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Abstract
β-Ti alloys are known for their very low Young’s modulus, excellent physical properties, and biocompatibility, hence they are 
considered as attractive metallic materials for long-term bone implant applications. However, β-Ti alloys are poor wear resist-
ant and typically bioinert materials, thus their surfaces need to be modified to have wear resistant and bioactive properties. 
In this paper, an overview is given to the available surface functionalization techniques to improve the biological properties 
of β-Ti alloys. Mechanical, physical, chemical, and electrochemical treatments, as well the immobilization of bio-functional 
molecules are discussed. Bioactivity, biocompatibility, haemocompatibility, wear and/or corrosion, behaviour of the β-Ti 
alloys can be improved using a proper surface modification technique, by altering the surface composition and topography 
or removing the undesired material from the alloy surface.
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1 Introduction

Several biomaterials are available for being used as implant 
materials, such as metals (stainless steel, Co-based alloys, Ti 
and its alloys), ceramics (alumina, zirconia, calcium phos-
phates), and synthetic or natural polymers [1]. In the last 
few decades, metallic biomaterials have been extensively 
used in biomedical applications mainly due to their excellent 
mechanical properties [2]. Among those, Ti and its alloys 
are considered as the most suitable biomaterials owing to 
their high strength, excellent corrosion resistance, and bio-
compatibility [3–5].

Ti alloys are classified as α, β, near-α, α + β, and meta-
stable β phases  [6]. In this context, the alloying elements 

are grouped into three categories: α-stabilizers such as Al, 
O, N, C, β-stabilizers such as Mo, V, Fe, Cr, Ni, Co, Nb, Ta, 
Mn, and neutrals such as Sn and Zr [5]. The α and near-α Ti 
alloys have good fracture toughness and corrosion resistance 
but have limited mechanical strength. On the other hand, the 
α + β Ti alloys exhibit higher strength, higher ductility, and 
higher low-cycles fatigue strength [5]. α + β type Ti–6Al–4V 
alloy (ASTM F1108) is the most popular Ti alloy and has 
been used for producing orthopaedic prostheses and den-
tal implants due to its excellent specific strength, corrosion 
resistance, and biocompatibility [7]. However, ions of the 
alloying elements have been linked with various health prob-
lems such as neurological diseases and cytotoxic effects of 
Al and V, respectively [8–13].

Widely used α-type and α + β-type Ti-based implant 
materials have Youngʼs modulus values around 100–120 
GPa, whereas Young’s modulus of bone is 5–6 times lower 
than those materials [14–16]. The Youngʼs modulus of 
human cortical bone is about 15–20 GPa, more specifically, 
the Youngʼs modulus of the fibula is about 15–20 GPa, the 
humerus is about 15–16 GPa, the tibia is about 16–19 GPa 
and the femur is about 13–15 GPa [17]. The difference in 
Youngʼs modulus between implant and bone causes the 
unbalanced distribution of stress on bone leading to bone 
resorption. Therefore, it causes poor osteointegration which 
may subsequently lead to loosening or failure of the implant 
[18–20]. This mechanism, that is known as stress-shielding 
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and it can be minimized using an implant material having 
Young’s modulus closer to the bone.

