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Abstract
The inhibition influence of Al dissolution by Cumin (Cuminum Cyminum extract, CCE) in 2 M HCl has been examined by 
electrochemical investigations like Tafel polarization (TP), electrochemical frequency modulation (EFM), electrochemical 
impedance spectroscopy (EIS) and chemical measurements as gasometrical and gravimetric methods at varied temperatures. 
Langmuir adsorption isotherm was utilized to demonstrate the adsorption procedure relying on estimations of adsorption 
constant (Kads). Maximum value of inhibiting proficiency is 93.1% at 25 °C and 300 ppm of CCE concentration. Surface 
examinations such as XPS, AFM, and FTIR were applied and confirmed the formation of defensive layer on the Al outer 
surface. FTIR outcomes illustrated the existence of varied functional groups that make coordination interactions with Al3+. 
XPS examination demonstrated the interference among the investigated metal and the molecules exist in CCE. The obtained 
outcomes demonstrated that CCE can be utilized as beneficial inhibitor for Al in 2 M HCl. All results from the utilized 
techniques are in consistent values.
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1  Introduction

Al metal is utilized in numerous purposes in enterprises (avi-
ation, housekeeping, electronic gadgets, and nourishment 
industry) because of its low value, high electrical limit, and 
its high vitality thickness [1, 2]. Despite the fact that Al 
can frame a stable dainty oxide film which shields it from 
the corrosion wonder, it experiences corrosion [3–5] while 
being in contact with corrosive media, for example, hydro-
chloric corrosive. Dissolution control can be accomplished 
by numerous techniques; in any case, the utilization of corro-
sion inhibitors is really the most functional strategy utilized 
in enterprises and scholarly investigations. A review of the 
writing illustrates [6–8] that the vast majority of the notable 
ecofriendly corrosion inhibitors are natural mixes containing 

nitrogen, oxygen, sulfur, and additionally π bonds in their 
sub-atomic structure. A few heterocyclic N, S, or O-contain-
ing natural mixes [9–12] have been utilized to impede Al 
from hydrochloric corrosive dissolution. Restricted corro-
sion can be dodged by the activity of adsorption inhibitors, 
which impede the adsorption of forceful anions or by the 
arrangement of a progressively safe oxide film on the metal 
surface. Considering the wide range of natural mixes acces-
sible as corrosion inhibitors, there is expanding worry about 
the harmfulness of most corrosion inhibitors since they are 
dangerous to living life form and might be poison the earth 
[13]. These have advanced looks for green corrosion inhibi-
tors. Green corrosion inhibitors are biodegradable and don’t 
contain overwhelming metals or other lethal mixes. Varied 
plant extracts have been checked as beneficial retardants in 
destructive mediums [14–26].

The obtained measurements illustrate the inhibitive influ-
ence of CCE for Al in M HCl as destructive medium which 
is on the basis that CCE is estimated as a practical origin, 
biodegradable, cheap, do not contain heavy metals or other 
toxic substances, and availability inhibitor. Hydrochloric 
corrosive is picked as a destructive mechanism for Al since 
it is broadly utilized in the industrial applications. The study 
is aimed at establishing the corrosion inhibitive potential and 
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mechanism of corrosion inhibition of Al in acid medium by 
Cumin (Cuminum Cyminum extract.

2 � Materials and Techniques

2.1 � Solutions and Materials

2.1.1 � Al Composition

Al pieces studied in this research were cut from Al with 
purity of 99.98%. The pieces have volume 2 × 2 × 0.5 cm3.

2.1.2 � Solutions

The destructive medium (2 M HCl) was got from a stock 
acid by diluting with bi-distilled H2O from the concentrated 
HCl medium (34%) and its concentration was checked using 
standard Na2CO3 solution.

2.1.3 � Chemical Composition of CCE Extract

CCE extract consists of several organic compounds (anth-
raquinone, coumarin, flavanone, steroid hydroperoxide, and 
tannin) (Table 1) [27, 28].

2.1.4 � CCE Solution

CCE extract had been gotten from the powder of dried 
CCE seeds then put in methyl alcohol for 7 days. The fluid 
medium used to be separated utilizing refinery paper to get 
rid of methyl alcohol from the Cichorium Intybus liquid 
and put till lack. A 1000 ml of the extract has prepared from 
dissolving one gram from the residual in 3 ml of dimethyl 
sulfoxide (DMSO) and then completed to one liter utiliz-
ing C2H5OH (1000 ppm) finally set in refrigerator in tightly 
closed flasks. The various concentrations of the extract 
(50–300 ppm) were determined by dilution with bidistilled 
water.

