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Abstract
The present study’s objective is to investigate the impact of adding solid lubricants (graphite, molybdenum disulfide, titanium 
dioxide) to SAE20-40 oil on the sliding wear performance of as-cast SiC dispersed aluminum alloy. Matrix alloy and con-
ventionally used Gunmetal were also tested under identical conditions to understand the scope of latter material as a possible 
substitute in various engineering applications. The Taguchi’s  L27 orthogonal array is considered for conducting experiments 
through three input parameters, i.e., Test Materials, Test Environment, and Applied Load. Based on the results, the analyses 
are carried out using analysis of variance. From the main effects plot, the optimum condition is obtained LM13S10 composite 
under  MoS2 lubrication at 50 N load.

Keywords Sliding wear · Light metal alloy · Composites · SEM · Solid lubricants · Optimization technique

1 Introduction

In the last few decades, many researchers’ attention to Metal 
Matrix Composites (MMCs) has significantly increased due 
to the increase in demand for lightweight and rigid materials 
for the aerospace, aviation, and automotive industries. They 
are considered as potential engineering materials owing to 
having outstanding mechanical and tribological properties 
[1]. Among a diverse range of accessible matrix material, 
aluminum-based alloys have several benefits, including 
higher strength, low density, excellent thermal conduc-
tivity, and a lower friction coefficient [2]. Despite having 
mentioned properties, their weak wear resistance property 
restricts their use as promising material [3]. However, to 
enhance their mechanical and tribological properties, rein-
forcements, either hard or soft type, were added to the 
aluminum matrix to cope with stringent material require-
ments in different applications. In this regard, a variety of 
aluminum-based alloys such as AA2024 [4–7], AA3003 
[8], AA4043 [9], AA5052 [10, 11], AA5083 [12], AA6061 
[13–17], AA6082 [18], AA6360 [19], AA7075 [20, 21], 
A356 [2, 22, 23], A383 [3, 24], LM4 [25], LM6 [26], and 

LM13 [27] have been used as the matrix alloy. Various kinds 
of reinforcements such as SiC [2, 15, 16, 21, 24, 27–32], 
 B4C [17, 19, 22, 23], TiC [10, 19, 33], WC [34],  Al2O3 [7, 
15, 35–38],  TiO2 [8],  ZrO2 [39, 40],  TiB2 [41],  ZrB2 [11], 
CNT [42], Graphene [13], Red Mud [18, 43], Graphite [44] 
have been commonly used with an objective to realize prop-
erty improvement of the alloy system. However, silicon car-
bide (SiC) is the most commonly employed reinforcement 
particulates for AMCs than other reinforcing materials [45].

The SiC being slightly denser than that of Aluminum 
alloy offered a challenge. SiC’s chemical compatibility 
and adequate bonding with the matrix material tackled the 
said challenge without developing an intermetallic phase. 
Compared to other reinforcement materials, low-cost, good 
thermal conductivity and workability make it a good alterna-
tive [15]. Kumar et al. [16] studied the influence of SiC on 
an Al6061–SiC composite’s hardness. They found that the 
relative increase in hardness up to 67% with 6 wt.% SiC rein-
forcement was achieved. This improvement can be attributed 
to the higher hardness of SiC. The presence of SiC in the 
composite provides an improvement in its hardness.

In the literature, a variety of processing methods for the 
synthesis of AMCs are available, such as stir casting [17], 
squeeze casting [6], rheocasting [46], spray deposition [29], 
powder metallurgy [37], and mechanical alloying [47]. 
Besides the type of application, the selection of synthesis 
process primarily depends on the reinforcement’s shape, 
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size, and volume fraction. The alloy is then prepared by 
melting the Al matrix completely, followed by the careful 
addition of SiC ceramic [24, 30] with a mechanical stirrer 
[7].

Several studies have been reported on the sliding wear 
behavior of different ceramic particle-reinforced aluminum 
composites. They indicate that the wear behavior is elabo-
rate, dependent on the synergistic effects of operational and 
material-related conditions [48]. Also, Experimental factors 
(such as velocity, distance, conditions, load) control the wear 
behavior.

Mixed lubrication condition involving metal-to-metal 
contact in part is experienced in sliding applications in 
the events of delayed lubrication and starting and stopping 
operations [49, 50].

