieve the goal of 
developing AMHCs. The purpose of this study is to show that it is possible to make AMHCs with improved mechanical 
and tribological properties and to stimulate their use on the characteristics of AMHCs manufactured using the stir casting 
method, as well as the processing obstacles are critically examined and presented.

Keywords  Aluminum matrix hybrid composites · Liquid processing · Dispersion of reinforcement · Mechanical properties · 
Tribological properties · Strengthening mechanisms

1  Introduction

Aluminum matrix composite (AMC) materials have grown 
in popularity in recent decades as a means of producing a 
wide range of structural components that require high wear 

resistance, lightweight, and high strength [1, 2]. With the suit-
able selection of one or more reinforcement agents for the spe-
cific aluminum matrix alloy, such a combination of physical, 
microstructural, mechanical, and tribological properties can be 
achieved with AMCs [3]. Al2O3 [4–7], SiC [8–12], WC [13, 
14], TiC [15, 16], TiB2 [17–20], Si3N4 [21, 22], B4C [23, 24], 
graphite [25, 26], fly ash [27, 28], boron nitride [29], ZrO2 [30, 
31], carbon nanotube [32, 33], carbon fiber [34], WS2 [35], and 
MoS2 [36] are the most commonly used reinforcement agents 
in the development of aluminum-based composite materials in 
the literature. Aluminum matrix hybrid composites (AMHCs) 
are comprised of two different reinforcements with a single 
matrix alloy designed to achieve the combination of properties 
for multifunctional applications that AMCs cannot accomplish 
[37]. The standard equipment required for processing AMCs 
includes a casting furnace, stirring mechanism, casting die, 
and die preheating systems. AMHCs have two or more rein-
forcement phases, which offer a variety of qualities to the com-
posite, whereas AMCs with simplex reinforcement can only 
offer a restricted set of properties when compared to AMHCs. 
The processing technology and equipment needed to make 
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AMHCs are the same as those needed to make AMCs. As a 
result, AMHCs have a clear advantage over AMCs in terms 
of producing components with greater attributes while using 
the same equipment and manufacturing methods [37–40]. The 
most often utilized processes for processing AMHCs are pow-
der metallurgy as a solid-state processing approach [41], stir 
casting as a liquid-state processing technique [42, 43], and 
squeeze casting as a semi-liquid-state processing technique 
[44].

Stir casting is a well-established technology for produc-
ing bulk composites in large quantities because it is easy, 
cost-effective, and adaptable. The current state-of-the-art in 
advanced materials research is to design materials to meet 
the ever-changing functional characteristics requirements for 
components in high-performance applications. As a result, 
recent research into the production of innovative materials 
has focused on the processing of AMHCs. The research and 
studies were carried out on the derivable properties of the 
chosen aluminum matrix alloys with the addition of various 
combinations of reinforcing agents available on the com-
mercial market [45–51]. This study aims to emphasize the 
viability of creating AMHCs with improved mechanical and 
tribological properties to encourage their growing use in 
widespread industrial applications, based on reported stud-
ies in such investigations. Recent experimental discoveries 
on the characteristics of AMHCs manufactured using the stir 
casting method, as well as the problems encountered during 
the process, are critically examined and presented. The com-
pressive review in this study looked at several reinforcing 
agent combinations utilized in the processing of AMHCs 
to improve their mechanical and tribological properties, as 
well as the effect of such reinforcement combinations on 
improved qualities.

During the previous decade, a significant increase in the 
number of publications on the creation of aluminum matrix 
hybrid composites has been documented, as shown in Fig. 1. 
This demonstrates the critical necessity of research into the 
creation of such composites for industrial uses. Figure 2 
shows that 46.07 percent of papers were published as origi-
nal research articles, 57.76 percent of papers were published 
as conference proceedings, and 2.17 percent of papers were 
published as review articles. Also, as shown in Fig. 1, there 
is still a need for more information on processing and char-
acterization in the field of aluminum matrix hybrid com-
posites research.