Table 1   The names, structures, molecular formulas and molecular weights of the main extract constituents

Name Structure Molecular formula

Anthraquinone

9,10-Anthraquinone

C14H8O

Coumarin

2H-Chromen-2-one

C9H6O2

Flavanone

4H-1-Benzopyran-4-one, 2,3-dihydro-2-phenyl

C15H12O2

Saponin

1-Acetoxy-3-methoxycarbonyl-2,2,5,5-
tetramethylpyrrolidine

C12H21NO4
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2.2 � Utilized Measurements

2.2.1 � Chemical Calculations

2.2.1.1  Mass Loss Tests  This trial was applied using 
seven indistinguishable Al pieces with measurements of 
(2 × 2 × 0.5) cm, which were consummately scratched with 
varied emery papers. Rinsing and purifying of the sam-
ples were applied by Acetone and bi-refined water. The Al 
samples were dipped in mediums of 100 ml of 2 M HCl in 
the absence and presence of varied concentration of CCE 
extract [29–31]. Every 30 min, the samples were got out, 
rinsed, dried, and weighed at varied temperatures (25–45 °). 
Surface coverage (θ) and (IE %) can be computed utilizing 
the accompanying Eq. (1):

where Wo and W are the estimations of the mass loss in the 
absence and presence of CCE, separately. The calculations 
of θ and % IE were measured at varied amounts of CCE in 
2 M HCl.

2.2.1.2  Hydrogen Emission Tests  The H2 development is a 
profitable strategy to calculate the measure of H2 generating 
during this operation. The container is joined by a malleable 
part to a burette. Firstly, the volume of air was observed. At 
last, Al sheets were put in the destructive solution and the 
flask was tightly closed. The evaluated H2 gas was meas-
ured by the diminishing of the medium plane in the phial at 
definite times.

2.2.2 � Electrochemical Techniques

Electrochemical estimations were finished using the cell of 
(a) working anode comprises of Al bind with Cu-wire to 
connect power and settled into a glass container of appro-
priate measurement to reach territory of Al terminal 1 cm2. 
The working anode is scratched as clarified previously. (b) 
Saturated calomel cathode (SCE) is the reference anode. 
Every single potential worth was enlisted versus SCE. (c) 
Platinum foil (1 cm2) is the assistant cathode. In all experi-
ments, The Al electrode could reach a stable open poten-
tial (30 min) value, Ecorr. The electrochemical estimations 
were performed using Potentiostat/Galvanostat/Zra analyzer 
(Gamry- PCI4G750 USA).

2.2.2.1  Tafel Polarization Test  Tafel polarization meas-
urements were performed by utilizing a potential extent 
(− 1300 mV to − 300 mV) to get the current densities (icorr). 
The polarization curves were recorded at a constant sweep 
rate of 1 mV/s. Estimations of corrosion current densities 
(icorr) and the potential (Ecorr) were achieved by extrapolat-

(1)%IE = � × 100 =
[

(Wo −W)∕Wo
]

× 100

ing of both Tafel slopes. IE % and θ from Tafel polarization 
were computed using Eq. 2:

where icorr(inh) and icorr are the corrosion current density 
estimations in the existence and nonexistence of CCE, 
respectively.

2.2.2.2  Electrochemical Frequency Modulation (EFM) 
Tests  EFM is nondestructive corrosion estimation system 
which can provide estimations of the current without previ-
ously results on Tafel parameters. Like EIS, it is a little sign 
procedure. Not like EIS, two sign waves at varied frequen-
cies (2 and 5 Hz), the base frequency was 0.1 Hz and 10 mV 
potential distance signals. The bigger tops were utilized to 
compute the corrosion current (icorr), the Tafel constants (βc 
and βa), and the causality factors CF-2& CF-3 [32, 33]. All 
the trials were achieved at 25 ± 1 °C

2.2.2.3  Electrochemical Impedance Spectroscopy (EIS) 
Tests  The impedance trial was done using the frequency 
range from 100 kHz to 0.1 Hz with 10 mV peak-to-peak sig-
nal amplitude perturbation at open-circuit potential (OCP). 
The major parameters got from the estimation of the Nyquist 
chart are the polarization resistance Rp and the capacity of 
double-layer Cdl which were illustrated [34]:

where fmax is the angular frequency. All measurements got 
from the impedance trial are computed Eq. (4):

where Rp and Ro
p are the polarization resistance in the exist-

ence and absence of CCE extract, respectively.