In such applications, liquid and semi-solid lubricants are 
used [51]. Additives help to improve lubricant performance 
[5, 49–52]. It is important to note that solid lubricants in the 
mixture of liquid/semi-solid lubricants are beneficial to vary 
degrees depending on the nature and content of the matrix 
of additives and lubricants [52].

Solid lubricant particles’ role in controlling wear behavior 
when present within the material system depends on pres-
sure, sliding speed, environment, the shape and size of the 
lubricant particles, and the nature of interfacial bonding 
between particles/matrix.

Studies have revealed that specific material under specific 
test conditions yield positive effects in solid lubricants [53, 
54]. For example, by generating appropriate microstructural 
features such as spherical micro constituents and sound 
particle/matrix interfacial bonding in the material, a solid 
lubricant’s advantages can be realized so that the lubricant 
film formation becomes effective [53, 54]. Another way to 
understand the advantages of solid lubricants could be by 
adding them to a base lubricant such as oil/grease [49–52]. 
Solid lubricant particles added externally together with a 
base (oil) lubricant on the sliding surfaces produce better 
results [52] as the particles enjoy a more efficient interaction 
with the contacting surfaces and a greater ability to smear 
and adhere to them, thus creating more stable films/layers 
of lubrication and improving wear response [52, 54]. This 
practice also nullifies the possible adverse effects of material 
parameters such as dispersoid/matrix interfacial features and 
the nature, morphology, and mode of distribution of different 
microconstituents.

Available solid lubricants are mostly lamellar solids 
[55], which allow them to easily smear along the contact-
ing surfaces producing a lubricating effect and improving 
wear performance. Molybdenum disulfide  (MoS2) is a fine 
example of solids that are stacked. Fullerene systems can 
accommodate huge loads and speeds. However, they often 
oxidize and become inactive above 450 °C. Graphite is a 
very well-known solid lubricant used in all commercial 

lubrication applications with lamellar structure. For good 
lubricity, it needs moisture. Graphite blends and pure 
graphite dry film are commonly used for applications such 
as hot and cold shaping, wire drawing and billet grinding, 
high-speed cutting tools, as a mold release for die cast-
ing operations, plastic and rubber molding applications, 
cylinder head and exhaust bolts, weapons and armament 
applications, automobile engines and many other indus-
trial applications. Titanium dioxide is an environmentally 
friendly lubricant that, like other solid lubricants described 
above, does not have lamellar morphology [56].

Based on the literature survey, the effects of SiC rein-
forcement appear to have been observed to a limited extent 
on the lubricated sliding wear behavior of an aluminum 
alloy system. In contrast, the optimization of sliding wear 
characteristics under solid lubricants’ influence is not fully 
explored. Therefore, an attempt was made in this analysis 
to examine the sliding wear behavior of an aluminum alloy 
and its composite reinforced with 10 wt. % of SiC particles 
under the influence of solid lubricants  (MoS2, Graphite, 
and  TiO2). Further, the wear characteristics of SiC rein-
forced composite have been compared with convention-
ally used Gunmetal. A correlation has been established 
between wear, friction, and temperature with the applied 
load by selecting the performance characteristics using an 
L27 array orthogonal design.

2  Taguchi Method

The Taguchi method, a statistical method developed by G. 
Taguchi, is a measure of robustness used to identify vari-
ability in a process/product to determine the best control 
parameters and minimize noise factors(uncontrollable fac-
tors) [57]. The S/N ratio measures how the target/nominal 
value response varies under different noise conditions. 
Depending on the experiment’s goal, there are three S/N 
ratios; Larger is better, Nominal is best, Smaller is better. 
The procedure can be summarized as

• Identify and evaluate quality characteristics and pro-
cess parameters

• Identify the objective function
• Identify the number of levels and possible interactions 

for the process parameters
• Select an appropriate standard orthogonal array (OA)
• Conduct experiments based on the run order of the 

orthogonal array
• Analyze data using S/N ratio and ANOVA and predict 

the optimum conditions
• Perform a verification experiment.
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3  Materials and Methods

3.1  Material Selection

In the work presented, LM13 has been chosen as the matrix 
material for preparing the metal matrix composite. The 
advantage of good resistance to wear, good bearing proper-
ties, and a low thermal expansion coefficient makes it suit-
able to be used for pulley sheaves, pistons for all types of 
diesel and petrol engines, and other engine parts operating 
at higher temperatures. Furthermore, SiC has been selected 
as a reinforcing material, which is very hard compared to 
aluminum alloy. The density of the matrix and reinforce-
ment is approximately the same. The advantages over other 
reinforcement materials include its high thermal conductiv-
ity, good tensile and flexural strength, excellent resistance 
to erosion, corrosion, and chemical attacks in reducing envi-
ronments [31].