2 � Reinforcement Particle Dispersion 
and Particle–Matrix Interfacial Bonding

With the processing of metal matrix composites in liquid 
state fabrication, reinforcing particle agglomerations and 
cluster formations are unavoidable problems. One of the 

primary aspects that has a considerable influence on the 
uniformity of particle dispersion is compatibility in physi-
cal and chemical properties, i.e., matrix-reinforcement 
wettability [52–54]. The uniform distribution of reinforce-
ment in the matrix, on the other hand, has a direct impact 
on the composites' ability to achieve the desired properties 
improvement. Particle agglomerations and clusters have 
been regarded as particularly difficult to eliminate, even 
though they are necessary for defect-free composite mate-
rial manufacturing. Pradeep et al. [55] demonstrated reason-
ably distributed reinforcement particles with strong inter-
facial bonding using a ball-milled blend of silicon nitride 
(Si3N4) and graphite (Gr) particles for better dispersion of 

Fig. 1   Research articles on aluminum matrix hybrid composites pro-
cessed through stir casting approach: a total number of publications 
in year wise during the past decade, b percentage breakdown of pub-
lications

Fig. 2   Al 6351 composites show the formation of particle agglomera-
tions for the addition reinforcement from mono to hybrid [98]
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reinforcement in the aluminum matrix alloy. Cast compos-
ites, on the other hand, produced much smaller clusters due 
to the density differential between the reinforcing particle 
mixture and the matrix aluminum alloy. Up to 5% weight of 
(Al2O3 + TiO2) ceramic reinforcement in Al2218 aluminum 
matrix alloy resulted in acceptable particle dispersion, but 
above that weight, it tended to form agglomerations due 
to segregations and rejection of the particles, resulting in 
agglomerations [56]. To allow a larger weight percentage of 
ceramic reinforcement, they proposed increasing the stirring 
duration to a faster stirring speed. Manikandan et al. [57] In 
the hybrid Al7075/(B4C + CDA) composite, the tempera-
ture mismatch between matrix and ceramic particles is the 
most important factor in the development of reinforcement 
particle clusters. The thermal mismatch causes the reinforce-
ment-matrix alloy slurry to solidify at a slower rate, result-
ing in particle clusters in the matrix. For Al7075/Al2O3/SiC 
hybrid composites, adding magnesium during the stirring 
process was recommended to improve interfacial bonding 
between the reinforcements and matrix, reduce cluster for-
mation, and improve wettability [58]. The wettability of 
the matrix and reinforcement is improved by the reaction 
between reinforcement and magnesium. As a result, adding 
a little amount of magnesium to the composite while stir-
ring improves the wettability of the reinforcement particles 
with the matrix alloy. Satish et al. [59] and Kumar et al. [60] 
both found similar results in their investigations. The high 
moisture content of the Fe2O3 and B4C reinforcements in 
liquid metal allows for effective interfacial bonding with the 
Al6061 matrix alloy [61]. Up to 5% of each reinforcement’s 
addition, Bhasha et al. [62] reported uniform distribution 
of TiC and RHA particles, but beyond that, Rice husk ash 
(RHA) promotes agglomeration in the composite, resulting 
in low strength and porosity. The agglomeration is caused by 

a substantial amount of RHA, a pore-filling element that fills 
the gap between bonding elements such as grain boundaries 
[63]. The inclusion of magnesium in the Al6061 aluminum 
alloy influenced the graphite distribution homogeneity in 
the Al6061/TiC/Gr hybrid composite [64]. In a hybrid metal 
matrix composite, the creation of a solid solution of TiO2 
and MoS2 improves the bonding between the reinforcement 
and the matrix alloy LM13 [65]. The inclusion of ceramic 
reinforcement leads to the formation of particle clusters 
from mono reinforcement to hybrid reinforcement, as seen 
in Fig. 2. As seen in Fig. 3, the reinforced particles are con-
sistently dispersed throughout the matrix after being stir 
cast.[66].

Using ideal parameters such as temperature, time, stirring 
speed, and reinforcement particle preheating temperature, 
the reinforced particles are equally dispersed throughout 
the matrix. Magnesium in composites lowers agglomeration 
and porosity while also providing great bonding between the 
matrix and reinforced particles.