2.2.3 � Surface Examination

2.2.3.1  Fourier Transform Infrared (FTIR) Tests  FTIR spec-
trum is checked in a Perkin—Elmer 1600 spectrophotom-
eter. The defensive layer was accurately separated and 
mixed with KBr made in to grains, and FTIR spectrum was 
resulted.

2.2.3.2  X‑Ray Photoelectron Spectroscopy (XPS) Tests  XPS 
check is a quantitative procedure for standardizing the ele-
mental composition of the surface of a material and indi-
cates the binding energies of reacted elements.

2.2.3.3  Atomic Force Microscopy (AFM) Analysis  The pref-
erable indication of AFM is the coarseness of the outer sur-
face of Al pieces. AFM examination was checked utilizing 

(2)%IE = � × 100 =
[(

icorr − icorr(inh)
)

∕icorr
]

× 100

(3)Cdl = 1∕ (2�fmaxRP)

(4)%IE = [1 − (R◦

P
∕RP)] × 100
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Nano Surf Easy sweep 2 Flex AFM procedure (Nanotech-
nology Center, Mansoura University).

3 � Results and Discussion

3.1 � Mass Loss Calculations

The mass loss of Al in 2 M HCl without and in the existence 
of varied concentrations (50–300 ppm) of CCE were illus-
trated. Figure 1 indicates the time mass losses graphs with-
out and with of varied concentrations of CCE at 25°. The 
mass loss minimized with rising CCE concentration. The 
obtained calculations about the values of % IE, corrosion 
rate (kcorr) and the surface coverage (θ) for Al in 2 M HCl 
and within varied amounts of CCE at several temperatures 
are listed in Table 2. 
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Fig. 1   Mass loss-time graphs for the corrosion of Al in 2M HCl with-
out and with varied amounts of CCE at 25 °C

Table 2   Corrosion rate (kcorr) and inhibition efficiency (%IE) results 
got from mass loss process for Al in 2 M HCl medium at varied con-
centrations of CCE at 25 °C

Conc.,
ppm

kcorr
mg cm−2 min−1

θ %IE

Blank 0.455 – –
50 0.098 0.785 78.5
100 0.088 0.806 80.6
150 0.066 0.855 85.5
200 0.055 0.880 88.0
250 0.041 0.909 90.9
300 0.031 0.931 93.1
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Fig. 2   Curves of corrosion results for Al in 2 M HCl in the existence 
of varied concentrations of CCE to the Langmuir isotherm at several 
temperatures

Table 3   Thermodynamic parameters for the adsorption of CCE 
extract on Al surface in 2 M HCl at varied temperatures

Temperature,
oC

− ΔGo ads, 
kJ mol−1

− ΔH°ads,
kJ mol−1

− ΔS°ads,
J mol−1 K−1

25 18.8 31.5 42.6
30 18.4 43.2
35 18.3 42.9
40 18.1 42.8
45 17.9 42.8
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Fig. 3   Graph of (Log Kads) against (1/T) for the corrosion of Al in 
2 M HCl in the existence of CCE
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3.1.1 � Adsorption Procedure

For realization, the mode of corrosion inhibiting influence 
and the adsorption attitude of the CCE adsorbents on the 
surface ought to be checked. The adsorption mode is reliant 
on factors, for instance, the structure of the inhibitor and the 
characteristics of the ionized metal. There are varied numeri-
cal relations formed to illustrate nonperfect influences. The 
familiar isotherms utilized are Frumkin, De Boer, Langmuir, 
Temkin, Flory–Huggins, and Bockris-Swinkless [35–39]. 
The calculations of (θ) comparing to varied doses of CCE at 
25–45 °C have been checked to choose the perfect isotherm 
procedure. The adsorption of CCE particles is ascribed to 
the Langmuir adsorption by plotting the relation Ɵ/1 − Ɵ vs. 
C (Fig. 2) [40]. The slope of these lines is Kads. as follows:

where C is the concentration of CCE in the corrosive medi-
ums, θ is the surface coverage, and Kads is the adsorption 
constant. Lines are got from graphing of Log Kads vs.1/T with 
slope is ΔH°

ads as checked in Fig. 3. All estimations were 
resolved. The major factors are the free energy (ΔG°

ads), 
the heat of enthalpy (ΔH°

ads), and the entropy (ΔS°
ads). The 

amounts can be computed by varied systems relying on the 
values of Kads at several temperatures [41]. The ΔG°

ads can 
be computed from Eq. (6):