3.2  Synthesis of the Test Materials

The test materials (alloy and composite) were synthesized 
by melting and casting techniques. Melting was performed 
using an electric furnace in graphite crucibles. A mechani-
cal stirrer was used to create the molten alloy vortex, in 
which 10 wt. % of the preheated SiC particles (particle 

size ~ 50–100 μm) were dispersed. The melts were solidi-
fied in 14 mm diameter, 170 mm long cylindrical casting in 
preheated cast-iron molds. The melting process’s schematic 
is shown in Fig. 1, whereas Table 1 shows the casted materi-
als’ chemical compositions.

3.3  Microstructural Observation

Scanning Electron Microscope (JSM-7100F JEOL, Ger-
many) was used for Microstructural observations. The test 
specimens were polished using conventional metallographic 
methods, including polishing the sample with various grades 
of emery papers and eventually using a polishing cloth with 
fine alumina paste. After polishing, aluminum samples 
were etched using Keller’s reagent and (10 g  FeCl3 + 50 ml 
HCl + 200 ml distilled water) was used for Gunmetal to 
observe grain structures and metal matrix interfaces.

3.4  Hardness Measurement

The hardness of the test materials has been evaluated with 
the Vickers’ hardness tester. The samples were polished 
and appropriately cleaned before measurement. The load 
of 30 kg was applied to all the samples when measuring 
hardness. An average of five readings has been reported in 
this study.

Fig. 1  A schematic representation of the composite preparation

Table 1  Elemental weight 
composition of the cast material

Gunmetal is procured from external sources

Material Element wt. percentage

Si Fe Cu Mn Mg Ni Cr Zn SiC Al

LM13 11.8 0.25 0.6 0.15 1.7 1.5 0.1 0.25 – Balance
LM13S10 11.8 0.25 0.6 0.15 1.7 1.5 0.1 0.25 10 Balance
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3.5  Sliding Wear Tests

Ducom (India) made pin-on-disk machine was used to per-
form sliding wear tests as per ASTM G99-05 standard [58]. 
Figure 2 shows the schematic representation of wear test 
analysis. Cylindrical test pins (10 mm diameter and 30 mm 
length) were held against a rotating EN31 steel disk (1.02% 
C, 1.05% Cr, 0.3% Ni, 0.35% Mn and remainder Fe). The 
steel disk was mechanically polished to a roughness (Ra) 
level of 1–2 μm before each test. 5 wt. % of commercially 
available solid lubricants (graphite, molybdenum disulfide, 
titanium dioxide) with an average particle size of 7–10 μm 
were mixed in SAE 20W-40 oil to create the lubricating 
condition. Sliding wear tests were conducted at a sliding 
speed of 2.1 m/s over an applied load range of 50, 100 and 
150 N. The test method involved inserting and permitting 
the disk to rotate in a lubricant mixture for 5 s at a speed 
of 3.35 m/s. The lubricated disk has been rotated so that 
the surplus lubricant is spun off, and uniform thickness of 
lubricant is obtained. Thus, the conditions were maintained 
similar to mixed lubrication. The sample was fixed in the 
specimen holder, enabling the disk to rotate at the specified 
sliding speed up to a specified distance of 2500 m or until 
the specimen seizer. Frictional heating was measured using 
a chromel–alumel thermocouple implanted into a 1.5 mm 
diameter hole on the 1.5 mm sample pin from the sliding 
surface.

The thermocouple output is fed to a computer-based 
information logging system where the sample’s friction 
heating is continually recorded during each experiment. 
The loads were vertically applied to the pin sample against 
the disk. The strain gauge result is also transferred to a 
computer-based data logging system that records every 
experiment’s tangential load on the sample pin. The friction 
coefficient has been calculated by dividing the tangential 
load with the applied normal load. The specimens had been 
thoroughly cleaned and measured before and after each test. 

