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Abstract

Microbiologically induced corrosion plays a key role in implanted materials survival, especially those exposed to the
oral environment. Despite considerable progress in this field, a consensus is still missing due to contradictory findings
regarding the role of oral biofilms in the electrochemical behavior of titanium (Ti) implant surfaces. This scoping review
comprehensively reviews and discusses the current evidence and new perspectives on microbial corrosion. The main focus
is understanding oral biofilm formation and its synergistic effect under the corrosion/tribocorrosion phenomenon. We criti-
cally revisited the literature to refine key concepts and mechanisms involved in polymicrobial biofilm formation on implant
devices, microbial corrosion phenomenon, and its consequence for surrounding tissues. To summarize what is currently
known about this topic, we have conducted a scoping review. Data of eligible in vitro studies suggest that oral biofilm and
bacterial metabolites products can affect negatively the electrochemical behavior of Ti material and promote implant sur-
face deterioration. Relevant experimental strategies to practically approach the field of microbial corrosion mechanisms are
outlined. Finally, new approaches to enhance biomaterial development should consider improved corrosion resistance to
promote higher implant survival.
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1 Introduction

Dental implants are some of the most successful implantable
devices with long-term predictability and clinical perfor-
mance [1]. Titanium (Ti) has been a commonly employed
material used for dental implants with high success rates
(90.9% to 97.7%) after 15 years of post-implantation [2,
3]. The success of these Ti-based implants is mainly due
to a combination of suitable biomaterial properties and the
ability to spontaneously form a passive titanium oxide layer

Valentim A.R. Bardo and Jodo Gabriel S. Sousa should be
considered joint senior author.

P< Valentim A. R. Bardo
vbarao@unicamp.br

>4 Jodo Gabriel S. Souza
jgabriel.souza@yahoo.com.br

Department of Prosthodontics and Periodontology,

Piracicaba Dental School, University of Campinas
(UNICAMP), Av. Limeira, 901, Piracicaba,
Sao Paulo 13414-903, Brazil

Dental Research Division, Guarulhos University, Guarulhos,
Sao Paulo 07023-070, Brazil

Dental Science School (Faculdade de Ciéncias Odontoldgicas
- FCO), Montes Claros, Minas Gerais 39401-303, Brazil

Department of Oral Health and Diagnostic Sciences,
University of Connecticut Health Center, 263 Farmington
Ave, Farmington, CT 06030, USA

Department of Biomedical Sciences, University of Illinois
at Rockford, 1601 Parkview Ave, Rockford, IL 61107, USA

when in contact with atmosphere O, (named as TiO,) [4, 5].
However, albeit TiO, film protects the metal surface against
oxidative degradation processes from biological fluids [6],
dental implants are inserted in a challenging and humid envi-
ronment in which they are constantly exposed to corrosion
and microbial colonization starting from the moment of the
implantation and lasting for the entire implant lifetime [7].
Consequently, implant failures can be induced by several
individuals or synergistic events related to the mechanical,
chemical, biological, and microbiologically induced degra-
dation processes [8].
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Polymicrobial biofilm formation on the Ti surface is the
primary etiologic factor in the etiopathogenesis of implant-
related infections [9, 10]. Since the implantation, dental
implants, like all oral surfaces, are a substrate for microbial
adhesion and accumulation [11]. Therefore, polymicrobial
infection induced by biofilms is the main reason for den-
tal implant failures [10], as oral biofilms can mitigate the
electrochemical stability of implanted material, leading to
faster corrosion processes and deterioration [12]. Some stud-
ies have hypothesized that biofilm-covered implant surfaces
undergo accelerated corrosion due to an acidic environment
generated by bacterial cell metabolism and products released
[12—15]. The microbiologically induced corrosion—as
this deleterious phenomenon is called—promotes surface
deterioration, including discoloration, pitting, cracking,
scratches, and an increase of surface roughness [2]. Micro-
bial corrosion results in the release of metallic ions or even
particles (when associated with the fretting process) into
the surrounding tissues that can stimulate an exacerbated
inflammatory response, peri-implant bone reabsorption [16],
and microbiological dysbiosis [17]. Ex vivo studies [18, 19]
proved that the dissemination of Ti wear debris in the peri-
implant tissues is strongly associated with implant device
failure. Therefore, microbial corrosion has been considered
a key issue on whether the implant will survive or fail.

Facing the boost growth in the implant market and
patients seeking Ti-based implants for oral rehabilitation
(https://www.grandviewresearch.com/industry-analysis/den-
tal-implants-market), microbial corrosion concerns might
increase. Here, we attempt to summarize what is currently
known on this topic, identify gaps, refine key concepts,
mechanisms involved, and report the types of evidence that
guide practice in the field. For this, we conducted a scoping
review to evaluate the main experimental findings in terms
of the corrosion/tribocorrosion process, considering the syn-
ergistic interactions of oral biofilms with the Ti surface. This
review gathers knowledge from materials sciences, micro-
biology, and dentistry, contributing to a better understand-
ing of microbial corrosion phenomenon and points the way
forward towards the rational design of safer and enhanced
dental implant surfaces.