3 � Mechanical Properties

AMCs’ mechanical qualities are essentially determined by 
the mechanical properties of its integral materials, such 
as the aluminum matrix and reinforcement agents. The 
hardness of a composite with tougher reinforcement, for 
example, is superior to that of a composite with soft rein-
forcement. The inclusion of a large number of ceramic 
particles in a matrix provides additional resistance to 
deformation due to applied loads, causing the composite's 
tensile strength and hardness to be increased to the maxi-
mum extent possible, but at the expense of its elongation 
[67–70]. However, the inclusion of SiC/B4C reinforcement 

Fig. 3   a SEM micrograph of Al þ SiC (5%) þ muscovite or hydrated aluminum potassium silicate (2%) composition, b (3%) composition, and c 
(4%) composition [66]
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increased the strength and hardness by up to 20%, and 
further reinforcement resulted in a drop in tensile strength 
due to the production of a high level of particle agglomera-
tions and porosity [71]. Shirvani Moghaddam et al. [72] 
indicate the best amount of reinforcement for achieving 
maximum strength, and they found that raising the rein-
forcement percentage over the optimal values resulted in 
lower strength. When the composite material consisted of 
particle agglomerations and porosity, the ductility of the 
composite was also negatively impacted by the resistance 
to flowability [73]. Keneth et al. [74] found that adding 
rice husk ash (RHA) as reinforcement into the Al–Mg–Si 
alloy matrix improved tensile strength and ductility, but 
that increasing RHA % and reducing Al2O3 lowered tensile 
strength and hardness in hybrid composites. The presence 
of Al2O3 particles as barriers to dislocation movement in 
the Al6061/Al2O3/graphite hybrid composite helped to 
boost the composite’s hardness [75].

According to Mohammed et al. [76], adding Bagasse-
ash as reinforcement to the Al7075 matrix alloy increased 
mechanical strength while causing a large slag formation 
during casting since Bagasse-ash contains carbon and oxy-
gen. As a result, the authors reinforced graphite as a sec-
ondary reinforcement to reduce the production of slag with 
the addition of Bagasse-ash and observed a favorable effect 
of increased wear resistance. Improved mechanical proper-
ties with the addition of SiC and fly ash to the Al–Zn alloy. 
They also detected the creation of fly ash particle clusters, 
which resulted in increased porosity in the composite, lower-
ing its mechanical characteristics [77]. Ambigai et al. [78] 
investigated Al–Gr/Si3N4 composites and found that hybrid 
composites had better characteristics than single-reinforced 
composites. Because of the soft nature of the reinforcements 
compared to the ceramic reinforcement agents, the hardness 
of the composite is lowered when Kumar et al. [79] and 
Prasad Reddy et al. [80] add red mud particles to Al6061 
alloy. In the examination of Baradeswaran et al. [81] for the 
development of Al7075/Al2O3/5 wt% Gr. hybrid compos-
ites with beneficial results, Al2O3 particles as hard ceramic 
agents were included together with the soft reinforcements 
to counteract the drop in hardness.

Pardeep et al. [82] found that using composites reinforced 
with ball-milled ceramic particles improved hardness and 
tensile characteristics significantly, as illustrated in Figs. 4 
and 5.

The enhanced hardness and tensile properties of the com-
posite are due to the evenly dispersed ceramic hard particles, 
which contributed to the composites’ strength improvement 
via several strengthening mechanisms. However, because of 
the additional reinforcement, the ductility of the composites 
was reduced, resulting in a lower elongation percentage, as 
seen in Fig. 6. In the experiment of Mummoorthi et al. [61], 
a similar trend in tensile characteristics improvement was 

obtained with the Al/Fe2O3/B4C composite, as shown in 
Fig. 7.

The ductility of the composites was lowered because of 
the increased reinforcement, resulting in a lower elongation 
%, as seen in Fig. 6. The Al/Fe2O3/B4C composite showed 
a similar trend in tensile properties improvement in Mum-
moorthi et al. [61] experiment, as illustrated in Fig. 7.

4 � Tribological Properties

To improve wear resistance, the presence of highly wear-
resistant hard ceramic particles with the soft matrix alloy 
is studied [83]. The chemical and mechanical properties 
of both the reinforcement and matrix materials, as well 
as the application of the load, speed, sliding distance, and 
surrounding atmospheric and sliding conditions, all influ-
ence the improved wear properties of AMCs with ceramic 
particle reinforcement. The wear experiments were utilized 
to investigate the tribological properties of hybrid AMCs 

Fig. 4   The effect of (Si3N4 + Gr) reinforcement on Microhardness of 
AA6082 stir cast hybrid composites [82]

