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Abstract
Corrosion and its protection are one of the major challenges that are faced by the industries. To overcome this, new coatings 
with characteristic properties which are environmentally friendly are introduced. A cost-effective and most reliable way of 
corrosion protection is via barrier coatings, in which water-based epoxy coatings showed significant corrosion resistance. 
Although the epoxy coating creates a barrier between the metal and the corroding ions, there is a chance of leakage due to 
mechanical rupture and the formation of micropores during the curing time of the epoxy. This leads to the incorporation of 
inhibitors into the epoxy coatings which in turn increase the corrosion resistance. This review discusses the different types 
of inhibitors that are incorporated into the epoxy coating to prevent corrosion. The use of Nano/micro containers for the 
encapsulation of the inhibitors leads to the discovery of self-healing smart coatings. Such water-based epoxy smart coatings 
are also discussed.

Keywords Smart coatings · Polymer · Organic–inorganic particles · Environment friendly

1 Introduction

1.1  Metals and Corrosion

Metals have a wide range of applications in industries like 
refineries, electronic industries automobiles, etc. The met-
als are subjected to different pretreatment processes such as 
acid cleaning, acid descaling, and oil well acidizing which 
leads to corrosion [1]. Corrosion is the deterioration of metal 
when subjected to different corrosive environments. The dis-
ruption of the physical protective barrier of the metal leads 
to several chemical reactions which in turn cause a change in 

the physical properties of the metal that leads to corrosion. 
Different types of corrosion occur in metals, which are uni-
form corrosion, crevice corrosion, intergranular corrosion, 
galvanic corrosion, stress corrosion, etc. [2]. The estimated 
cost of corrosion corresponds to 4.2% of the GDP of the US 
[3]. Since this process causes large economic losses, it is 
very important to prevent corrosion.

1.2  Mitigation of Corrosion

Scientists have employed different methods for corrosion 
protection such as cathodic protection, anodic protection, 
barrier protection using coatings, and use of corrosion inhib-
itors. Cathodic protection is the method of corrosion protec-
tion by the application of DC current on the metal thereby 
making it cathodic. There are two types of cathodic protec-
tion: galvanic protection and impressed current cathodic pro-
tection [3]. Although this type of protection gives optimum 
efficiency and safety, the cost-effectiveness and maintenance 
make it an unreliable method for corrosion protection.

Another potential method of corrosion prevention of 
metal is to make the metal anodic by the application of an 
anodic current. It involves the formation of a passive layer 
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like oxides on the surface of the metal by increasing the 
metal potential. This oxide layer prevents the corrosive 
ions to penetrate the metal surface [4]. The major advan-
tage is that it requires less current and can be applied to 
highly corrosive environments. Since the current applied 
for the anodic protection is equal to the corrosion rate of 
the metal, it gives a direct method for monitoring the cor-
rosion rate [5]. The major disadvantage of anodic protec-
tion is that its lifespan is unknown, monitoring and design-
ing are difficult.

When metals are subjected to aggressive environments 
to prevent corrosion, the use of inhibitors is considered as 
one of the acceptable practices. These inhibitors in small 
concentrations cause a significant decrease in the corro-
sion rate [6]. These inhibitors can be generally categorized 
into two (1) inhibitors that boost the oxide film which has 
a protective nature due to its oxidizing effect (2) inhibitors 
that get adsorbed on the metal surface forming a barrier 
layer for the aggressive ions [7]. Another most reliable and 
cost-effective methods for the mitigation of corrosion is 
barrier coatings. Barrier coatings are also modified using 
different inhibitors to exhibit self-healing mechanism. 
Such coatings are termed as smart coatings.

1.3  Barrier Coatings

Barrier coating provides a layer that prevents the passiva-
tion of corrosive ions to the metal surface [8]. Depending 
on the material, there are different types of coatings such 
as chromate conversion coatings, organic coatings, pow-
der coatings, paints, etc. Earlier, chromate coatings were 
extensively used, but the government regulations regarding 
the environmental factors lead to the use of an alternative 
method of corrosion protection. Thus, came the impor-
tance of organic coatings. The organic coatings provide 
corrosion protection in two ways: (1) it acts as a physical 
barrier for the metal substrate (2) serves as a container for 
other compounds such as corrosion inhibitors. The organic 
coatings are classified based on the composition of resin 
in them. The common resins that are seen in the market 
are epoxy, acrylic, vinyl, alkyd, silicons, and urethane [9]. 
The properties of the coatings such as color, mechanical 
property, toughness, flexibility, opacity are controlled by 
the composition of these resins [10]. Epoxy coating shows 
characteristic properties such as high strength, low shrink-
age, Excellent adhesion, Low toxicity, Low cost and excel-
lent resistance to different chemicals and solvents [11]. But 
the disadvantage of using epoxy coating is that, during 
curing process of epoxy, large amount of toxic organic sol-
vents are involved. In response to changing environmental 
regulations, there is a high demand for products with low 