A Denver make microbalance has been used to weigh the 
samples. Weight loss was then transformed into volume loss 
per unit sliding distance for wear rate measurement.

3.6  Design of Experiment

Design of experiment (DOE) is a methodology for identi-
fying and examining all potential situations, including the 
various factors and variables that control an investigation. 
The Taguchi method is used based on DOE, which incor-
porates experimental and theoretical approaches to refine 
the response’s most critical parameter. Here, three factors 
(Test Material, Test Environment, and Applied Load) with 
three design levels were adopted, as illustrated in Table 2, 
to study the effect of control factors on Wear Rate, Tem-
perature, and Coefficient of Friction. The degree of freedom 
for each control parameter is equal to one less than number 
of levels of that parameter. According to the rule, the mini-
mum number of experimental runs should be one greater 
than the sum of degrees of freedom of all control parameters 
and their interactions. L27 Orthogonal array was employed 
for three 3-level factors, as shown in Table 3. Twenty Seven 
experiments based on the run order generated by the Taguchi 
model were carried out. The responses to the model were the 
Wear Rate, Temperature, and Coefficient of Friction. In the 
Orthogonal array, the columns assigned followed the order 
material, test environment, and applied load for the factors 

Fig. 2  A schematic representa-
tion of the wear test assembly

Table 2  Control parameters and their levels

* not available

Factor Unit Level 1 Level 2 Level 3

Material * Gunmetal LM13T10 LM13
Environment * TiO2 MoS2 Graphite
Applied load N 50 100 150
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and responses (Wear Rate, Temperature, and Coefficient of 
Friction) were set to the other columns. The objective of the 
model was to minimize the Wear Rate, Temperature, and 
Coefficient of Friction. S/N ratio and Mean was calculated, 
and results were subjected to Analysis of Variance (ANOVA). 

4  Results

4.1  Microstructure

Figure 3 elicits the micrograph of the test materials. Matrix 
alloy comprises of dendrites of Aluminum and eutectic Si 
(sharp-edge plate-shaped) traces in the inter-dendritic areas. 
Since the eutectic structure includes both elements, the solid 
solubility of Si in Al is negligible. The micrograph of SiC 
reinforced composites delineates the uniform distribution of 
SiC along with the traditional characteristics of Al alloys. 

The SiC particles wrapped within the primary dendrites of 
aluminum rather than settling down in the inter-dendritic 
region. Strong interfacial bonding and uniform SiC dis-
tribution in Al matrix can enhance mechanical and wear 
properties (explained in the following section). However, 
agglomeration of dispersoids leads to secure removal of 
dispersoids from the matrix and causing higher wear rates 
than the matrix alloy [27]. The Gunmetal microstructure 
includes primary α dendrites, intermetallic Cu–Al complex, 
and small iron particles.

4.2  Hardness and Density

Table 4 shows the hardness and tensile strength of the sam-
ple. The Gunmetal has significantly high hardness and ten-
sile strength than the alloy and composite. Additionally, the 
inclusion of SiC particulates in the matrix alloy enhances 
their hardness due to a harder phase in the matrix alloy. 
Concerning tensile strength, the dispersion of SiC particles 
within the matrix lowers the tensile strength; this can result 
from the typical ceramic nature of SiC particles, and the 
bonding between Si and Al is fragile like Van der Waals 
bonding.

Aluminum and SiC do not react together at the processing 
temperature of composite materials, and therefore, there is 
no possibility to form interface products. There is de-cohe-
sion at the particle–matrix interface during tensile stress, 
resulting in the creation of voids. In the case of coarse par-
ticles (50–100 μm) in the aluminum matrix, the likelihood of 
void formation is high, thus decreasing the tensile strength 
in composite materials [59].

4.3  Signal‑to‑Noise Ratio Analysis

"Smaller is better" strategy, Eq. (1) is employed to analyze 
Signal-to-Noise Ratio.

where n is the number of observations and Yi represents the 
response to the wear rate.