Fig. 5   The effect of (Si3N4 + Gr) reinforcement on ultimate tensile 
strength of AA6082 stir cast hybrid composites [82]
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under a variety of wear conditions, including applied load, 
sliding velocity, sliding distance, sliding time, and sliding 
speed [84–86]. Kaushik et al. [87] utilized SiC and Gr as 
wear-resistant reinforcing agents to improve the wear resist-
ance of Al6082 alloy. When compared to the base alloy, the 
wear resistance of the hybrid composite improved by 16.4% 
and 27 percent in the as-cast and heat treatment conditions, 
respectively. This indicates the increased wear resistance 
that comes with age [88]. Siddesh et al. The inclusion of 
nanosized B4C + MoS2 into AA2219 alloy increased wear 
resistance by forming a lubricant-rich tribo-layer between 
pin and disk. The combined effect of Al2O3 + Gr in AlSi 
10 Mg matrix composite results in improved wear resist-
ance due to the strong Al2O3 ceramic resistance to wear and 
graphite particles delaying the transition from mild to harsh 
wear under working conditions, according to Radhika et al. 

[89]. The improved wear resistance can be attributable to the 
reinforcements’ improved hardness, strength, and uniform 
distribution [90], as illustrated in Fig. 8.

Krishna et  al. [91] investigated the wear loss of an 
Al7075/WC/Cobalt hybrid composite under different loads, 
speeds, and sliding distances, as well as variable reinforce-
ment weight percentages. In comparison to composites, the 
soft nature of matrix alloy causes higher wear loss and adhe-
sive wear, according to the researchers. Abrasive wear is 
caused by the hardness of reinforced particles, which mini-
mizes wear loss. The influence of load, sliding velocity, and 
sliding distance on wear loss is shown in Figs. 9, 10, and 
11. The formation of a mechanically mixed layer acts as an 
intermediate lubricant layer between the rubbing surfaces, 
reducing wear loss as the sliding speed increases, while the 
longer contact time during rubbing raises the temperature 
between the sliding surfaces, increasing the sliding distance 
and thus increasing wear loss.

As demonstrated in Fig. 12, 5 weight percent of reinforce-
ment in Al2218/Al2O3/TiO2 hybrid composite has greater 
wear resistance than matrix, 2 weight percent, and 7 weight 
percent of reinforcement. The composite had a better parti-
cle dispersion, less porosity, and enhanced particle retention 
at 5 wt% reinforcement [56]. Due to the increasing contact 
pressure between the mating surfaces, the wear loss of the 
Al–Mg–Si-T6/SiC/muscovite-hybrid metal matrix compos-
ites has shown a declining trend as illustrated in Fig. 13 [66] 
for varied load situations.

During wear testing, the inclusion of SiC reinforcement 
particles creates a mechanically mixed hard layer and graph-
ite acting as a solid lubricant. In comparison to a composite 
consisting of a single reinforcement and an unreinforced 
alloy, the combined action of SiC and graphite reinforcement 
with the matrix alloy improves overall wear performance 

Fig. 6   The effect of (Si3N4 + Gr) reinforcement on elongation per-
centage of AA6082 stir cast hybrid composites [82]

Fig. 7   The variation of tensile properties of aluminum matrix com-
posite for increased percentage of (Fe2O3/B4C) reinforcement [61]

Fig. 8   The effect of applied load and sliding distance on weight loss 
during dry sliding of AA6063/Al2O3/TiC hybrid composite [90]
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[92, 93]. According to Prasat et al. [94], increasing the 
weight percentage of fly ash while keeping the graphite 
constant reduces wear loss in AlSi10Mg/Fly Ash/Graphite 
hybrid composites by wearing out the reinforcements and 
forming a mechanically mixed layer between the pin and 
disk surfaces that acts as a solid lubricant.

Singh et al. [95] reported that: (i) increased normal load 
causes increased wear loss, (ii) increased sliding speed 
causes increased wear loss because heat development is 
greater at higher speeds, and (iii) at lower track diameter, 
the formation of a non-uniform tribo-layer throughout the 
specimen caused an increase in wear loss. The combination 
of SiC and MWCNT reinforcements to LM13 alloy reduces 