solvent concentrations or environment-friendly solvents. 
Thus, water-based epoxy coatings are introduced.

2  Water‑Based Epoxy Coatings (WEP 
Coatings)

An epoxy coating consists of a curing agent as polyamide, 
which has a high molecular weight and is crosslinked with 
epoxy. To satisfy the viscosity element during the applica-
tion, the demand for a high solvent level has to be satis-
fied. There is an increase in the viscosity observed when 
the solvent is evaporated and high viscosity leads to fast 
drying. Solvent-free or when water is used as the solvent, 
synthesis of resin is performed to achieve crosslinking with 
high viscosity [12]. The WEP coating technology consists of 
two types based on the physical property of the epoxy resin 
which is illustrated in Fig. 1.

In the first type, when the curing agent and the epoxy 
(either liquid or semiliquid) are mixed, emulsion particles 

Fig. 1  Types of WEP coating based on the physical property of the 
epoxy resin
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are formed. This typically leads to high strength, gloss, adhe-
sion for the coating. The second type, the curing agent and 
epoxy does not emulsify the resin as a result the curing agent 
attacks the surface, which results in unreacted epoxy (amide 
rich) at the core. As the coating gets coalesce into the metal, 
the unpaired electrons on the amide group can be donated 
to vacant orbital of the metal which leads to good adhesion, 
corrosion protection, and longer life [12]. Although epoxy 
coating acts as a barrier between the metal and the environ-
ment, it is not a perfect barrier as water, ions can penetrate 
the metal surface during certain conditions such as mechani-
cal rupture and chemical rupture. Thus, there is a need for 
the incorporation of other corrosion inhibiting particles into 
the WEP coatings [13]. Through these years scientists have 
modified the WEP by incorporating different particles such 
as polymers, nanoparticles, and graphene that are illustrated 
in Fig. 2.

2.1  Graphene Incorporated WEP Coatings

Graphene has a wide range of applications due to its unique 
characteristics such as chemical inertness, high electrical 
property, and good impermeability for corrosive medium 
[14]. This makes graphene a successful candidate for corro-
sion protection. It has a high surface area and strong van der 
Waals interaction which makes it unite with the metal matrix 
[15–17]. Different methods have been employed to produce 
graphene-based coatings such as physical vapor deposi-
tion, chemical vapor deposition, and electrodeposition, etc. 
[18–20]. A different liquid-phase exfoliation method is used 
by Cui et al. for the successful incorporation of graphene 
oxide modified polydopamine into the WEP coating and 
evaluated the corrosion resistance [21]. Phenosafranin was 
incorporated into graphene (PSF@G) which leads to high 
dispersion of graphene in water due to π–π interaction of 
the large aromatic system of PSF and graphene surface. The 

coatings formed gave EIS results for the long term and the 
salt test confirmed that the durability and impedance are sig-
nificantly improved which implies that the incorporation of 
graphene has slowed down the penetration of corrosive ions. 
He also studied the effect of the incorporation of graphene 
oxide-polydopamine into the epoxy coating. The polydopa-
mine showed great compatibility and dispersion in the WEP 
coating. This coating with mechanical damage prevented 
corrosion in a better way than pure epoxy coating [19]. To 
study the effect of graphene with the different structures 
on the WEP coatings, two types of graphene powder Ga 
and Gb, graphene oxide and graphene slurry was used and 
from the EIS study, it was seen that Ga produces optimum 
corrosion protection characteristics for an immersion time 
of 32 days [22]. The coating exhibited higher integrity and 
proved that lower defects lead to higher barrier protection 
[23, 24]. There is evidence for the development of a small 
hydrophobic character and improved corrosion electrochem-
ical behavior in aluminum when graphene is incorporated 
[25]. It’s also proved that the presence of graphene does not 
alter the structural properties of the resin [26].