2 Oral Biofilms: A Powerful
Microbiologically Influenced Corrosion
Force

In the oral environment, indigenous microorganisms from
the oral microbiome live in a symbiotic state with the host by
adhering to any biotic [20] or abiotic surfaces [21] present in
this environment. Microbial accumulation and biofilm for-
mation on implanted materials can trigger different biologi-
cal and chemical processes, such as polymicrobial infections
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[22] and material deterioration [14, 15]. Microbiologically
induced corrosion has been defined and widely accepted as
corrosion damage initiated or aggravated due to the direct
or indirect activities of microorganisms colonizing materi-
als surfaces [23]. The impact of biofilms on the TiO, layer
breakdown depends on the synergic effect of microenviron-
mental conditions and microbial activity [8]. Previously,
research investigating the failed dental implants caused by
Ti corrosion raises the possibility of oral bacteria having a
relative contribution to this purpose [24]. Thus, it has to be
emphasized that the role of oral microorganisms in the cor-
rosion process is complex in that they can either accelerate
corrosion or induce corrosion alone (i.e., microbiologically
induced corrosion), and the latter is the central topic of this
review and will be discussed in detail.

2.1 Biofilm Development on Implant Surfaces

It is essential to know the biofilm formation process to
understand the unique effect of surface-attached biofilms in
terms of the corrosion phenomenon. Theoretically, the main
stages of oral biofilm formation may include the following:
protein adsorption, microbial adhesion, followed by co-
aggregation processes, biofilm formation, maturation, and
dispersal [11, 25]. The temporal sequence of in vitro pol-
ymicrobial biofilm development on the Ti surface can be
visualized in Fig. 1.

Immediately after implant insertion in the oral cavity, Ti
material is rapidly exposed to protein-rich fluids, such as
saliva or blood plasma, forming a protein layer on the Ti
surface [11]. In this way, protein adsorption represents the
first biological response in the human body to implanted
materials [26]. Typically, the serum protein layer formed
by blood plasma comprises fibronectin, serum albumin,
apolipoprotein, and fibrinogen, facilitating the biological
interactions between the material and host cellular response
[27, 28]. On the other hand, salivary pellicle composition
mainly includes organic and inorganic components, such as
aminoacids, proteins, glycoproteins, carbohydrates, lipids
and sodium, chloride, calcium, phosphate, and bicarbonate,
respectively, which could prevent corrosion of Ti material by
a buffering mechanism [8]. However, the buffering mecha-
nism can be limited considering the high density of bacterial
cells or a low salivary flow rate [29]. Moreover, in the long
term, several salivary proteins show a remarkable specific-
ity in their ability to promote the adhesion of some promi-
nent oral bacteria to these surfaces, which can favor bacte-
rial colonization [30]. Another theory is that protein layers
could protect surfaces against wear due to the viscoelastic
and lubricating effect on the Ti and counterbody surfaces
[31]. In fact, previous studies have shown lower friction and
wear of Ti surfaces in the presence of whole human saliva
[32], mucin [29], and albumin [33].
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Titanium material ] [ Microbial adhesion

Biofilm maturation

Fig. 1 The temporal sequence of in vitro polymicrobial biofilm devel-
opment on titanium surface using scanning electron microscopy
images (15 kV, 1000 x magnification). To mimic the dental implant
material, machined titanium samples were used as a substrate for
biofilm formation from human saliva. After 2 h of in vitro bacterial
incubation, it is possible to see bacteria (cocci species) attachment
on the surface, representing the early-colonizer bacteria. After 24 h,

Bacteria—surface interactions can occur in different ways,
including electrostatic forces, hydrogen bonding, and Van
der Waals forces [34]. After initial saliva or blood plasma
coating, followed by bacterial adhesion, interactions among
different species known as a co-aggregation drive towards
a highly organized microbial accumulation and biofilm for-
mation [35]. For instance, Streptococcus and Actinomyces
spp. are considered primary colonizers, binding to salivary
agglutinins and proline-rich proteins, and capable of pro-
viding additional sites for late colonizers adhesion, such as
Aggregatibacter actinomycetemcomitans, Porphyromonas
gingivalis, and Fusobacterium nucleatum, favoring biofilm
development and increased pathogenicity over time [22, 36].
Conceptually, oral biofilms are complex and highly organ-
ized polymicrobial communities embedded in a self-pro-
duced extracellular matrix [37, 38]. Extracellular polymeric
substances (EPS) in the biofilm matrix are responsible for
the three-dimensional biofilm architecture [38]. They pro-
vide a unique environment, improve microbial adhesion,
nutrient richness, and create an acidic microenvironment
[38]. In addition, EPS diminishes the mechanical biofilm