Ti alloys with low Youngʼs modulus have been devel-
oped using biocompatible, non-toxic β-stabilizers elements 
such as Nb, Zr, Ta, Mo [4, 14, 21–29]. Niinomi et al. [3] 
and Abdel-Hady et al. [30] reported that Young’s modulus 
can be significantly reduced by adjusting the concentration 
of β-stabilizing elements. As reported by previous studies 
[31, 32], the β-type Ti alloys especially with Nb contents 
have been received attention and investigated extensively 
because of non-toxicity, good biocompatibility, also, bet-
ter cell adhesion, proliferation, and differentiation in vitro. 
During the last two decades, many novel non-toxic and 
allergy-free β-Ti alloys have been produced with display-
ing superior corrosion resistance and good biocompatibil-
ity along with their low Youngʼs modulus [33–35]. Some 
of β-Ti alloys, such as Ti–29Nb–13Ta–4.6Zr, include high 
cost, non-toxic and allergy-free elements such as Nb, Ta, 
Zr and Mo [36]. Thus, instead of these rare and expensive 
elements, low-cost elements such as Fe, Cr, Mn, and Sn 
are also used to produce low Youngʼs modulus β-Ti alloys, 
like Ti–Mn–Fe [37] or Ti–Sn–Cr [38]. The load-bearing 
implant materials are expected to exhibit a combination of 
high strength and low Youngʼs modulus [39], however, the 
lowest Young’s modulus β-Ti alloys also have poor yield 
and tensile strength because, in general, these alloys are 
produced under solutionized conditions [40]. Therefore, 
the strength of β-Ti alloys needs to be increased while 
keeping their Youngʼs modulus, in order to improve the 
performance of the implants. Some available techniques to 
increase the strength are cold working [41], accumulative 
roll bonding [42], aging treatment, spark plasma sintering 
(SPS), and plastic deformation (especially high-pressure tor-
sion) [43–47]. Datta et al. [48] used a predictive model and 
showed that increased content of β-stabilizers could reduce 
the strength of the β-Ti alloys. The incorporation of some 
β-stabilizers may also increase the strength of the alloys, as 
in the case of Ti6Al4V that presents higher strength as com-
pared to cp-Ti. Also, the incorporation of Ta to Ti–Nb–Zr 
increase tensile strength and decrease Young’s modulus 
[28]. Nevertheless, the incorporation of elements does not 
always improve the mechanical properties of β-Ti alloys like 
in the case of incorporation of Sn to Ti–Nb which drasti-
cally decreases the tensile strength [39]. On the other hand, 
solid solution strengthening by oxygen is also effective in 
improving the strength of β-Ti alloys as maintaining their 
low Youngʼs modulus [49]. Niinomi and Nakai [50] reported 
that a small content of oxygen resulted in an increase in 
the strength, however, it also led to an increase in Young’s 
modulus for Ti–29Nb–13Ta–4.6Zr alloy.

Surface degradation of implants is one of the most impor-
tant drawbacks for long-term implantation in the human 
body. When a metallic implant inserted into the human body, 

it can release metallic ions due to corrosive conditions [51]. 
Ti presents superior corrosion behaviour due to the sponta-
neously formation of a very stable oxide layer (passive film) 
on its surface. This passive film protects the implant materi-
als against corrosion, reduces the release of metallic ions, 
and it is responsible for good biocompatibility. However, the 
corrosion behaviour of β-Ti alloys is determined by the role 
of β-stabilizing elements on the passive film.

Ti–Nb alloys have a great interest because of good bio-
compatibility and corrosion behaviour. Ti–Nb has better 
corrosion behaviour than cp-Ti [52, 53] and Ti–Mo [54]. 
Moreover, minor incorporation of Ru [55], In [56], and Sn 
[57] is reported to improve the corrosion behaviour. How-
ever, the commercial Ti–6Al–4V alloy presented better cor-
rosion resistance than Ti–40Nb alloy through an immersion 
period of 21 days in NaCl solution that attributed to the 
formation of a more stable and thicker passive film [58]. 
The contribution of Zr, Ta, Mo, etc. β stabilizers in Ti–Nb 
alloys improved their corrosion behaviour in different physi-
ological solution through the formation of a mixed passive 
oxide layer that had been reported to be more stable [59–67]. 
Ti–Mo, Ti–Zr, and Ti–Ta based β-Ti alloys are also popular 
alloys thanks to their unique properties such as non-toxicity, 
good mechanical properties, and relatively better corrosion 
resistance [68, 69]. Binary Ti–Mo [70–72], Ti–Zr [73–75], 
and Ti–Ta [76–78] alloys presented better corrosion resist-
ance than cp-Ti in different solutions, while the ternary and 
multinary of these alloys exhibited further improvement in 
their corrosion behaviour [79–82].