The effect of incorporation of lignin into graphene epoxy 
coating was studied by Xingnan Zhou et al. The result sug-
gests that the corrosion resistance of lysine-GO-epoxy 
coatings is two-fold higher than GO epoxy coating. The 
remarkable improvement in the dispersion of lignin-GO-
epoxy coating is demonstrated using SEM in Fig. 3 [28]. 
Zhou et al. have studied the effect of corrosion resistance 
of WEP coating by the addition of graphene oxide modified 
with phytic acid in mild steel substrate. Enhanced dispersion 
ability, anticorrosion activity, and less delamination were 
observed [29]. In another experiment performed by Wang 
et al. modified GO with zeolitic molecular sieves (ZSM-
5) was introduced into WEP coating. It was found that the 
adhesion of the composite was significantly increased 42% 
when compared to the pure epoxy coating [30]. Functionali-
zation of GO with polyetheramine and the corrosion along 
with weather resistance was explained by Li et al. The resid-
ual hardness of the composite at 0.5 wt% of polyethramine/
GO was three times higher than the pure epoxy. Enhanced 
weathering resistance was also observed [31]. Polyacrylated 
phosphorus monomer was used in the functionalization of 
graphene oxide. The vinyl group reacts with the thiol group 
to form the compound, which later was used for the modifi-
cation of GO. High corrosion inhibition efficiency at a con-
centration of 0.5 wt% was achieved [32]. Lysine (LY) was 
modified using GO nanosheets and was filled into the epoxy 
coating. The LY-GO increased the cross-linking density of 
the WEP coatings due to the reaction between the amine 
group of the LY and the epoxy resin [27].

Zhong et al. modified graphene using tannic acid (TA) 
and self-assembled it with polyaniline enwrapped on Vana-
dium oxide  (V2O5). The self-healing property observed in Fig. 2  Modiffication of WEP coating incorporating various particles
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the coating is due to the complex formation of TA–Fe–TA 
and also due to the oxide layer formed at the coating inter-
face [33]. Amania et al. have synthesized graphene oxide 
decorated with nanoparticles of  Fe2O3 and incorporated it 
into the WEP coatings. The synthesis was achieved using 
emulsion polymerization and the good dispersion without 
agglomeration of GO/Fe2O3 was observed [34]. Enhance-
ment in corrosion property was achieved by the addition of 
graphene along with halloysite nanotubes into WEP coat-
ings was studied by Ye et al. Densification of the epoxy 

occurs when the nanofillers are introduced, which prevents 
the micropore formation during the curing process of the 
epoxy that prevents the permeation of the corrosive ions 
[35]. Ye synthesised carbon dots was modified with gra-
phene and used as a filler for WEP coatings. For these 
coating, a two-fold increase in the modulus of impedance 
was achieved after an immersion time of 50 days and a 
decrease in the water absorptivity when compared to pure 
epoxy [36]. The studies regarding the modification of gra-
phene into the WEP coatings are illustrated in Table 1.

Fig. 3  The compatibility of 
lysine-GO with the epoxy is 
demonstrated through SEM 
images of a and b The pure 
epoxy shows a relatively 
smoother surface. c and d This 
shows the incorporation of 
0.2 wt% Epoxy GO leads to 
some amount of agglomeration 
e and f shows 0.3 wt% lysine-
epoxy-GO coatings which are 
well distributed. Reprinted with 
permission from Ref. [27]. 
Copyright 2019: Elsevier
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2.2  Polymer Incorporated Water‑Based Epoxy 
Coatings

The anti-corrosion property of conductive polymers such 
as polyaniline, polyethylamine, polyethylene, polythio-
phene, polypyrrole has received significant interest among 
researchers [37–40]. Due to high electrical conductivity, 
simplified synthesis procedure, and low cost, the conduc-
tive polymer-polyaniline is widely studied [41–44]. The 
reason behind the high corrosion resistance is the redox 
catalytic nature of the polyaniline. Different inorganic or 
inorganic particles can improve the toughness, strength 
and stiffness of the polymer. The improvement in mechani-
cal properties of a polymer depends on the particle size, 
particle loading and the interface interaction between the 
particle and matrix.