Fig.2 Schematic representation
for the steps of biofilm forma- :
tion on titanium biomaterial. o ®
The schematic drawing depicts e’
the five main steps for forming ’ -
and spreading biofilms such as
protein adsorption, microbial

adhesion, biofilm formation,
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polymicrobial biofilm with higher biovolume and complex 3D struc-
ture due to extracellular biofilm matrix can also be observed. These
micrographs suggest that biofilm growth changes the microenviron-
ment on the titanium surface and leads to biofilm maturation (48 h).
Reprinted (adapted) from Costa et al. [5], Copyright (2020), with per-
mission from Elsevier (license number 5078840308928)

removal [25] and reduces biofilm susceptibility to antimicro-
bials drugs [39] on Ti surfaces. Figure 2 shows a schematic
illustration of biofilm formation on dental implants and their
effect under clinical progression of implant-related diseases.

From a clinical standpoint, the microbial colonization of
dental implants begins at supragingival area exposed to the
oral environment, and initial biofilm formation depends on
the surface properties, implant topography, oral microbiota,
and environmental conditions, such as pH, oxygen level,
fermentable carbohydrate exposed, and poor oral hygiene
[40]. An area of particular interest is the implant—abutment
connection region, in which microgaps (2.5-60 pm) can
compromise the sealing performance, favoring the pen-
etration of bacteria and microbial colonization of the inner
threads of the implants [41, 42]. Interestingly, once inside
the implant—abutment connections, biofilm can act as lubri-
cants, decreasing friction between contacting prosthetic sur-
faces [43]. Such protection is attributed to the viscoelastic
property of microbial cells provided by the presence of poly-
saccharides, proteins, phospholipids, and nucleic acids [44].
Notably, a loss of mechanical integrity of dental implant
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internal connections may occur due to the decrease in fric-
tion caused by biofilm formation, leading to screw loosening
and other prosthetic complications [12]. Oppositely, biofilms
can also detach from the surface as shear stress increases
and no longer provide the protective lubricating effect on
the surface [45]. Another relevant point is that corroded Ti
surfaces may promote increased bacterial attachment and
higher biofilm biovolume because of surface deterioration
and increased roughness [46]. Thus, corroded implant sur-
faces can promote bacterial recolonization, impair regen-
eration procedures, and reduce the ability of host cells to
reattach and proliferate [47].

2.2 Microbial Corrosion Mechanisms

Oral biofilms are assumed to change the implant's electro-
chemical environment, leading to disruption of the TiO,
layer [48]. This is hypothesized based on two main mecha-
nisms: (1) bacteria can significantly reduce the peri-implant
microenvironment pH by producing organic acids during
fermentable carbohydrate catabolism [49]. This low pH
creates a favorable environment for pitting attacks [13]. (2)
Microbial accumulation on the dental implant can promote
differential oxygen exposure on the Ti surface [23]. As a
result, the less aerated zones act as the anode and undergo
crevice corrosion, thereby mitigating the reformation of
the oxide layer [14]. Both unfavorable conditions initiate
metal dissolution and surface deterioration [15], as shown
in Fig. 3.

As the biofilms develop, oral bacteria produce and
release various corrosive agents such as lactic acid, methyl

Implant Collar

(A)

(E)

Fig.3 In vitro microbial corrosion in titanium dental implants with
sandblasted and acid-etched (SLA) surface after immersion in bac-
terial polyculture. In this panel it is possible to see the A—E whole-
view of implant samples (x20), B-F smooth collar (x300), C-G
collar—screw junction (X 500), and D-H implant screw (x 700). Black
and red arrows indicate surface discoloration/pitting attack and crev-
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mercaptan, hydrogen sulfide, and dimethyl sulfide [50, 51].
In addition, it is well documented that several modulatory
factors related to saliva can accelerate the metal electro-
chemical degradation by acidification around the implant,
as follows: fluoride concentration [52], mouthwashes [53],
teeth bleaching agents [54], chronic diseases, and medica-
tions [55]. Moreover, hydrogen peroxide (H,0,) synthesis
during the peri-implant inflammation process negatively
affects Ti corrosion resistance [51].