(5)
(

�

1 − �

)

= KadsC

(6)Kads = (1∕55.5) exp
(

−ΔG
◦

ads
∕RT

)

where 55.5 is the concentration of H2O in mol l−1, R is the 
universal gas constant, and T is the temperature. (ΔH°

ads), 
(ΔS° ads) can be demonstrated from Eqs. (7 and 8):

Table 3 demonstrates all the calculated parameters for 
the extract on Al surface, and illustrates that the sign of 
ΔG°ads was negative that illustrates that the adsorption of 
CCE is spontaneous procedure. The estimations of ΔG°ads 
of 40 kJ mol−1 and more referred to charge moving from the 
inhibitor molecules to metal outer surface (chemisorption); 
those of 20 kJ mol−1 and smaller assumed the electrostatic 
attraction among the inhibited charged surface and charged 
molecules of the extract (physisorption) [42, 43].

The resulted estimations of ΔG°
ads are − 20 kJ mol−1 and 

lower that ascribed to the electrostatic attraction among the 
charged extract molecules and the charged metal (physical 
adsorption). ΔG°

ads values improved (more positive) with 
rising temperature which indicates that the adsorption mode 
is an exothermic procedure. The negative sign of ΔH°

ads 
illustrates that the adsorption mode of the extract molecules 
is an exothermic method. An exothermic process is ascribed 
to either physisorption or chemisorption while endothermic 
mode is credited to chemisorption [44]. Enthalpy measures 
up to 41.9 kJ mol−1 are ascribed to physisorption but those 
equal to100 kJ mol−1 or more are referred to chemisorption. 
The results got of ΔH°

ads of CCE extract in 2 M HCl are 
negative exhibiting that it may be physiosorbed. The ΔS°

ads 

(7)Log Kads = (ΔH
◦

ads
∕ 2.303RT) + constant

(8)ΔG
◦

ads
= ΔH

◦

ads
− TΔS

◦

ads

Fig. 4   Arrhenius graphs for 
Al corrosion rates (kcorr.) after 
90 min of dipping in 2 M HCl 
in the absence and presence of 
varied concentrations of CCE 
extract
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values are negative that is specified to exothermic adsorption 
procedure and illustrated that the extract molecules moving 
clearly in the electrolyte and were adsorbed in an orderly 
mode onto the Al surface.

3.1.2 � Temperature Impact and Activation Factors 
of Inhibition Process

The impact of temperature on the corrosion rate of Al in 
2 M HCl without and in the with of the examined extract 
was illustrated in temperatures limit from 25 to 45 °C. The 
inhibitive protection lowered with rising temperature and 
the rate of corrosion rises. The lowering in the inhibition 
performance with temperature is ascribed to desorption of 
CCE particles from the tested surface. Energy of activation 
was obtained from the next Arrhenius-type equation:

where kcorr is the corrosion rate, E*
a is the activation energy, 

R is the universal gas constant, T is the temperature, and A 
is the Arrhenius parameter. Calculation of E*

a of corrosion 
for Al in 2 M HCl without and with varied amounts of CCE 
was obtained from the graphing of log (kcorr) versus 1/T and 
is represented in Fig. 4. The transition state relationship is 
obtained in Eq. (10):

 where h is the Planck’s steady, N is the Avogadro’s num-
ber, ΔS* is the activated entropy, and ΔH* is the acti-
vated enthalpy. Figure  5 illustrates (log kcorr/T) versus 
(1/T). Straight lines are got with slopes proportional to 
(ΔH*/2.303R), and their calculations are listed in Table 4. 
The elevation in E*

a in the existence of CCE than in its 
absence illustrates that the extract is physisorbed on the 
Al metal surface [45]. Table 5 explains that E*

a rises with 

(9)kcorr = A exp
(

E∗
a
∕RT

)