Bagherzadeh et al. have successfully synthesized poly-
aniline epoxy composite coatings and determined their 
corrosion property by electrochemical impedance which 
showed a significant decrease in the corrosion rate. A uni-
form oxide layer was produced which results in the lesser 
dissolution of metal when the polyaniline was used in 
the nanoscale. The micrometer-scale polyaniline showed 
greater water adsorption which leads to higher corrosion 
resistance [45]. SEM and TEM images of these nano and 
micro-scale polyaniline epoxy coating are illustrated in 
Fig. 4. His group also synthesized nanoemeraldine salt 
polyaniline which showed more corrosion resistance than 
polyaniline at a concentration as small as 0.02 wt%. But 
adherence to this coating was found to be the same as that 
of the polyaniline [46]. Polyaniline in the form of nano-
tubes, nanoparticles, and nanofibers has a wide range of 
applications in manufacturing electrical sensors, superca-
pacitors, and battery electrodes [47–49]. The polyaniline 
was synthesized in the form of nanofiber by Qiu et al., 
and the corrosion resistance property was determined. The 

resulting nanofiber exhibits excellent aqueous solubility, 
good conductivity, and reversible activity which increase 
the corrosion property of the coating [50].

It was found that the presence of a dense film of phos-
phating group, implies that it can act as a corrosion inhibitor 
[51, 52]. By using this characteristic of phosphate groups 
Chetan et  al. have developed phosphorylated polyvinyl 
alcohol doped with polyaniline nanoparticles as a potential 
anticorrosion coating [53]. Furthermore, polyaniline doped 
with ethylene units containing phosphates was studied for 
their anti-corrosion property [54]. Phosphoric acid doped 
polyaniline nanoparticles were synthesized and incorporated 
into water-borne epoxy coatings. The increased inhibitive 
action of the coating was attributed to the catalytic property 
of polyalanine and doping anions inhibitory effect [55].

A mussel-inspired polyaspartamide derivative (DOPA) 
was incorporated into WEP coating by Yang et  al. The 
corrosion protection of DOPA is due to the formation of a 
polymer-Fe complex which forms a thin film. Significant 
improvement in the barrier properties was observed when 
it is subjected to aerated conditions due to the conversion 
of DOPA into DOPA-quinone by oxygen molecule which 
in turn reacts with the Fe ions released on the metal surface 
[56]. Fabrication of mesoporous  TiO2 modified with poly-
ethylenamine was executed by Wang et al. Reduction in the 
transport path of the corrosive medium on the metal surface 
was observed due to interaction between polyethylenamine 
and epoxy [57]. Different morphologies of polythiophene 
microspheres were synthesized and added into WEP coat-
ings by Ai et al. Uniform dispersion of polythiophene in the 
epoxy coating was achieved due to the narrow distribution 
of the particle size and uniform size of the particles [58].

Mesoporous silica (MCM-41) with and without template 
was synthesized and the pores are filled with cetyl trimeth-
ylammonium bromide (CTAB) and Pluronic F‐127 and 
were coated into polyaniline coated epoxy metal specimen. 

Fig. 4  SEM images of 1 a nanoparticle polyaniline 1 b microparti-
cle polyaniline in the metal coatings. Better uniformity of the oxide 
layer is seen in nanoparticle polyaniline which proves that there is 
more uniform distribution than microparticle polyaniline. The parti-

cle is determined by TEM images 2 a nanoparticle polyaniline has a 
particle size of 50 nm and 2 b microparticle polyaniline has a particle 
size of 1–3 μm. Reprinted with permission from Ref. [45].  Copyright 
2007: Elsevier
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Polyalanine acts as a physical barrier for corrosion. Better 
curing rate and high electron density was obtained for coat-
ings prepared through in-situ polymerization without tem-
plate than with template [59]. Another modification of the 
polyaniline was performed using  TiO2 nanoparticles and was 
dispersed into the WEP coatings. The highest impedance for 
the prepared coating was observed after the immersion of 

14 days [60]. Polyaniline/ Montmorillonite clay composite 
was introduced to WEP coatings. The increase in the barrier 
property was due to the good dispersion of silicone nanolay-
ers of montmorillonite in polyaniline matrix [61].  V2O5 was 
modified using polyaniline and tannic acid and used as a 
filler for the WEP coatings. After 80 days of immersion 
time, the impedance modulus was found to be in the order 