The biofilm composition is influenced by the local pH
values and environmental conditions, considering the
release and tolerance of bacteria to acids, nutritional fac-
tors, and how aerobic or anaerobic the microenvironment
is [56, 57]. Among the several bacteria present in the oral
cavity, Streptococcus mutans is a powerful corrosive micro-
organism because of its capacity to release lactic acid and
grow in acidic environments [48]. Although S. mutans is not
directly responsible for implant-related infections [58], this
key pathogen promotes quick co-aggregation with periodon-
topathogens bacteria due to reduced oxygen content related
to the biofilm accumulation and EPS formation [20]. Some
studies have also appointed the role of bacterial components
of periodontopathogens such as lipopolysaccharide (LPS)
[59], dextrose [60], and sulfides [61] to change the Ti elec-
trochemical behavior. Indeed, the biofilm structure can pick
up external acidic substances from diet, caffeine, cotinine,
or nicotine [62], as well as acidic substances produced from
microbial metabolism [63]. Interestingly, although S. mutans
has a high ability to produce acids, we have shown that S.
mutans in vitro biofilms exposed to higher carbohydrate
(sucrose) concentration did not affect the electrochemical

Junction

ice corrosion features, respectively. Apparently, the type of bacte-
ria/growth conditions may modulate the surface damage. The black
bars correspond to a length of 2000 pm and green bars to 100 pm.
Reprinted from Siddiqui et al. [15], Copyright (2021), with permis-
sion from John Wiley and Sons (license number 5079500517450)
(Color figure online)
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behavior of Ti, which may be explained by the short time
that the surface was exposed to the biofilm, knowing micro-
bial corrosion is a chronic process a long-term acidic expo-
sure might be needed for microbiologically induced corro-
sion [21].

The biofilm-covered implant surface is a cathodic area,
and the exposed Ti is an anodic area, which forms galvanic
corrosion [49]. In other words, these anodic and cathodic
regions are produced by converting the biofilm-covered
implant surface into an electrode, which increases the cor-
rosion rate due to the high chemical reactivity of the Ti
material [20]. Therefore, the Ti oxidation reaction can be
summarized as follows:

(1) TiO,+H,0+H" =Ti(OH)** (exposed surface)
(2) 4H" +0,+4e=2H,0 (cathode region)
(3) Ti+H,0=TiO*" +2H" +4e (anode region)

Consequently, this electrochemical reaction promotes pit-
ting-like features, peaks, and valleys on the surface, releas-
ing corrosion products into the surrounding tissues [63].
Interestingly, a previous ex vivo study [24] has suggested
that aerobic bacteria could induce microbial corrosion pri-
marily concentrated in the pits. In contrast, anaerobic bacte-
ria are associated with crevicular corrosion due to decreased
oxygen levels in the microenvironment. Furthermore, a
unique pattern of surface discoloration also appears to be
associated with the microbial profile [15]. However, the role
of specific bacterial species in the microbial corrosion of

Ti and how different factors affecting biofilm growth can
also change this electrochemical behavior needs to be further
evaluated. Overall, the microbial corrosion mechanisms are
illustrated in Fig. 4.

3 Titanium Corrosion Products
and Peri-implant Diseases: An Overview

Microbial corrosion may induce accelerated, and local-
ized Ti dissolution, contributing to the burden of particles
released surrounding the implant site [15, 48]. In addi-
tion, these particles can be dissolved in contact with bio-
logical fluids, generating Ti ions [64]. However, emerging
researches have demonstrated that Ti corrosion products are
not entirely bioinert materials [65, 66]. To further support
this claim, multiple systematic reviews have confirmed that
Ti corrosion products can induce peri-implant inflammation
and decrease the long-term success rate of dental implants
[16, 67, 68].

Although the cause—effect relationship between Ti disso-
lution and peri-implant diseases is not fully comprehended,
higher Ti particles/ions concentrations have been found
in peri-implantitis sites [16]. These Ti particles released
may have different sizes and morphologies (0.5-54 pm)
and direct contact with bone tissue, as demonstrated in
post-mortem human jawbone (HE et al. 2016) in Fig. 5A,
B. Animal models have also been shown that Ti particles
enhance pro-inflammatory cytokines release, infiltration of
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Fig.4 Representative proposed mechanisms of microbial corro-
sion in titanium-based dental implants. 1 Titanium material in con-
tact with biological fluids leads to passive TiO, layer formation and,
subsequently, bacterial adhesion on the surface. 2 Biofilm formation
promotes a drop in the pH (acidification) of the microenvironment
around the implant due to bacterial metabolism. 3 The exposed tita-
nium surface is susceptible to material corrosion trigger by human