The delta value in Table 5 indicates the effect of a fac-
tor. The delta value is the difference between the highest 
and lowest characteristic average for a factor. The higher the 
variation, the higher will be the delta value, and the greater 
will be the significance of that parameter on the responses. 
The significance of the parameter determines its rank. From 
the rank, it is evident that load has significant importance 
on Wear Rate, Temperature, and Coefficient of Friction fol-
lowed by the test environment and test material.

(1)
(

S

N

)

Smaller is better
= −10log10

(

1

n

n
∑

i=1
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i
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Table 3  L27 Orthogonal array of experimental layout

Experiment 
no.

Material Environment Applied load

1 1 1 1
2 1 1 1
3 1 1 1
4 1 2 2
5 1 2 2
6 1 2 2
7 1 3 3
8 1 3 3
9 1 3 3
10 2 1 2
11 2 1 2
12 2 1 2
13 2 2 3
14 2 2 3
15 2 2 3
16 2 3 1
17 2 3 1
18 2 3 1
19 3 1 3
20 3 1 3
21 3 1 3
22 3 2 1
23 3 2 1
24 3 2 1
25 3 3 2
26 3 3 2
27 3 3 2
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The sliding wear rates, friction coefficient, and frictional 
heating for different combinations of the variables (Mate-
rial, Test Environments, and Applied Load) according to 
Taguchi’s L27 orthogonal array (OA) are given in Table 6. 
MINITAB software is implemented for the DOE, and after 
that, subsequent analysis and plots are obtained for main 
effects and their interactions. S/N ratio plots determine the 
optimum level of each control parameter. From the main 
effects plot, the optimum condition for the minimum wear 
rate was obtained as (LM13S10,  MoS2@50 N Load). Simi-
larly, the optimum level of processing variables for Tempera-
ture (LM13, Graphite @50 N load) and COF (LM13S10, 
 MoS2 @ 50 N load) are obtained from the main effects plot. 
The graph of wear rate shows the transition to wear for dif-
ferent parameter levels. The wear rate is directly propor-
tional to the applied load and inversely to the amount of 
reinforcement for the composite. Compared to aluminum 
alloy, the composite shows a lower wear rate due to hard 
reinforcement particles. The uniformly distributed SiC 

Fig. 3  Microstructural features of a matrix alloy, b gunmetal, c, d composite

Table 4  Mechanical properties of the test material

Material Hardness (HV) Ultimate tensile 
strength (MPa)

LM13 88 178
LM13S10 92 169
Gunmetal 96 212

Table 5  Response table for signal-to-noise ratio (smaller is better)

Level Material Environment Applied load

1 − 27.36 − 27.36 − 26.61
2 − 27.51 − 27.36 − 27.39
3 − 27.43 − 27.58 − 28.30
Delta 0.15 0.23 1.70
Rank 3 2 1
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particles induce hardness in the composite, which resists 
deformation of the composite and decreases wear rate com-
pared to unreinforced alloy.

4.4  Effects of Process Parameters on Sliding Wear

The response table (Table 7) for a signal-to-noise ratio 
depicts that the applied load has the highest delta value; 
hence the highest significance followed by the test material 
and test environment (Fig. 4).

The wear rate increased with applied load irrespective 
of the test material and lubricating environment. Applied 
load directly influences the wear rate, i.e., the higher the 
load greater the wear rate. As far as environmental impacts 
are concerned, much complexity exists [24, 60]. In all the 
test conditions, LM13 alloy delineates the maximum wear 
rate followed by the Gunmetal and composite. Moreover, 
 MoS2 has shown a reduced wear rate compared to graph-
ite and  TiO2. It is about 50% less than others with a few 
exceptions.