Table 2  Corrosion protection of Polymer incorporated water-based epoxy coating

Polymer incorpo-
rated

Amount of fillers 
added

Method of corrosion 
study

Metal Medium Coating characteri-
zation and tests

References

Nano/Micro poly-
aniline

Nano PAni-
0.01 wt%

Micro PAni-0.3 wt%

Salt spray test (SST) Carbon steel 3.5 wt% NaCl Dynamic light 
scattering (DLS), 
TEM, (SEM)

[45]

Nanoemeraldine 
salt-polyaniline

0.02 wt% SST Q235 3.5 wt% NaCl Dynamic light 
scattering (DLS), 
TEM, SEM

[46]

Sulphonated 
polyaniline(PAni) 
nanofibre

0.5,1, 2 wt% EIS Q235 3.5 wt% NaCl F-TIR, x-ray diffrac-
tion (XRD), SEM,

TEM, UV, Raman 
spectrum analysis,

x-ray photoelectron 
spectroscopy 
(XPS)

[50]

PAni/Partially 
phosphorylated 
(polyvinylalcohol)
nanoparticle

1,2.5,4 wt% EIS,
SST

Mild steel 3.0 wt% NaCl XPS, SEM [53]

Polyaniline/Polyvi-
nylpyrrolidine

1 wt% EIS Q235 carbon steel 3.5 wt% NaCl FT-IR, XPS, XRD, 
SEM,

Raman spectrum, 
UV, TEM

[55]

Polyaspartamide 5 wt% EIS Q235A carbon steel 3.5 wt% NaCl FT-IR, SEM, Dif-
ferential scanning 
calorimetry( DSC)

Raman spectrum,

[56]

Polyethylenamine/
mesoporous  TiO2

0.4 wt% EIS,
SST

Mild steel 3.5 wt% NaCl FT-IR, TGA, SEM, 
 N2 Adsorption 
desorption iso-
therm

[57]

Polythiophene 
microspheres

0.6 wt% EIS Q235 carbon steel 3.5 wt% NaCl Dynamic light 
scattering (DLS), 
FT-IR, FE-SEM, 
FE-TEM, TGA 

[58]

Polyanaline–
mesoporous 
MCM-41

1.2 wt% EIS, SST Q235 carbon steel 3.5 wt% NaCl FT-IR, XRD, Ther-
mogravimetric 
analysis (TGA), 
SEM,  N2 Adsorp-
tion desorption 
isotherm

[59]

Polyaniline-TiO2 
nanoparticle

1 wt% EIS, Scanning 
electrochemi-
cal microscopy 
(SCEM)

Q235 carbon steel 0.5 M NaCl solu-
tion

FT-IR, XRD, 
Contact angle 
measurement and 
SEM,

[60]

Polyaniline-Mont-
morillonite

– EIS,PDP Mild steel 3.5 wt% NaCl FT-IR, XRD [61]

V2O5@Polyaniline-
tannic acid

– EIS, SST P110 steel 3.5 wt% NaCl FT-IR, XRD, TGA, 
SEM, TEM, XPS

[62]
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 108 Ω/cm2 [62]. The different polymers incorporated into 
water-borne epoxy coatings are illustrated in Table 2.

2.3  Organic–Inorganic Hybrid Particles that Are 
Incorporated Into the Water‑Based Coating

In recent years, organic–inorganic hybrid molecules have 
been used in enhancing the anticorrosion activity of water-
based epoxy coating [63]. One such molecule is the organo-
functional silanes, which have a formula (ROH)3SiY, where 
ROH is the alkoxide group and Y is the organofunctional 
groups such as active amine groups. It has been found that 
epoxy-silica mixture provides enhanced adhesion and char-
acteristic corrosion inhibition activity [64–67]. Bagherza-
deh et al. have used 3-glycidoxypropyl trimethoxy silane 
to produce water-based epoxy coatings, which confirmed 
decreased level of pores, defects, and good distribution of 
particles in the epoxy coating [63]. Another organic–inor-
ganic hybrid molecule is the use of metal–organic frame-
works (MOF) as a potential anticorrosion water-based 
epoxy coating. MOF has characteristic properties such as 
high porosity, surface area, and is used for a wide range of 
applications such as gas sensing, catalysis, and drug delivery 
[68]–[71]. Na Wang et al. have produced a MOF-5 incorpo-
rated water-borne epoxy coating with dopamine covering. It 
was shown that with the incorporation of 0.5 wt% of MOF-5, 
corrosion resistance of 3.18 ×  108  Ω/cm2 was obtained [72].