wear rate due to an increase in micro-hardness, resulting 
in increased hybrid composite strength [96]. In conjunction 
with Al2O3 and RHA, graphite played a significant effect in 
increasing wear resistance [97]. The presence of graphite 
resulted in the formation of a solid lubricant layer at the rub-
bing surfaces’ interface. However, increasing the proportion 
of graphite reduces wear resistance because of graphite’s 
brittle nature, which reduces hardness [83]. Due to the for-
mation of clusters, the wear resistance of the hybrid compos-
ite Al 6351/Al2O3/SiC is higher than that of Al 6351/Al2O3 
[98]. Due to an increase in hardness, the wear resistance of 
the Al6061 hybrid composite is increased up to 1.2 wt% SiC 
and 0.5 wt% graphite reinforcement for all applied loads. 
The wear rate increased as the weight percent of SiC rose 
from 1.2 to 1.6 due to the agglomeration of hard ceramic 
SiC particles [99]. This is owing to the soft SiC obstructing 
dislocation movement, and sheared graphite particles acting 
like a protective layer between the contacting surfaces. With 
the inclusion of carbon-based materials, the wear resistance 

Fig. 9   Graph showing the wear rate of Al7075 alloy and Al7075—6 
and 9wt% of WC–co composite under different loading conditions 
[91]

Fig. 10   Graph showing the wear rate of Al7075 alloy and Al7075—6 
and 9 wt% of WC–co composite under variable speeds [91]

Fig. 11   Graph showing the wear rate of Al7075 alloy and Al7075—6 
and 9 wt% of WC–co composite under different sliding distance [91]

Fig. 12   Wear rate versus normal loads for all particle additions [56]
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was enhanced, and a protective layer will form between the 
mating surfaces that will act as a lubricant [100]. For the Al/
Al2O3/TiO2 hybrid composite, the worn surface morphology 
resulted in deeper grooves, wear debris, rough surface, and 
greater delamination at the minimum % of reinforcement 
due to adhesive wear, as illustrated in Fig. 14 [101]. Palani-
kumar et al.[102] reported similar results in Al6061/B4C/
Mica Hybrid Composites.

For higher stress due to increased plastic flow at the inter-
face of the sliding surfaces, Elango et al. [103] observed 
increasing breadth and depth of the grooves. Due to the crea-
tion of a mechanically mixed hard layer and a solid lubricant 
between the pin and counter disk, the wear characteristics of 
composites improve as the weight % increases.

5 � Strengthening Mechanisms

There have been few studies that have looked at the various 
strengthening methods of AMCs for the addition of hard 
ceramic reinforcement agents. The commonly mentioned 
strengthening mechanisms are highlighted in this article. 
The strength of the composite is evaluated using the result-
ant grain size in the Hall patch strengthening method [104, 
105]. The strength of the composite is determined using the 
interaction between the reinforced particles within the com-
posite structure and the grain dislocations in the Orowan 
strengthening process. According to this process, the rate of 
blockage to grain dislocations is determined by the degree of 
dispersion of the reinforcing particles. However, it has been 
observed that when the particle size is greater than 1 m, the 
Orowan mechanism cannot be used to estimate the strength 
of the composite because the inter-particle distance is greater 
[106, 107]. The difference in thermal expansion coefficients 
between the reinforcement and matrix alloys causes residual 
stresses in the composite, which induce dislocation near the 

reinforced particles and increase the composite’s strength 
[108]. The thermal mismatch strengthening mechanism is 
the name of the mechanism. The homogeneous distribu-
tion of reinforced particles in matrix alloy induced strength 
enhancement due to load transmission from matrix alloy to 
reinforcement, according to the load-bearing strengthening 
mechanism [109–112].

Gautam et  al. [113] investigated Al5052/Al3Zrmp/
ZrB2np hybrid composites and found that, as shown in 
Fig. 15, the matrix grain size was continually lowered to 
increase the volume percentage of second-phase reinforce-
ment particles. Secondary reinforcing in the hybrid com-
posite limited grain formation during solidification while 
enhancing ultimate tensile strength and hardness qualities. 
However, for a lesser proportion of secondary reinforce-
ment, the percentage of elongation increased, and its further 
increase had a detrimental effect. The theoretical strength of 
the dislocation, Orowan, grain refinement, and solid solution 
strengthening mechanisms has been found to be 5–8% higher 
than the experimental values.

Mechanical properties of Al7075/CNT/GNP composites 
were investigated by Siavash et al. [114] at various weight 
percentages. Higher reinforcements increase the hardness 
and yield strength of the composites due to increased dislo-
cation density. In terms of increasing yield strength, the load 
transfer strengthening mechanism contributes more than the 
Orowan and CTE mismatch mechanisms. The Hall–Petch 
mechanism has no effect on the increase in yield strength 
owing to grain refinement during 400 °C accumulative roll 
bonding.