saliva (biological electrolyte). 4 The biofilm-covered implant surface
is a cathodic area, and the exposed titanium is an anodic area. 5 Sev-
eral modulator factors may also accelerate the corrosion process. 6
Finally, the TiO, breakdown reactions with the environment induce
titanium particles/ions release and corrosion products accumulation
(created with BioRender.com; License number: YE22UL1A3B)
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Fig.5 Effect of titanium corrosion products on peri-implant tissues
and oral biofilms. A and B Histological images of bone slices with
a dental implant (300 pm thick, Giemsa-Eosin stained; light micros-
copy analysis) show that the primary location of Ti particles is in the
bone marrow tissue at a distance of 60-700 pm from the implant,
with particle sizes<40 pm, confirming the corrosion products
release in post-mortem human jawbone. C and D Transmission elec-
tron microscopy (80 kV, 5 and 1 pm magnification) showed biofilms
formed in situ (oral cavity) on Ti surface and exposed to the treat-
ment of Ti particles. Red arrows indicate Ti particles agglomerated
and precipitated Ti ions on extracellular sites around microorganism
cells. EX extracellular environment, MI microorganism. Reprinted
(adapted) from He et al. [18] and Souza et al. [11], Copyright (2021),
with permission from Elsevier and John Wiley and Sons (license
numbers 5079491368023, 5074931356473) (Color figure online)

immune-inflammatory cells, and activation of osteoclast
activity, resulting in unfavorable healing and osseointegra-
tion outcomes [69, 70]. From a microbiological point of
view, our group recently demonstrated that Ti particle/ions
interaction with bacterial cells, as visualized in Fig. 5C, D.
This interaction can potentially change the microbiological
composition of biofilms formed on Ti surfaces in the oral
cavity leading to a composition similar to polymicrobial
infections with higher pathogenicity [17]. Therefore, the
presence of Ti products around dental implants may con-
tribute to peri-implant bone resorption, microbial dysbio-
sis and, consequently, enhance the risk of peri-implantitis
development [65].

4 The Current Weight of Evidence
of the Microbial Corrosion in Dental
Implants

In this section, we strive to offer an overview of the scientific

evidence on microbial corrosion in dental implants, regard-
less of the methodological quality of the studies. For this,
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we followed the guidelines of Preferred Reporting Items for
Systematic reviews or Meta-Analyses extension for Scoping
Reviews (PRISMA-ScR) [71]. The orientated research ques-
tion was: “What is the current state of knowledge regarding
microbial corrosion in titanium-based dental implants?” In
this review, only studies with electrochemical data related to
biofilm-covered Ti surfaces were considered. For full meth-
odological details, see Supplementary Methods (available
online). To explore differences among each study design,
data from biofilm models (Table 1), electrochemical assays
(Table 2), and corrosion/tribocorrosion outcomes (Table 3)
were outlined. cpTi

4.1 State-of-Artin Microbial Corrosion Science

The initial search identified a total of 1643 records from
all electronic databases and manual searches. Following the
scoping review strategy, 15 eligible studies were included in
the quantitative synthesis (please see Supplemental Results;
Fig. S1). Six pre-eligible studies [61, 72-76] were excluded
during the studies selection because they only performed
surface characterization tests after biofilm exposure without
referring to electrochemical assays. Furthermore, two stud-
ies [77, 78] that evaluated the microbiological effect and
corrosion behavior independently and two studies [79, 80]
that did not use titanium material as a substrate for biofilm
growth were also excluded.

All eligible studies (n=15) were published between 2003
[49] and 2021 [81] in nine different countries (United States
of America, Taiwan, Brazil, Mexico, Spain, Portugal, Japan,
China, and Chile), showing a progressive increase in the rate
of publication in this field. Medical-grade pure titanium,
titanium-aluminum-vanadium (Ti—6A1-4V), and tita-
nium-zirconia (Ti—Zr) alloys were used among the implant
materials. In terms of surface treatment, only five studies
considered SLA [7, 15, 20, 75], modified SLA (modSLA)
[15], anodized [7] or porous [82] surfaces, while the others
used machined surfaces. The surface feature before elec-
trochemical tests was impossible to summarize due to the
lack of information in most studies. Considering that rough-
ness and surface area have an essential role in Ti material's
electrochemical behavior [4], this lack of data represents a
significant scientific barrier to overcome in future studies to
ensure better interpreting of microbial corrosion results and
comparison among different studies.

4.2 Oral Biofilm Models to Test Microbial Corrosion

Regarding the biofilm model used on the selected studies
(Table 1), mono-species [7, 13, 20, 21, 48, 49, 63, 82-85],
dual-species [12, 85], and polymicrobial [15, 81, 86] were
used. S. mutans is the preferred pathogen used to test
microbial corrosion in aerobic conditions (37 °C, 5% CO,),
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Table 2 (continued)

Counter-body

Sliding mode

Working param-

eters

Work electrode Electrochemical solutions

Counter elec-

Electrochemi- Equipment Reference
trode

cal analysis

Author (year)

Conditions

Composition

electrode

Potential NA NA

pH 7.4

1 X Phosphate-

Corrosion Potentiostat Saturated calo- Graphite TiZr

Sridhar et al.