3  Smart Coating

Corrosion protection of metal generally involves the crea-
tion of a barrier layer between the aggressive environment 
and the metals, when an inhibitor is added to the coating 
formulation. Due to aging, leaching of these inhibitors can 
take place which reduces the efficiency of these inhibitors 
[73]–[77]. To prevent these scientists have started using 
nano or micro containers to load these corrosion inhibitors, 
which are compatible with the metal matrix. These came 
to be known as smart coatings [78–85]. The mechanism of 
action of the smart coating is illustrated in Fig. 5. The inhibi-
tor encapsulated protective system delivers the inhibitors in 
a controlled manner, on exposure to different stimuli like pH 
change that is occurring due to UV irradiation, aggressive 
ions, and different redox activity [86]–[93]. This ensures the 
long-term performance of the coatings. Due to the change 
in pH, redox activity starts on the metal surface. This makes 
the pH-sensitive containers a promising system for encapsu-
lation of corrosion inhibitors.

Snihirova et al. introduced a smart corrosion protective 
system consisting of  CaCO3 microbeads modified with 
several corrosion inhibitors like cerium ions, salicylal-
doxime and 2,5-dimercapto-1,3,4-thiadiazolate (DMTD) 
impregnated into WEP coatings in AA204 coupons. 
 CaCO3 microbeads showed good dispersion and these 
loaded with cerium nitrate showed the highest resistance 

Fig. 5  Mechanism of action of a smart coating
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[94]. A new polyelectrolyte nanocapsule smart container 
was synthesized by Kope et  al. by the mechanism of 
adsorption of polyelectrolyte on the oil phase emulsion 
droplet of the inhibitors 2-methylbenzothiazole (BT) and 
2- mercaptobenzothiazole (MBT) [95]. Although the nano-
capsules were found to have great compatibility with the 
WEP coatings, the need to optimize the capsule concentra-
tion is emphasized. The scheme of release of inhibitor on 
response to pH is given in Fig. 6.

Another polyelectrolyte nanocapsule modified  TiO2 hol-
low spheres were used as an inhibitor containing container 
synthesized by a layer-by-layer mechanism. For this nano-
container, maximum release behavior was obtained in an 
alkaline medium [97].  TiO2 nanocontainer was also used 
for the encapsulation of mercaptobenzimidazole and it was 
modified using a  SiO2 covering. From the experiments, it 
was found that the maximum amount of release is at pH 2 
and  TiO2 is found to exhibit high dispersity inside the epoxy 
resin [98].

An ecofriendly smart coating was prepared using porous 
carbon nanosheets (PCNS) synthesized by exfoliating bio-
mass from fallen leaves and by loading phytic acid onto the 
holes and amino-propyltriethoxysilane (APTES) into the 
surface of the PCNS. The ATPES grafted to the surface is 
found out to be acting as a protective layer against corrosion 
and the phytic acid is found to be able to chelate the products 
of corrosion thus repairing the cracks [99]. A pH-sensitive 
polymer Eudragit particle was used as a reservoir to con-
tain corrosion inhibitor 8-hydroxyquinoline as a filler for 
WEP coatings. During the impedance study, an evolution 
of a localized impedance was observed, this points out the 
effectiveness of the compound to prevent the local corrosion 
in the damaged regions [96]. The LEIS mapping of the coat-
ings formed is give in Fig. 7.

CeO2 hollowspheres is used as a carrier for inhibitor 
benzatriazole and self-healing action of it on WEP coatings 
were studied. In alkaline conditions, the release of inhibitor 
was found to be minimum. The charge transfer resistance 
(Rct) value for the inhibitor-loaded coating was found to be 
3.5 ×  105 Ohm  cm2 and epoxy coating to be 2.8 ×  105 Ohm 
 cm2. The increase in the Rct value shows that a thin adsorp-
tive layer of the inhibitor is formed that prevents corrosion 
[100]. Liu et al. synthesized mesoporous chitosan nano-
spheres encapsulated with sodium phytate and were added 
into WEP coatings. The rate of loading of sodium phytate 
was found to be 25.79 wt% and the fastest release was 
observed at a pH of 9 [101]. The slow-release of nanofiller 
Lecithin-SiO2- Etidroic acid introduced into WEP coating 
was analyzed by Wang et al. The synthesized nanofiller 
showed one order greater magnitude of impedance with the 
maximum inhibition efficiency of 80.7% [102]. Different 
corrosion inhibitors incorporated into various nanocontain-
ers/microcontainers are illustrated in Table 3.