(10)kcorr = (RT∕Nh) exp (ΔS∗∕R) exp (−ΔH∗∕RT)

Table 4   Activation measurements for Al corrosion without and with 
varied amounts of CCE in 2 M HCl

Conc., ppm Activation calculations

E*
a,

kJ mol−1
∆H*

,
kJ mol−1

-∆S*
,

J mol−1 K−1

Blank 46.6 44.3 103.4
50 61.5 58.8 66.7
100 62.3 59.7 65.1
150 65.3 62.6 57.4
200 66.3 63.7 55.8
250 69.4 66.6 47.7
300 74.1 71.4 34.0

Table 5   IE% and (kcorr) from 
HE for the corrosion of Al in 
2 M HCl without and with 
varied concentrations of CCE 
extract at 25 °C

Conc., ppm kcorrx10−3, 
ml/min

%IE

Blank 1200 –
50 213 82.3
100 163 86.4
150 144 88.0
200 126 89.5
250 109.5 90.9
300 100 91.7

Fig. 5   Transition state for Al 
corrosion rates (kcorr) in 2 M 
HCl with and without varied 
doses of CCE extract
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improving CCE concentrations, which recommended the 
adsorption of the tested extract on the Al surface. The posi-
tive indications of ΔH* illustrated the endothermic mode of 
the Al corrosion procedure. The negative ΔS* demonstrates 
that in the rate governing stage, the association of unstable 
coordinated molecules is higher than the dissociation [46, 
47].  

3.2 � Gasometrical Tests

The evolved H2 gas coming about due to the corrosion pro-
cedure can be illustrated. Outcomes got by the H2 devel-
opment in Fig. 6 are organizing with varied measurements 
like mass difference and electrochemical procedures. The 
H2 amount is relied on time of response as the following 
Eq. (11):

(11)Vml = kcorr.t

Fig. 6   Amounts of emitted H2 
gas vs. time for corrosion of Al 
in 2 M HCl with and without 
varied concentrations of CCE 
extract at 25 °C
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Table 6   Results from Tafel 
plots of Al in 2 M HCl having 
varied concentrations of CCE 
extract at 25 °C

Conc.,
ppm

− Ecorr, mV
(vs SCE)

icorr,
mA cm−2

βa
mV dec−1

− βc
mV dec−1

C.R,
mpy

Ѳ % IE

0 774.0 847.0 76.5 52.3 363.9 – –
50 753.3 245.7 19.8 31.6 94.6 0.709 70.9
100 781.0 208.0 17.2 20.5 89.1 0.754 75.4
150 775.1 139.2 13.5 23.8 59.8 0.836 83.6
200 782.2 116.4 23.4 35.6 49.9 0.863 86.3
250 788.5 27.5 22.1 25.3 11.8 0.968 96.8
300 797.7 15.6 12.9 19.6 6.7 0.982 98.2
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Fig. 7   Tafel polarization graphs for the corrosion of Al in 2 M HCl 
without and with varied concentrations of CCE extract at 25 °C
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V is the volume of the H2 emitted in ml, t represents time, 
and kcorr is corrosion rate at 25°C [48].

The H2 amount was computed every 20 min; kcorr and % 
IE were computed by Eq. (12):

K and Ko are the kcorr in existence and nonexistence of 
varied doses of CCE, by graphing among (Vml vs. t) and 
slope is kcorr.

3.3 � Tafel Polarization (TP) Tests

Tafel polarization graphs for Al in 2 M HCl arrangement 
in the nonappearance and nearness of changed amounts of 
CCE at 25 °C are appeared in Fig. 7 and the polarization 
factors, for example, Ecorr, icorr; anodic and cathodic Tafel 
slopes (βa, βc) are listed in Table 6. Anodic and cathodic 
Tafel slants were lightly changed on expanding CCE extract 
amounts. This implies there is no difference in the instru-
ment of the inhibition in attendance and nonattendance of 
CCE extract and this inhibitor influences both cathodic and 
anodic responses [49]; for example, it is mixed kind inhibi-
tor with little varieties in the Ecorr estimations of the blank 
examples. The level of surface coverage (θ) and inhibitive 
proficiency (% IE) were computed. 