range:— 10 to
10 mV

Scan rate: 1 mV/s

buffered saline

(PBS)

mel electrode

(NR)

(2019) [86]

NR not reported, NA not applied, / hour, d day, cpTi commercial pure titanium

#Fusayama’s artificial saliva: NaCl 0.4 (g/L), KCI 0.4 (g/L), CaCl,-2H,0 0.795 (g/L), Na,S-9H,0 0.005 (g/L), NaH,PO,-2H,0 0.69 (g/L), urea 1 (g/L)

PRinger’s solution: NaCl 425 mg, KC1 15 mg, CaCl, 10 mg, 2.58 sodium lactate 60% in 500 mL of distilled water

“Enriched artificial saliva solution: NR, Hank’s solution: NR

d Artificial saliva: NR

possibly due to its high acidogenic ability [7, 12, 13, 15, 21,
48,49, 81, 86]. Despite the well-known ability of S. mutans
to adversely lower the electrochemical behavior of Ti sur-
faces [48, 74], this oral pathogen is not directly associated
with the pathogenesis of the peri-implant diseases [58]. Sim-
ilarly, Staphylococcus aureus, the main bacterium related
to a bone infection in orthopedic implants [86], was inves-
tigated in one study for dental purposes [82]. To date, only
one study [81] provided experimental results of microbial
corrosion using a polymicrobial biofilm model with key per-
iodontopathogens, such as P. gingivalis, A. actinomycetem-
comitans, and F. nucleatum in anaerobic condition (37 °C,
85% N,, 5% H,, 10% CO,). Thus, biofilm models consider-
ing the wide microbial diversity of oral cavity and envi-
ronmental conditions (i.e., anaerobiosis, pH, temperature,
carbohydrate exposure), which mimics the in vivo implant
site, should be considered further in vitro and in vivo tests
for better translating these findings into clinical situations
and generate more clinically significant results.

Another relevant point is related to in vitro bacteria sup-
plementation. Several solutions have been used to stimulate
bacterial growth (e.g., glucose, sucrose, mucin, peptone,
urea, hydrochloric acid, yeast extract, hemin, and vitamin
K). However, some solutions may change the pH of the
medium, as hydrochloric acid with a pH~ 6.7 [83]. Addition-
ally, carbohydrate supplementation, as the combination of
sucrose and S. mutans, may drastically decrease the pH due
to the acid production in the bacteria inoculum even before
the biofilm formation, which does not mimic an in vivo
process. Moreover, we found a broad range of bacterium
inoculum concentrations (10°-~10° CFU/mL) with incuba-
tion time from 90 min up to 30 days for biofilm formation.
Considering that deterioration of the oxide layer by acids
produced by bacteria might be a slow and chronic process
and dependent on the presence of viable bacteria, the elec-
trochemical analysis can be performed during biofilm devel-
opment [7, 12, 13, 15, 48, 49, 63, 81-85] or after biofilm
removal of the surface [20, 21, 86]. When electrochemical
tests are performed after the biofilm removal, it is possible
to eliminate the acids' direct effect produced in the biofilm
present in the medium. Meanwhile, biofilm elimination in
the electrochemical test allows an estimation of the actual
surface conditions and the direct effect of microbial accu-
mulation in the electrochemical behavior of the surface after
biofilm formation, being a better model alternative overall
[21]. The currently published microbiological methodolo-
gies used are illustrated in Fig. 6.

4.3 Unraveling the Role of Oral Biofilm in Corrosion
and Tribocorrosion Properties

Corrosion is an electrochemical process; therefore, elec-
trochemical techniques have been frequently employed to

@ Springer
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determine and measure the Ti corrosion rate in static or
dynamic conditions [55]. The vast majority of studies have
used a standardized method of three-electrode cells coupled
in a potentiostat system (Table 2), following the standard
ANSI/AAMI/ISO 10993-15:2000 applicable for implantable
devices or ASTM International (American Society for Test-
ing and Materials, G61-86 and G31-72). A saturated calomel
electrode was commonly used as the reference electrode, a
platinum rod as the counter electrode, and the exposed sur-
face of the sample as the working electrode. The working
parameters employed to test the electrochemical stability
of Ti material during or after biofilm exposure differ across
the studies.

Regarding the electrolyte solution, inert solutions such
as phosphate-buffered saline (PBS), NaCl 0.9%, Hank's,
and Ringer's solutions were the most considered in corro-
sion tests. Nevertheless, six studies [12, 21, 48, 63, 83, 84]
choose artificial saliva with different compositions and bac-
terial medium solution as the electrolyte to mimic the oral
situation. Additionally, we observed that the pH range of
solutions used in all studies varied from 5 (acidic) [84] to
7.4 (neutral/physiologic) [86]. This key information is not
reported by some authors [15, 20, 48, 49, 63, 81, 82, 85].
The choice of electrolyte is a relevant factor because the
effect of oral biofilm can overlap with solution characteris-
tics, as pH level [4] and ionic exchange trigger by electrolyte
composition [21].