4  Summary and Future Prospectives

The development of modified water-based epoxy coat-
ing finds application due to the increase in the demand for 
environmentally friendly coatings in industries. The elec-
trochemical impedance measurements showed that the 
addition of corrosion inhibiting particles such as polymers, 
nanoparticles, and others showed an increase in the corro-
sion inhibition efficiency. The development of smart coat-
ings made way to the introduction of a better coating with 
double inhibition with other characteristics like self-healing. 
The advantages and disadvantages of the various additives 
in the WEP coatings are illustrated in Table 4.

Fig. 6  pH sensing response 
from the Eudragit particles 
loaded with 8- hydroxyquino-
line. Reprinted with permission 
from Ref. [96]. Copyright 2014: 
Elsevier
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The major challenge that is faced in this field is the con-
cern regarding the solubility of certain inhibitors in water 
along with the attainment of superhydrophobic character. 
Functionalisation of graphene with suitable material is a 
good way to achieve superhydrophobic characteristics or the 

WEP coatings. The use of computational techniques such as 
density functional theory (DFT) in the selection of the filler 
and their interaction of the metal are not much explored in 
the field of generation of WEP coatings. The next challenge 
is the cost-effectiveness of the inhibitors when used on a 

Fig. 7  LEIS mapping of a and d reference coatings and e and h coat-
ings incorporated with Eudragit particles modified with 8 hydrox-
yquinoline. The increase in the admittance shows higher corrosion 
activity. The reference coating showed an increase in admittance 

with immersion time but the particles incorporated coatings showed 
a decrease in admittance with immersion time which shows that the 
active area is getting healed by the inhibitor. Reprinted with permis-
sion from Ref. [96]. Copyright 2014: Elsevier

Table 3  Corrosion inhibition of different inhibitors incorporated in nano /micro containers

Nano/Microcontainer Corrosion inhibitor Amount of 
containerwith 
inhibitor

Method of corrosion 
studies

Metal Medium References

CaCO3 microbead cerium nitrate, salicyla-
ldoxime

and 2,5-dimercapto-
1,3,4thiadiazolate

5 wt% EIS AA204 3.5 wt% NaCl [94]

Polyelectrolyte nano-
capsule

2-methylbenzothiazole
2mercaptobenzothia-

zole

– EIS,SST AA2024T3 NaCl (0.05 mol  dm−3) [95]

TiO2 nanocontainer benzotriazole 1.5 wt% EIS, scanning Kelvin 
probe (SKP)

Q235 0.5 M NaCl [97]

TiO2 nanocontainer 2-mercaptobenzimida-
zole (MBI)

2 wt% EIS and SKP Q235 0.5 M NaCl [98]

Carbon nanosheets pyhtic acid and amino- 
propyltriethoxysilane

45 wt% EIS Q235 3.5 wt% NaCl [99]

Eudragit Polymeric 
particles

8-hydroxyquinoline 10 wt% EIS, Localized electro-
chemical impedance 
spectroscopy (LEIS)

AA2024 0.5 M NaCl [96]

CeO2 hollow spheres Benzatriazole 0.5 wt% EIS and SKP Q235 0.5 M NaCl [100]
Chitosan microspheres Sodium phytate 5 wt% EIS and sea water 

immersion test
Copper 3.5 wt% NaCl [101]

SiO2/ Lacithin Etidroic acid (HEDP) 4 wt% EIS, PDP, SST Q235 3.5 wt% NaCl [102]



 Journal of Bio- and Tribo-Corrosion (2022) 8:44

1 3

44 Page 12 of 15

large industrial scale. The use of statistical techniques such 
as design of experiment can be employed during the scale 
up of the coating preparation which will in turn reduce the 
number of steps involved in the optimization of the concen-
tration of the fillers. The use of water soluble biopolymers is 
not explored to the maximum, and their effect on corrosion 
resistance and curing time can be studied. Cost effective 
green MOFs can be developed, which can act as an excelled 
candidate as a filler. Thus, there is a great scope in the modi-
fication of water-based coating with higher characteristics 
and corrosion resistance.
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