Table 6  L27 Orthogonal array 
experimental layout and results

Material Environment Applied load Wear Temp COF SNR_wear SNR_T SNR_COF

LM13 TiO2 50 10.79 35.41 0.096 − 20.6576 − 30.9825 20.38781
LM13 TiO2 100 17.98 37.28 0.098 − 25.0946 − 31.4284 20.20507
LM13 TiO2 150 29.66 39.37 0.099 − 29.4443 − 31.9037 20.10193
LM13 MoS2 50 7.19 35.41 0.034 − 17.1358 − 30.9825 29.4646
LM13 MoS2 100 13.89 37.13 0.044 − 22.8526 − 31.3945 27.05234
LM13 MoS2 150 23.37 40.22 0.083 − 27.3735 − 32.0886 21.60798
LM13 Graphite 50 11.11 35.15 0.062 − 20.9151 − 30.9175 24.13817
LM13 Graphite 100 15.00 37.21 0.074 − 23.5218 − 31.4125 22.67031
LM13 Graphite 150 24.07 38.30 0.074 − 27.6286 − 31.6633 22.60754
Gunmetal TiO2 50 10.88 36.15 0.063 − 20.7361 − 31.1614 23.95365
Gunmetal TiO2 100 13.61 38.10 0.064 − 22.6742 − 31.6185 23.91721
Gunmetal TiO2 150 19.05 40.22 0.077 − 25.5968 − 32.0886 22.22892
Gunmetal MoS2 50 6.11 36.49 0.023 − 15.7224 − 31.2437 32.89225
Gunmetal MoS2 100 10.00 38.10 0.037 − 20 − 31.6185 28.58914
Gunmetal MoS2 150 16.67 40.45 0.059 − 24.437 − 32.1377 24.54379
Gunmetal Graphite 50 8.99 35.39 0.060 − 19.074 − 30.9774 24.36968
Gunmetal Graphite 100 13.48 38.25 0.074 − 22.5958 − 31.6533 22.65065
Gunmetal Graphite 150 21.11 39.37 0.075 − 26.4902 − 31.9031 22.47564
LM13S10 TiO2 50 5.56 38.04 0.030 − 14.8946 − 31.6057 30.59375
LM13S10 TiO2 100 7.22 40.83 0.031 − 17.1734 − 32.2194 30.314
LM13S10 TiO2 150 9.44 43.31 0.062 − 19.5035 − 32.7322 24.17555
LM13S10 MoS2 50 4.54 36.97 0.008 − 13.1318 − 31.3568 42.15811
LM13S10 MoS2 100 7.26 40.54 0.030 − 17.2142 − 32.157 30.34253
LM13S10 MoS2 150 9.98 42.81 0.042 − 19.9803 − 32.6299 27.45951
LM13S10 Graphite 50 6.35 36.01 0.035 − 16.0544 − 31.1292 29.06915
LM13S10 Graphite 100 10.88 39.51 0.045 − 20.7361 − 31.9335 26.92289
LM13S10 Graphite 150 13.61 41.37 0.077 − 22.6742 − 32.3327 22.28147

Table 7  Response table for signal-to-noise ratios for wear rate 
(smaller is better)

Level Material Environment Applied load (N)

1 − 21.93 − 22.19 − 17.59
2 − 23.85 − 19.76 − 21.32
3 − 17.93 − 21.75 − 24.79
Delta 5.92 2.43 7.20
Rank 2 3 1
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Fig. 4  Main effects plots for S/N ratio for wear rate

Fig. 5  Normal probability plot for residuals for wear rate
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Usually, the sliding wear characteristics of material 
improve by the use of lubricants. The amalgamation of a 
solid lubricant into a liquid lubricant further improves the 
wear behavior by increasing the film stability. The reason 
being that the lubricant amalgam should not only adhere to 
the contacting surface but also should have enough lubricat-
ing characteristics. Normal probability plots for the residual 
(Fig. 5) indicate a data trend similar to the central one.

4.5  Effects of Process Parameter on Frictional 
heating

From the Response Table for Signal-to-Noise Ratios 
(Table 8), it can be seen that the applied load has the highest 
delta value, hence the highest significance followed by the 

test material and test environment (Fig. 6). The temperature 
increases linearly irrespective of the Load and test material. 
In all the test environments, maximum frictional heating is 
obtained in composite and minimum for the matrix alloy, 
while Gunmetal shows an intermediate response. The fric-
tional heat initially increased with load; however, further 
increment in the load reduces the frictional heating severity. 

Moreover, frictional heating of all the test materials 
behaved identically. The sticking tendency of the specimen 
material to counterface disk tends to increase the tempera-
ture at the end of tests. More severe wear conditions due to 
increasing applied load caused the temperature to increase 
rapidly. Due to the matrix alloy’s excellent lubricating ten-
dency, it exhibited the least frictional heat generation. Unlike 
matrix alloy, more extensive frictional heating was observed 
due to the abrasion caused by the fragmented dispersoid 
SiC particles [61]. The Gunmetal suffered maximum tem-
perature increase irrespective of the test condition due to 
the fragmented cementite particles’ abrasion through their 
entrapment between the contacting surfaces. The addition 
of graphite decreased frictional heating by forming a still 
more stable lubricating film [62]. A normal probability plot 
(Fig. 7) indicates that the data is normally distributed, and 
the residuals follow an approximately straight line.