Among the 15 eligible studies, only 2 research groups [12,
63] used a linear reciprocating tribometer to investigate the
synergic interaction between wear and corrosion in the pres-
ence of oral biofilms. The main difference between corrosion
and tribocorrosion systems can be seen in Fig. 7. Nowadays,
electrochemical and tribological synergic analyses have been
suggested to translate the tribocorrosion phenomenon in the
oral environment to the bench [8, 29, 55]. However, con-
sidering that these studies focused on the specific effect of
Streptococcus salivarius [63] or S. mutans + Candida albi-
cans [12] on the Ti corrosion/wear, in-depth analysis of the
tribocorrosion kinetics using a polymicrobial biofilm model
lack in the literature. Moreover, similar to corrosion assays,
different working parameters (e.g., load, time, frequency)
were employed in tribocorrosion systems. Therefore, guide-
lines and standardized protocols are also needed to improve
the quality of electrochemical data obtained and allow direct
comparison between the studies outcomes in the future.

Regardless of the type of electrochemical assay, the oral
biofilm developed on the Ti surface negatively affected the
material’s corrosion resistance (Table 3). In terms of electri-
cal parameters, higher polarization resistance (R,) and lower
capacitance/constant phase element (Cy;, Q) values indicate
higher corrosion resistance [87]. The available corrosion
results revealed that the polarization resistance (R,) and
capacitance (Q) values shifted to lower and higher levels in

biofilm-covered surfaces, respectively. Even studies that not
considered groups without biofilms [7, 12, 15, 20, 21, 63, 81,
83, 85, 86], this trend was confirmed along the time points
evaluated for the group with biofilms [7, 13, 15, 20, 21,
48, 49, 81-84, 86]. This fact supports the disadvantageous
electrochemical properties of Ti material when it is exposed
to different oral microorganisms (Streptococcus spp., Actino-
myces spp., P. gingivalis, F. nucleatum, and C. albicans)
since higher capacitance values indicate an increase in the
ionic exchange between the material and the electrolyte/bio-
film structure [53]. Moreover, a lower R, suggests higher
corrosion rates since this parameter is considered a measure
of the barrier effect of the passive film against charge trans-
fer [4]. Consequently, biofilm-covered surface may be more
susceptible to Ti deterioration and material loss over time.

The electrochemical parameters, including corrosion
potential (E.,,), corrosion current density (i..,,), and pas-
sive current density (i), also were negatively influenced
by biofilm presence. Conceptually, nobler E_ . values are
associated with more remarkable passivity and lower cor-
rosion tendency, while i, indicates the current flow at an
open circuit potential as a result of oxidation or reduction
reactions, and iy, corresponds to the current value in the
transition from the active region to the passive state of Ti
[4, 53]. In other words, higher E,, and lower i, and i,
values reflect low electrochemical activity and high corro-
sion resistance properties. Most studies found lower E_
(20, 49, 81, 83, 85], with higher i, [13, 83, 85] and i,
[49, 85] values, demonstrating unfavorable electrochemical
properties of Ti in the presence of biofilm.

Although it is difficult to estimate how much changes in
the electrical and electrochemical parameters would have
clinical relevance, it is known that reduced electrochemical
properties of Ti have a direct relationship with surface dete-
rioration. Microscopy analysis investigated this correlation
in 12 studies [12, 15, 20, 21, 48, 63, 81-86]. To understand
the whole kinetics of corrosion, inductively coupled plasma
mass spectrometry should also be used to investigate Ti ions'
content in the electrolyte solution after microbial corrosion
tests, as conducted in two studies [7, 13]. Surprisingly, one
study [21] showed the absence of pitting corrosion and no
clear evidence of changes in the Ti surface after biofilm
removal. Therefore, one may assume a threshold between the
time/condition of biofilm growth and the risk of pitting cor-
rosion, which needs further investigation. Additionally, only
five studies [7, 20, 82, 86] evaluated the microbial corrosion
on commercial surface treatment (i.e., SLA, anodized, or
porous), representing one condition closer to clinical set-
tings. Finally, preclinical and clinical studies investigating
the influence of microbial corrosion on the longevity of Ti-
based dental implants are lacking.