Because of the reduced free zones in the matrix alloy 
[115], the grain size of the Al6061/B4C composite dropped 
from 5 to 20 wt% with the addition of B4C reinforce-
ment particles, resulting in improved mechanical proper-
ties. Increased reinforcing reduced grain size and the yield 
strength of the composite calculated using the hall patch 

Fig. 13   Wear loss of various 
compositions at different load-
ing conditions [66]
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mechanism matched the experimental values. The inclu-
sion of B4C reinforcement particles increased the strength 
of the material due to grain refinement, higher density, and 
obstruction of grain dislocation reinforcement at grain bor-
ders. Because the thermal expansion coefficient between the 
matrix and reinforced particle increases with an increase 
in temperature, which increases dislocation density, the 
dislocation strengthening mechanism is more dominant in 
increasing volume fraction and decreasing particle size as 
shown in Fig. 16 than the other mechanisms.

The addition of TiB2 in Al alloy reduced grain size, 
according to Chen et al. [116], because the hard ceramic par-
ticles surrounding the grain prevented its expansion during 
solidification. The enhanced yield strength for the increasing 
percentage of reinforcement due to the smaller grain size 

and obstruction of the grain dislocation for uniform distri-
bution of reinforcement particles was also demonstrated by 
the strength evaluated using the Hall patch and Orowan pro-
cesses. In research on the Al7075/TiB2 composite, Prasanna 
et al. [117] found comparable results. According to N Kumar 
et al. [118], the higher number of nucleations generated by 
the increased proportion of ZrB2 particles added to the 
AA5052 aluminum alloy resulted in improved grain growth 
resistance. Due to increased grain refinement and the pres-
ence of hard reinforced particles, the mechanical charac-
teristics of the composite improved when the reinforce-
ment percentage was raised. The strengthening processes 
also showed that reduced grain size, increased dislocation, 
and interaction between the dislocation and reinforcement 
boosted composite strength. In the research of Bembalge 

Fig. 14   SEM micrograph of 
the worn surface of speci-
men a Pure Al b Al with 5% 
reinforcement c Al with 10% 
reinforcement d Al with 15% 
reinforcement e Al with 20% 
reinforcement at 20 N load and 
250 × magnification [101]
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Fig. 15   Grain size distribution curves of matrix in a AA5052 base alloy, b hybrid composite with 10% Al3Z and 1% ZrB2, and c hybrid compos-
ite with 10% Al3Z and 3% ZrB2 [113]

Fig. 16   Comparison of strength contribution from different mecha-
nisms as a function of volume fraction for the average [115]

Fig. 17   Influence of reinforcement particle size on strength enhance-
ment due to various strengthening mechanisms [120]
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et al. [119], however, the size reduction of the ceramic rein-
forcement particle (SiC) improved the mechanical properties 
of the Al6063 matrix composite. The smaller particle size 
allows for more space at the dendrite's grain boundary, limit-
ing grain dislocation under loading conditions. This boosted 
the composite's strength but had a negative impact on its 
elongation. Higher strength due to grain refining, load trans-
mission, and increased density of dislocation led to a rise 
in the composite's strength, according to the strengthening 
process. The contribution of various strengthening processes 
is proportional to the size of the reinforcement particles, as 
shown in Fig. 17 [120]. The role of Orowan loops was not 

examined due to the coarseness of the reinforcement parti-
cles in Gupta et al. [121]. analysis, which found that thermal 
mismatch was the primary cause of strengthening.

While Baburao [122] found that Orowan loops strengthen 
composites, and that solid solution has a major role in 
increasing composite strength. With increasing percentages 
of reinforcement content in the composite, the strengthening 
contributions of dislocations interactions between matrix-
reinforcement particles, grain refinement, and load transfer 
mechanism grew monotonically.