Table 8  Response table for signal-to-noise ratios for frictional heat-
ing (smaller is better)

Level Material Environment Applied load (N)

1 − 31.60 − 31.55 − 31.15
2 − 31.42 − 31.73 − 31.72
3 − 32.01 − 31.75 − 32.16
Delta 0.59 0.20 1.01
Rank 2 3 1

Fig. 6  Main effects plots for S/N ratio for frictional heating
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4.6  Effects of Process Parameter on the Coefficient 
of Friction

The response table (Table 9) for the signal-to-noise ratio 
depicts that the test material has the highest delta value; 
hence the highest significance, followed by the applied 
load and test environment (Fig. 8).The test material’s fric-
tion coefficient as a function of load applied in the various 
lubricated test environments has been plotted. The friction 
coefficient continuously increased with an increasing load 
applied for all the test materials. The maximum friction coef-
ficient was obtained in the LM13 alloy case, followed by 

Gunmetal and composite in all the lubricated test environ-
ments. Moreover, the  MoS2 lubricated environment deline-
ates the minimum friction coefficient, while the maximum 
friction coefficient is obtained in  TiO2 lubricated environ-
ment. The lubricating and less cracking nature caused the 
friction coefficient of the matrix alloy to become the least. 
The abrasion caused by the entrapped dispersoid phase after 
fragmentation during wear led to the composite’s higher 
friction coefficient than matrix alloy [38, 62, 63]. A normal 
probability plot (Fig. 9) indicates that the data is normally 
distributed.

4.7  Analysis of Variance (ANOVA)

The ANOVA was performed for the 5% significance level 
and 95% confidence level to identify the significance of 
parameters and their interactions on all the three responses 
(Tables 10, 11, 12, 13, 14, 15). Significance level, denoted 
by � is a measure of the strength of the evidence that must 
be present in a sample before rejecting the null hypothesis 
and concluding that the effect is statistically significant. 
P-value, the probability that measures the evidence against 

Fig. 7  Normal probability plot for residuals for frictional heating

Table 9  Response table for signal-to-noise ratios (smaller is better)

Level Material Environment Applied load (N)

1 25.07 24.13 28.56
2 23.14 29.35 25.85
3 29.26 23.99 23.05
Delta 6.12 5.36 5.50
Rank 1 3 2
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Fig. 8  Main effects plots for S/N ratio for the friction coefficient

Fig. 9  Normal probability plot of residuals for friction coefficient
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the null hypothesis, if smaller than the significance level (as 
observed in the present study), advocates the rejection of the 
null hypothesis; otherwise, it accepts the null hypothesis. 
Each parameter’s percentage significance is found out and 
indicated in the last column of Tables 10, 12, and 14 for wear 
rate, frictional heating, and friction coefficient, respectively. 
From Table 10, it is observed that applied load has higher 
significance (51.21%) on wear rate, followed by test material 
(35.99%), and test environment (6.61%). Moreover, Table 12 
delineates that the load has higher significance (68.22%) on 
wear rate, followed by test material (24.28%), and test envi-
ronment (3.36%).Furthermore, it has been observed that the 
test material has higher significance (28.79%) on wear rate, 

followed by test environment (27.41%) and load (22.28%), 
as depicted in Table 14.     

4.8  Confirmation Experiments

After identifying the most influential parameters, the final 
phase is to verify the responses by conducting the confir-
mation experiments. The LM13S10 composite under  MoS2 
lubrication at 50 N load is an optimal parameter combination 
during the wear test. Therefore, the condition of the optimal 
parameter combination was treated as a confirmation test. 
The confirmation test result gives the wear rate, temperature, 
and friction coefficient similar to those shown in Table 6.