@ Springer
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Fig.7 Schematic diagram

of corrosion and tribocorro-
sion testing systems. Static
(corrosion) and dynamic
(tribocorrosion) conditions can
be considered to evaluate the
microbial corrosion in Ti mate-
rial. In addition to electrical and
electrochemical outcomes, the
tricorrosion systems can provide
the samples' wear features and
weight loss. Specific working
parameters are recommended
for each system. OCP open cir-
cuit potential, EIS electrochemi-
cal impedance spectroscopy,
PP potentiodynamic polariza-
tion (created by Biorender®;
License number AA22UL1R54)

5 Preventing Microbial Corrosion in Implant

Dentistry

Microbial corrosion is rarely linked to a single mechanism
but is considered a complex reaction in which bacterial
metabolites trigger or enhance the corrosion process [8, 29].
Therefore, there is an outstanding effort to prevent micro-
bial corrosion using methods to inhibit biofilm formation
or antimicrobial approaches or improve surface mechani-

cal and chemical properties [88]
modification development to en

behavior of Ti material for long-term dental implant clini-
cal applications has been widely investigated [S]. Newly
developed strategies have been focused mainly on surface
properties dedicated to non-fouling abilities to prevent bac-
teria attachment and improve corrosion resistance [11, 89].

@ Springer
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Nowadays, it is known that topographic patterns with dif-

ferent shapes and sizes have been shown to inhibit biofilm
formation compared to flat surfaces [90]. In addition to the

. For this purpose, surface
hance the electrochemical

early-mentioned surfaces, antibacterial, anti-corrosive, and
biocompatible coatings have also been indicated as strategies
to improved implant survival and, consequently, decrease the
harmful effect of microbial corrosion [39, 53]. Thus, since
microorganisms can adhere directly to surfaces and lead to
corrosion, inhibiting bacterial attachment or biofilm forma-
tion is a promising strategy to reduce microbial corrosion
in the long term.

Another relevant strategy consists of dual-targeting thera-
pies to disrupt the extracellular biofilm matrix without pro-
moting implant surface damages. In mature biofilms with
high bacterial cell density, the EPS-matrix forms a trans-
port barrier, which may maintain the bacteria metabolites in
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contact with the surface and impeded saliva penetration to
lixiviate these acidic [83]. Consequently, a higher deterio-
ration of the TiO, layer with increasing the time of biofilm
development is expected. Recently, our group has shown that
the iodopovidone (pre-treatment) may enhance the antibi-
ofilm efficacy of antibiotics (second treatment) by disman-
tling the EPS matrix, amplifying the killing of pathogenic
bacteria on Ti surfaces [39]. However, further studies are
needed to check the effect of iodopovidone on Ti surface as
a possible way to control peri-implant diseases and synergi-
cally microbial corrosion.

In a nutshell, these alternatives strategies mentioned
above are promising approaches to control microbial corro-
sion. However, future preclinical and clinical studies need
to consider some challenges, such as prolong effectiveness,
enhanced surface properties, and effect on comprehensive
microbial composition. Furthermore, this scoping review
focused only on titanium-based dental implants, but other
biomaterials (such as zirconium and its alloys) should also
be considered in others research. Additionally, with greater
reliability, the well-documented tribocorrosion assay can
provide answers regarding titanium degradation against
corrosive environments, including polymicrobial biofilms.
Lastly, this review is a guide for researchers and materials
scientists in developing new investigations and clinicians to
understand the mechanisms involved in microbiologically
induced corrosion in dental implants.

6 Conclusion and Outlook

In this scoping review, we reinforced that the microbial cor-
rosion phenomenon can be considered one of the emerging
areas of interest and research in implant dentistry and bio-
material fields. Considering the loss of passivity potential on
titanium material and the corrosion of implant devices due to
acidic metabolites produced from oral biofilms, this research
topic is a concerning issue. To predict the microbial corro-
sion effects in in vitro conditions, corrosion/tribocorrosion
tests can be used as suitable tools during biofilm formation
or after biofilm removal from the titanium surface. Notably,
the polymicrobial biofilm model represents a more clini-
cal reliable condition to evaluate the changes in the electro-
chemical behavior of titanium but still is under-investigated.
Additionally, the cause—effect relationship between biofilm
formation and titanium deterioration is not fully under-
stood due to its chronic long-term effect. The direct effect
of microbial accumulation on the specific chemical, physi-
cal, and mechanical properties of the implant surface and
its mechanism needs to be further investigated. Moreover,
a feedback loop is expected in this process since biofilm
leads to surface deterioration, and particles and ions released
promote microbial accumulation and microbiological shift.

Therefore, in the future, it is necessary for preclinical and
clinical studies to investigate the influence of microbiologi-
cally induced corrosion on the survival of Ti-based dental
implants. Additionally, to prevent this deleterious phenom-
enal, anti-fouling, antibacterial, and anti-corrosive coatings
from preventing bacterial attachment or biofilm formation
are encouraged to reduce microbial load and consequently
corrosion. For instance, surface coatings—even without
antimicrobial ability—may act as a protective film improv-
ing the material's corrosion resistance and can be a promis-
ing approach for implant device manufacturing.
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