Tribocorrosion is defined as an irreversible degradation 
process on the material surfaces subjected to the combined 
action of wear and corrosion [83]. Ti alloys are shown to 
possess poor wear resistance being a limiting factor in many 
applications [84, 85]. Although it is known that the total 
degradation rate after tribocorrosion can be different than the 
sum of the individual corrosion and wear rates, the literature 
reporting the synergistic interactions between corrosion and 
wear on β-Ti alloys is still scarce. Cvijović-Alagić et al. [86] 
investigated the tribocorrosion behaviour of Ti–13Nb–13Zr 
alloy in comparison with Ti–6Al–4V in Ringerʼs solution 
and found that Ti–13Nb–13Zr alloy had a substantially 
lower wear resistance than Ti–6Al–4V alloy. Similar behav-
iour was reported for Ti–40Nb alloy tested in 9 g/L NaCl 
solution [58]. On the other hand, Correa et al. [87] com-
pared the tribocorrosion behaviour of Ti–15Zr–7.5Mo and 
Ti–15Zr–15Mo β-Ti alloys and reported a better behaviour 
for the Ti–15Zr–7.5Mo alloy. More et al. [88] studied the 
tribocorrosion behaviour of Ti–12.5Mo, Ti–13Nb–13Zr and 
Ti–29Nb–13Ta–4.6Zr β-Ti alloys and Ti–6Al–4Fe α + β-Ti 
alloy against polyethylene in Hankʼs balanced salt solution. 
The authors reported that the β-Ti alloys induced lower 
wear damage on the counter material. Besides, the addi-
tion of synovial fluid constituents (bovine serum albumin, 
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hyaluronic acid, and dipalmitoylphosphatidylcholine) 
increased the wear volume loss on the Ti–29Nb–13Ta–4.6Zr 
alloy. Pina et al. [89] studied the influence of Sn addition 
on the tribocorrosion behaviour of Ti–Nb based β alloy and 
reported that Sn addition resulted with an increased wear 
volume loss in phosphate-buffered solution (PBS).

In order to improve the integration of bone and tissue, 
several surface modification techniques have been used to 
tailor the topography [21, 90–95]. When the properties of 
the implant surface can mimic the physical and chemical 
properties of the biological structure, tissue and implant 
surface integration is accomplished by adhesion, spread-
ing and proliferation of cells on the implant surface [96]. 
On the other hand, coatings improve the surface properties 
including the hardness, wettability, elastic strain, coefficient 
of friction, and wear resistance. Coating materials used in 
joints replacement are fabricated by physical and chemical 
vapor deposition (PVD and CVD, respectively), electrodep-
osition, and ion implantation [97–101]. On the other hand, 
owing to their unique wear and tribocorrosion properties, 
metal matrix composites (MMCs) can be considered for 
orthopaedic and dental implants as a coating material or as 
a functionally graded material (FGM) [102–109]. Besides, 
nanostructured surfaces have also been studied to achieve 
better adhesion between the biomedical application and tis-
sue [110–115].

β-Ti alloys considered as promising metallic materials 
for long-term bone implant applications. However, these 
alloys have some limitations such as poor wear resistance, 
still higher Youngʼs modulus compared to that of the bone, 
and lack of bioactivity. Therefore, a focus is given on both 
producing new β-Ti alloys, and improving their mechani-
cal, tribological, electrochemical, triboelectrochemical, and 
biological properties. So, the studies on β-Ti alloys, particu-
larly bio-functionalization studies are very important for the 
future improvements. Hence, this review aimed at gather-
ing and summarizing the available state-of-art techniques 
to bio-functionalize the β-Ti alloys to obtain multifunctional 
implants.

2  Bio‑functionalization of β‑Ti Alloys

Metallic biomaterials have an attractive combination of 
high durability, high toughness, non-toxicity, and high 
strength. However, metallic biomaterials are typically arti-
ficial materials, therefore, their surfaces need modification 
to gain bioactive properties. The biomaterial surface plays an 
extremely significant role when interfacing with the biologi-
cal environment (neutral tissue). Ti-based implants usually 
manufactured by melting, casting, forging, heat treatment, 
and oxidation which usually lead to a contaminated surface 
layer that is often stressed and plastically deformed, and 

non-uniform. Such native surfaces are not suitable for bio-
medical applications and some surface treatments should 
be performed. At the same time, different bio-functions 
are required depending on the intended implant location to 
achieve biological integration. For example, blood compat-
ibility (haemocompatibility) is very important for blood-
contacting biomedical devices such as stent and catheter, 
whereas osteointegration is a crucial parameter for bone 
applications. When a metallic biomaterial is implanted into a 
blood-contacting location, the first rapid event takes place is 
the blood protein adsorption leading to structural alterations 
that allow biological interactions. Thus, over time, a built-in 
protein layer is formed that affects the interaction of plate-
lets, the adhesion, and aggregation of platelets. Concerning 
bone applications (orthopaedics and dentistry), once the 
implantation procedure occurs, the implant surface is wet-
ted and the biologically active molecules (such as proteins) 
are adsorbed quickly followed by the osteoprogenitor cells 
that would regenerate the tissue [116]. The two main factors 
affecting osteointegration are the mechanical properties of 
the implant and the biological interactions with the metal 
surface, being the second the most relevant. Another impor-
tant reason for the surface modification is to increase the 
corrosion and wear resistance of the metallic biomaterial. As 
a result, bioactivity, biocompatibility, haemocompatibility, 
wear, and corrosion resistance of the metallic biomaterials 
can be improved by surface modification, altering the sur-
face chemical composition, topography, and crystal struc-
ture or removing the undesired material from the metallic 
biomaterial surface. For this purpose, many techniques have 
been applied for the surface modification of metals, some of 
which have also been commercialized.