By considering several characteristics such as grain size, 
grain dislocation, coefficient of thermal expansion, and 

Table 1   The findings reported on Stir cast Al6XXX matrix hybrid composites

S. No. Hybrid AMCs Observations on the enhancement of properties Reference

1 Al6061/Fe2O3/B4C The density of composites like Hardness, compression, and tensile strength has increased for an 
increasing percentage of reinforcements. There is also an increase in the percentage of Wear 
resistance

[61]

2 Al6061/TiC/Gr Tensile strength of composite increased up to 4% addition of TiC with 5% of graphite. Beyond 4% 
of TiC, the strength of the composite was decreased. Increase in composite wears resistance to 
increase reinforcement percentage

[64]

3 Al6061-T6/SiC/Al2O3 The mechanical properties of the composite are increased by increasing the percentage of rein-
forcement. The ductility in the composite has been reduced

[73]

4 Al6061/Gr/B4C The existence of hard ceramic particles provided better resistance to dislocations and thus increased 
the tensile strength of the composite

[70]

5 Al6061/SiC/Gr (1) The addition of hard ceramic particles enhanced the hardness of the hybrid composite and 
withstood the dislocation movement of the composite’s grain

[105]

(2) The addition of soft graphite particles created a protective layer between the mating surfaces, 
which increased wear resistance

6 Al6061/SiC/Gr The tensile strength, wear resistance, and hardness of the composites have been improved by 
increasing the reinforcement percentage because of a good transformation of the reinforcement 
load to the matrix

[123]

7 Al6061/SiC/B4C The microstructure conforms to this uniformly distributed reinforcement throughout the matrix 
alloy. The composite’s hardness and tensile strength increase with increasing weight% B4C and 
decreasing weight% SiC due to the extraordinary hardness and tensile strength of both B4C and 
SiC

[124]

8 Al6063/Al2O3/RHA/Gr The wear resistance was increased by the addition of combined reinforcements. Formation of a 
Solid lubricant because of the presence of graphite and the hardness of the co-particles. The hard-
ness of the composite has been reduced through the fragility of the graphite

[97]

9 Al6063/Al2O3/TiC Hard ceramic particles resist strain from hybrid composites and improve the wear resistance [90]
10 Al6082/SiC/Gr (1) The composite has a higher SiC reinforcement than with SiC + Gr. Because Gr does not influ-

ence the improvement of hardness due to its softness
[87]

(2) The wear resistance of the hybrid composite is greater after aging than the untreated composite 
because of the formation of intermetallic precipitates formation with aging

12 Al6082/Al2O3/B4C/Gr (1) The uniform distribution of reinforced particles in the microstructure was observed in the com-
posite. Agglomeration formation has been increased to increase particle weight

[95]

(2) Hardness and wear resistance have been increased with an increasing percentage of the rein-
forcement up to 10% of Al2O3, 3% of Gr, and 1% B4C. Properties were reduced for an additional 
percent reinforcement due to the formation of agglomerations

13 AA6082-T6/SiC/B4C The hardness and tensile strength of the composite have been increased by increasing the reinforce-
ment percentage up to 15% and beyond, and the properties have been diminished

[71]

14 Al 6351/Al2O3/SiC (1) The extra reinforcement improved the hardness [98]
(2) To increase the weight% of reinforcements, increased the number of clusters in composites and 

resisted wear loss
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thermal mismatch, the above-mentioned mechanisms play 
a vital role in the enhancement of mechanical properties. 
Tables 1, 2, 3, and 4 summarize the improvement in various 
features of various grades of aluminum alloys as a matrix 
with the refinement of various combinations of particulate 
agents treated using the stir casting technique.

6 � Conclusions

A thorough overview of the microstructural, mechanical, 
and wear aspects of aluminum metal matrix hybrid com-
posites treated using liquid state processing is presented 
in this article, along with a complete collection of recently 
published research findings. The presentation of numerous 

debates on various strengthening mechanisms recognized 
as the primary causes for the development of such qualities 
with metal matrix composites has received specific attention.

The findings of the review demonstrate that,

(1)	 The most important elements in stir casting for the 
effective fabrication of sound aluminum matrix hybrid 
composites are stirring speed, time, and temperature, 
reinforcement particle preheating temperature, and 
matrix-reinforcement slurry transferring temperature.