(12)%IE =
(

1 − K∕Ko

)

× 100

3.4 � Electrochemical Frequency Modulation (EFM) 
Tests

EFM is a nondestructive dissolution estimation system that 
can immediately compute the corrosion current without ear-
lier information on Tafel slants and with just a little polar-
izing signal. These favorable indications of EFM method 
make it a perfect possibility for online corrosion observing 
[50]. The perfect quality of the EFM is the causality fac-
tors which appear as an interior examination on the veracity 
of EFM estimation. The EFM spectrum of Al in 2 M HCl 
medium having (50–300 ppm) of CCE at 25 °C is appeared 
in Fig. 8. The bigger tops were utilized to compute the cor-
rosion current (icorr), the Tafel slopes (βc and βa), and the 
causality factors (CF-2 and CF-3) [51]. All electrochemical 
estimations are recorded in Table 7 illustrating that CCE 
impedes the corrosion of Al in 2 M HCl through adsorp-
tion. The causality factors got under various test conditions 
are around equivalent to the theoretical qualities (2 and 3) 
demonstrating that the observed information is checked and 
of perfect quality [52]. The IEEFM rises with rising CCE 
extract amounts and was determined as follows: where iocorr 
and icorr are corrosion current densities in the nonpresence 
and presence of CCE, separately.

Table 7   Electrochemical 
outcomes got from EFM for in 
the nonexistence and existence 
of varied amounts of CCE 
extract at 25 °C

Conc.,
ppm

icorr,
µA cm−2

βa,
mV dec−1

− βc,
mV dec−1

CF-2 CF-3 C.R,
mpy

θ %IE

Blank 831.4 67.4 39.1 1.85 1.68 357.0 – –
50 282.1 52.2 22.2 2.37 1.94 121.1 0.661 66.1
100 265.3 44.8 21.3 2.67 1.82 113.9 0.681 68.1
150 245.3 35.8 20.5 2.82 2.07 105.3 0.705 70.5
200 239.6 31.2 20.9 2.94 3.12 102.9 0.712 71.2
250 222.8 28.9 18.7 2.46 1.97 95.6 0.732 73.2
300 204.1 24.5 16.0 1.88 3.03 87.6 0.755 75.5
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Fig. 8   EFM spectrum for Al in 2 M HCl in the nonexistence and existence of 300 ppm of CCE at 25 °C
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3.5 � Electrochemical Impedance Spectroscopy (EIS) 
Tests

The corrosion of Al in 2 M HCl medium with and with-
out various concentrations of CCE was clarified by the EIS 
methodology at 25 ± 1 °C during 30 min of submersion. 

Fig. 9a, b outlines the Nyquist and Bode diagrams for Al in 
2 M HCl with and without the existence of altered concen-
trations of the examined extract. The way that EIS diagrams 
have an around semi-round event exhibits that the corrosion 
of Al in 2 M HCl is controlled by a charge move resistance 
strategy. A bit of twisting was found in specific systems, and 
the distortion has been credited to continue scattering [53] 
because of surface roughness, impurities, divisions, grain 
boundaries, plan of exposed layers, and Heterogeneity of 
the uncovered surface. The width of the capacitive loop 
increases with the expansion of dose and rises of the grade 
of inhibitive mechanism. Despite the elevated frequency 
capacitive loop, the semi-loops turned and stretched up to 
the 4th fourth quadrant, and an artificial-inductive loop at 
lower frequency extent was observed illustrating that the 
faradic technique is occurring on the terminal areas. The 
inductive loop is all around credited to the adsorption of 
kinds coming about on account of the Al dissolution and the 
H2 adsorption [54]. The best equivalent circuit that matches 
the experimental data of the Nyquist plots is presented in 
Fig. 10, Rs (the first intersection of the semicircle with  Zreal 
axis) represents the resistance of the corrosive medium, Rct 
(the second intersection of the semicircle with  Zreal axis) is 
the charge transfer resistance, L is the inductance, which is 
intimately associated with the inductive loop at low frequen-
cies, RL is the inductive resistance, and Cdl is the capacitance 
of double layer. After the fitting procedure, these electro-
chemical parameters are recorded in Table 8. Exactly when 
an inductive circle is accessible, the resistance of polariza-
tion (RP) is resolved from Eq. [13]:

   
EIS results from Table 8 demonstrate that the RP values 

rise and the Cdl diminish with the increase of amount of 
CCE extract. This is due to the replacement of water (H2O) 
molecules adsorbed on metal surface by CCE molecules on 
the examined metal and decrease the corrosion procedure. 
The larger RP values are ascribed to a more inhibiting mode 
[55, 56]. The decreasing in the Cdl is due to the increase of 

(13)RP =
(

Rct × RL

)

∕
(

Rct + RL

)

0 10

(a)

(b)

20 30 40 50 60 70 80
-30

-20

-10

0

10

20

30

40

 Blank
50 ppm
 100 ppm
150 ppm
 200 ppm 
 250 ppm
 300 ppm

Z
mc

mho,ega
mi

2

Zreal, ohm cm2

0.1 1 10 100 1000 10000 100000
-80

-60

-40

-20

0

20

40

60

80

Lo
g 

Z m
od

mc
mho,

2

Log Freq, Hz

 Blank
50 ppm
 100 ppm
150 ppm
 200 ppm 
 250 ppm
 300 ppm

0

2

4

6

8

10

Z p
hz

, d
eg

Fig. 9   Nyquist graphs (a) and Bode graphs (b) for Al in 2 M HCl in 
the nonattendance and existence of varied amounts of CCE extract at 
25 °C

Table 8   Electrochemical 
calculations resulted from EIS 
method for Al in 2 M HCl in the 
nonattendance and attendance 
of different amounts of CCE 
extract at 25 °C

Conc., ppm L.,
H cm2

Rct,
Ω cm2

RL,
Ω cm2

Rp,
Ω cm2

Cdl,
µF cm−2

θ %IE

Blank 1.73 4.62 2.11 1.44 75.67 – –
50 10.35 10.16 12.64 5.62 36.89 0.744 74.4
100 13.91 11.69 16.98 6.94 31.76 0.793 79.3
150 14.15 15.04 17.21 8.02 26.36 0.821 82.1
200 16.55 19.53 20.21 9.94 22.23 0.855 85.5
250 19.91 22.25 24.32 11.63 18.83 0.876 87.6
300 23.20 25.81 28.345 13.51 13.56 0.893 89.3
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the dielectric constant or possibly from the increase in the 
thickness of the electrical double layer [57], indicating that 
the CCE molecules impede the dissolution by adsorption 
at the metal/arrangement interface. Also, L and RL values 
increase by increasing the concentration of the extract.

3.6 � FTIR Examination

FTIR check was carried out for distinguishing of the existing 
functional groups in organic particles on the Al surface from 
the extent of 4000 to 400 cm−1. Figure 11 demonstrates the 
IR extent of the pure extract and illustrates that the defensive 
form was founded on the Al after submersion for 4 h in 2 M 
HCl utilizing the extract with the ideal dose (300 ppm). In 
the spectrum of the pure extract in Fig. 11 (Blue curve), the 
frequency at 3330 cm−1is ascribed to the broad (OH), the 
stretching SP3–C–H frequency at 2974 cm−1, 2928 cm−1, and 
2882 cm−1, the stretching –C=O frequency at 1653 cm−1, 
the stretching –CH3 and –CH2 frequency at 1380  cm−1 
and 1454 cm−1, the bending –C–N– frequency shows up 
at 1047 cm−1 and the bending =C–H and =CH2 appears at 
880 cm−1. FTIR demonstrated a resistance obstruction for 

Fig. 10   Electrical equivalent circuit utilized to fit EIS calculations

Fig. 11   IR spectrum of pure 
extract and dissolution products 
of Al after the mass loss trial 
having 300 ppm of CCE at 
25 °C
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Fig. 12   3D AFM micrographs of the surface of: a cleaned Al surface; b Al dipped in 2 M HCl; c Al dipped in 2 M HCl having Cichorium inty-
bus extract (300 ppm)
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Al in 2 M HCl containing 300 ppm of the checked extract 
after submersion for 4hrs [58].

The outcomes illustrated that there were changes and 
more function group frequencies shifted, and others missed 
due to interference and coordination with Al3+. In the inhib-
ited mediums, the corrosion of Al was diminished by the 
consistence of a defensive form [59, 60].