Table 10  Analysis of variance for wear rates

Source Degree of 
freedom

Sum of squares Adjusted sum 
of square

Adjusted 
mean Square

F P % Contribution

Material 2 164.051 164.051 82.025 142.77 0.000 35.99
Environment 2 30.142 30.142 15.071 26.23 0.000 6.61
Applied load (N) 2 233.423 233.423 116.712 203.15 0.000 51.21
Material × environment 4 12.490 12.490 3.122 5.43 0.021 2.74
Material × applied load (N) 4 5.911 5.911 1.478 2.57 0.119 1.30
Environment × applied load (N) 4 5.229 5.229 1.307 2.28 0.150 1.15
Residual error 8 4.596 4.596 0.575 1.01
Total 26 455.841

Table 11  Model summary for wear rate

S R2 (%) Adjusted R2 (%)

0.7580 98.99 96.72

Table 12  Analysis of variance for temperature

Source Degree of 
freedom

Sum of squares Adjusted sum 
of square

Adjusted 
mean square

F P % Contribution

Material 2 1.65294 1.65294 0.82647 165.67 0.000 24.28
Environment 2 0.22845 0.22845 0.11422 22.90 0.000 3.36
Applied load (N) 2 4.64374 4.64374 2.32187 465.43 0.000 68.22
Material × environment 4 0.08011 0.08011 0.02003 4.01 0.045 1.18
Material × applied load (N) 4 0.10206 0.10206 0.02551 5.11 0.024 1.50
Environment × applied load (N) 4 0.05949 0.05949 0.01487 2.98 0.088 0.87
Residual error 8 0.03991 0.03991 0.00499 0.59
Total 26 6.80669

Table 13  Model summary for temperature

S R2(%) Adjusted R2 (%)

0.0706 99.41 98.09
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5  Conclusions

The liquid metallurgy route was adopted to synthesize 
SiC reinforced aluminum matrix composite. The effects of 
applied load and adding solid lubricants  (MoS2,  TiO2, and 
graphite) to the oil during the developed composite’s slid-
ing behavior have been experimentally investigated using a 
pin-on-disk machine and compared with the matrix alloy as 
well as conventionally used Gunmetal. The ANOVA analy-
sis based on the Taguchi method’s response table was used 
to optimize the test parameters. Based on the results of the 
present study, the following conclusions are drawn:

• MoS2 shows a 20–35% reduction in wear rate than other 
lubricants at all the applied loads.

• Wear rate, coefficient of friction, and frictional heating 
all increased with an increase in the applied load.

• MoS2 and graphite show the lowest temperature profiles 
owing to outstanding lubricity and surface adhesion.

The results’ anticipation establishes that SiC reinforced 
aluminum alloys are more favorable than the traditional 
Gunmetal under lubricated environments.

Table 14  Analysis of variance for the coefficient of friction

Source Degree of 
freedom

Sum of squares Adjusted sum 
of square

Adjusted 
mean square

F P %Contribution

Material 2 176.19 176.19 88.096 39.04 0.000 28.79
Environment 2 167.78 167.78 83.889 37.17 0.000 27.41
Applied Load (N) 2 136.38 136.38 68.192 30.22 0.000 22.28
Material × environment 4 23.43 23.43 5.859 2.60 0.117 3.83
Material × applied load (N) 4 33.01 33.01 8.252 3.66 0.056 5.39
Environment × applied load (N) 4 57.20 57.20 14.299 6.34 0.013 9.35
Residual error 8 18.05 18.05 2.257 2.95
Total 26 612.05

Table 15  Model summary for the coefficient of friction

S R2 (%) Adjusted R2 (%)

1.5022 97.05 90.41

4.9  Worn Surface Analysis

The scanning electron microscope (SEM) analysis is used 
to understand the test specimens’ worn surface mechanisms. 
Figure 10 delineates the worn surface of the SiC reinforced 
composite at 150 N for  MoS2,  TiO2, and Graphite lubricated 
environment. In the  MoS2 lubricated environment, the mate-
rial removal rate observed was minimal due to layers’ delam-
ination. In contrast, in the  TiO2 environment, the abraded 
burrs formed during the wear cause three-body abrasions. 
However, in a lubricated graphite environment, the presence 
of suspended graphite particles in the oil lubricant proved to 
be still more effective towards forming a stable lubricating 
film on the contacting surfaces. Formation of dark patches 
on the wear surfaces and orientation/flow of graphite present 
within the sample material in sliding direction.
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