(2)	 The consistently dispersed reinforcement particles 
increased grain refinement, indicating effective rein-
forcement-to-matrix alloy bonding. While particle 
agglomeration and cluster formation can be reduced 

Table 2   The findings reported on Stir cast Al7075 matrix hybrid composites

S. No. Hybrid AMCs Observations on the enhancement of properties Reference

1 Al7075/B4C/CDA The composite’s Hardness, tensile strength, and wear resistance were reduced by increasing the 
percentage of CDA. As a result of an increase in the percentage of B4C and a decrease in the 
percentage of CDA, the mechanical properties were increased

[57]

2 Al7075/Al2O3/SiC The tensile strength, compression strength, hardness, and wear resistance of composites are 
improved to increase the reinforcement percentage

[58]

3 Al7075/ Al2O3/Gr 1. The tensile strength and hardness have been improved for an increasing percentage of Al2O3 
reinforcement due to its hard nature and act as impediments to the sliding of grain dislocation

[81]

2. The wear rate of the composite increased due to the presence of hard Al2O3 and the formation 
of a thin solid lubricant by the graphite

4 Al7075/ Bagasse-ash/Gr The tensile strength, yielding strength, and hardness of composites were increased to keep the 
percentage of graphite constant and varying bagasse ash. The presence of graphite reduced slag 
formation during casting and improved properties

[76]

5 Al7075/Fly ash/SiC The increasing percentages of reinforcement have increased the mechanical properties of the 
composites

[77]

6 Al7075/ B4C/Fly ash The addition of reinforcement enhanced the mechanics of the composite. The wear rate of the 
composite has been reduced to increase the percentage of particles up to 3% by weight B4C and 
7% fly ash and to further increase the percentage, the wear rate was raised

[125]

Table 3   The findings reported on Stir cast Al2XXX matrix hybrid composites

S. No. Hybrid AMCs Observations on the enhancement of properties Reference

1 Al2218-T61/Al2O3/TiO2 The hardness and wear resistance are increased up to 5% of reinforcement. For the addition of 
more than 5 percentage of reinforcement, the properties are reduced

[56]

2 Al2219/SiC/Gr The wear resistance increased for the addition of reinforcement due to the generation of the 
mechanically mixed layer and tribo-layer at the mating surfaces

[126]

3 Al 2219/15SiC/3Gr Higher the wear resistance of the hybrid composite compared with its matrix alloy and the com-
posite with single reinforcement. The formation mechanically mixed layer of matrix reinforce-
ment at the mating surface is the reason for the enhancement due to the presence of because of 
graphite

[93]

4 Al2219/B4C/MoS2 (1) The density of the composite is lower when it is with B4C as a mono reinforcement compared 
with the composite with MoS2along. This is due to the higher density of MoS2 compared with 
B4C density

[88]

(2) Higher the hardness of the composite with B4C compared with the hybrid composite due to the 
hard nature of B4C and soft nature of MoS2

(3) Higher the wear resistance of the hybrid composite due to the formation of a lubricant tribo-
layer between pin and disk by nanosized MoS2 particles
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by carefully managing process parameters during com-
posite manufacture.

(3)	 When compared to simplex reinforcement, the mechan-
ical properties of hybrid composites such as tensile, 
yield, compressive, flexural strength, and hardness 
are considerably improved due to the involvement of 
numerous reinforcing phases. The use of numerous 
reinforcements, on the other hand, significantly reduced 
ductility due to the increased limitation imposed by the 
larger volume of hard ceramic particles.

(4)	 For the addition of reinforcements, the increase in wear 
characteristics is proportionate to the increase in hard-
ness. Due to their inclination to generate a protective 
layer at the mating surfaces that acts as a lubricant, the 
wear resistance was substantially enhanced with the 
inclusion of carbon-based materials.

(5)	 The wear characteristics of composites were improved 
with the inclusion of hard ceramic particles by form-
ing a matrix-reinforcement mechanically mixed layer 
and a tribe layer between the contacting surfaces. The 
addition of hard ceramic particles, on the other hand, 
increased the coefficient of friction of composites.

(6)	 The addition of hard ceramic reinforcement particles 
improved the strength by reducing grain size, grain 
refinement caused by the thermal mismatch between 
the matrix alloy and reinforcement, and load transfer 
from matrix alloy to reinforcement, according to the 
studies on strengthening mechanisms.

7 � Future Scope

The described investigations did not reveal the best pro-
cessing conditions for fabricating hybrid composites with 
good mechanical and tribological properties. In addition, 
only a few studies have been published on the fundamen-
tal knowledge of the role of various reinforcements in the 
hybrid composite idea. For the development of hybrid alu-
minum matrix composites, promising research in this sector 
remains unexplored. Extensive industrial-oriented research, 
as well as hybrid manifestations, should be conducted on 
these factors.
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