3.7 � Atomic Force Microscopy (AFM) Analysis

AFM is a significant trial to check the coarseness of the 
studied surface at a most maximum resolution in fraction 
of nanometer [61]. AFM check can provide exact details 
about the surface morphology of Al that is profitable to cor-
rosion procedure. The 3D of AFM micrographs is appeared 
in Fig. 12.

The checked surface in 2 M HCl has more coarseness 
(381.1 nm) than the cleaned Al outer surface (15.6 nm), 
which illustrates that the checked surface is genuinely cor-
roded in the destructive medium. The estimated coarseness 
of inhibited Al is minimized (138.11 nm). The observed 

softness is because of the forming of a compressed adsorbed 
layer on the outer surface and then hindering the dissolution 
of Al [62].

3.8 � X‑ray Photoelectron Spectroscopy (XPS) 
Analysis

XPS check was utilized to provide exact details into the 
chemical nature of the interface among the checked inhibitor 
and the Al outer surface. The XPS spectrum of Al 2p, C1s, 
Cl 2p, N 1s, and O 1s got for Al after submersion in 2 M 
HCl medium in the existence of 300 ppm of (CCE) for 24 h 
following deconvolution as observed in (Fig. 13). The Al 2p 
spectrum demonstrated one peak present at a binding energy 
(BE) of 74.25 eV that ascribed to Al2O3 (Fig. 13a) [63]. 
The spectrum of C 1s (Fig. 13b) is deconvoluted into five 
tops: the top at 284.37 eV that is referred to (C–C) bond in 
aromatic rings, the next peak situated at 284.99 eV binding 
energy which is ascribed to the (C–O–C) aromatic bonds, 
the third top at 288.25 eV which referred to (C=O), and the 
tops situated at 289.03 eV and 290.32 eV that correspond 
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to (–COO) [64]. The Cl 2p (Fig. 13c) is deconvoluted into 
two tops existed at 197.28 eV for Cl 2p3/2 and 198.49 eV 
for Cl 2p1/2 [65]. The spectrum of N 1s is observed as one 
peak that located at 399.81 eV which referred to N in aro-
matic rings (Fig. 13d). The spectrum of O1s (Fig. 13e) is 
deconvoluted into three peaks, The first top at 530.89 can 
be attributed to Al(OH)3, the second one at 531.9 eV that 
ascribed to C–O bond, and the third top situated at 532.0 eV 
binding energy that referred to the C–O–C aromatic bonds. 
Finally, the XPS spectrum indicated the existence of defen-
sive film of CCE extract.

3.9 � Inhibitive Mechanism

Dissolution occurs by two principle responses: oxidation 
response and H2 release. Inhibitive procedure of Al in acidic 
medium is usually recognized by the adsorption procedure 
of the molecule onto the Al surface. The organic molecules 
present in the extract hindered corrosion most likely by 
diminishing the both responses. There are several variables 
affecting the inhibiting efficiency of the inhibitor includ-
ing metal kind, molecular volume, destructive solution, the 
electronic structure, adsorption positions, substance proper-
ties, and process of interference by the supplementary rela-
tions: Cl− ions are adsorbed on the Al positively charged 
surface converted it to negative sign, then the protonated 
molecules of CCE were adsorbed on the negative surface. 
From our results, the adsorption of these molecules of CCE 
occurs, decreasing the corrosion reaction. The adsorption 
is recognized to occur through the anodic sites likely hap-
pened through lone π-electrons of aromatic rings in CCE 
molecules. XPS tests illustrated that the molecules exist in 
CCE were adsorbed on the Al surface, proving its inhibitive 
power.

4 � Conclusions

In this research, the impact of CCE extract as ecofriendly 
inhibitor on Al corrosion in 2 M HCl acid medium was 
examined by chemical and electrochemical techniques. The 
results illustrated that by improvement the amount of CCE 
has diminished the mass loss, corrosion rate, icorr, and Cdl of 
Al pieces in 2 M HCl but increasing Rct, thereby raising the 
inhibiting efficiency. The PP curves indicate the extract acts 
as mixed type inhibitor. The adsorption of the extract mol-
ecules on Al surface was physically and followed Langmuir 
isotherm. Micrographs resulted from all surface examina-
tions showed that the coarseness on the Al surface became 
lower as the amount of CCE increased, which proofs the 
impeding of corrosion attacked on Al surface.
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