It is clear that a biomaterial response is dependent on its 
biocompatibility and surface properties. In the literature, the 
bio-functionalization of metallic biomaterials, especially Ti 
and Ti6Al4V has been extensively studied and it is still being 
researched as recently reviewed by Su et al. [117]. Despite 
the combination of their unique features, β-Ti alloys need to 
be bio-functionalized to increase tissue adhesion and implant 
integration, to decrease bacterial adhesion, and inflamma-
tory response or to avoid the foreign body response. In the 
following sections, the surface modifications that are inves-
tigated for β-Ti alloys are discussed. These treatments are 
being applied individually or as a combination.

2.1  Mechanical Treatments

The biomechanical properties and bioactivity of the implant 
surface can be improved by mechanical treatments, over-
viewed in Table 1, yielding with the nanostructured and 
ultrafine-grained surface with enhanced strength. Elec-
tric discharge machining (EDM) has been widely studied 
on cp-Ti and Ti–6Al–4V alloy to improve their hardness, 
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corrosion and wear properties [118]. In the case of β-Ti 
alloys, the Ti–35Nb–7Ta–5Zr alloy has been studied by 
powder mixed electrical discharge machining (PMEDM). 
A schematic diagram of the PMEDM process and examples 
for the resulting microstructures on Ti–35Nb–7Ta–5Zr alloy 
is given in Fig. 1. PMEDM treated alloy presented better 
hardness, corrosion resistance, cell adhesion, cell spread-
ing, and cell differentiation compared to the unmachined 
one, attributed to the formation of a nanoporous recast layer 
[119–123]. 

The surface mechanical attrition treatment (SMAT) is a 
method that can be used to tailor the mechanical and tribo-
logical properties of a surface [124, 125]. The SMAT device 
mainly consists of a vibration generator and a treatment 

chamber having balls as shown in Fig. 2a. The SMAT treat-
ment was reported to improve the corrosion resistance, 
fatigue resistance, osteointegration, and haemocompatibil-
ity due to nanocrystallization of the cp-Ti surface [126]. 
Regarding β-Ti alloys, SMAT treated Ti–30Nb–8Zr–0.8Fe 
alloy having β grains around 150 µm (Fig. 2b) modified to 
a nanocrystalline structure having grains of several tens 
of nanometres (Fig. 2c) that led to an increase on the sur-
face hardness [127]. The increased hardness of the surface 
decreased the wear rate of materials, such as the reduc-
tion of the fretting wear rate of Ti–34Nb–2Ta–0.5O alloy 
immersed in a 20% foetal bovine serum solution (pH 7.4) 
[128]. The corrosion behaviour of Ti–25Nb–3Mo–3Zr–2Sn 
and Ti–34Nb–2Ta–0.5O alloys in SBF solution was 

Table 1  Overview of mechanical treatments applied for β-Ti alloys

Methods Objectives Alloys applied

Powder mixed electric discharge machining 
(PMEDM)

Fabricating a 3–18 μm nanoporous recast layer Ti–35Nb–7Ta–5Zr [119–123]

Surface mechanical attrition treatment (SMAT) Producing rough and hard a gradient nanostruc-
tured material

Ti–30Nb–8Zr–0.8Fe [127]
Ti–34Nb–2Ta–0.5O [128]
Ti–25Nb–3Mo–3Zr–2Sn [129]
Ti–5Al–2Sn–2Zr–4Mo–4Cr [130]
Ti–25Nb–3Mo–2Sn–3Zr [131]
Ti–32Nb–2Sn [296]

Ultrasonic nanocrystal surface modification 
(UNSM)

Inducing severe plastic deformation at the surface 
to generate a gradient nanostructured surface

Ti–29Nb–13Ta–4.6Zr [133, 134, 297]

High-pressure torsion (HPT) Obtaining ultrafine-grained metallic materials to 
increase the mechanical strength and decrease 
or retain Young’s modulus

Ti–29Nb–13Ta–4.6Zr [43, 44, 137, 140]
Ti–13Nb–13Zr [141, 145]
Ti–24Nb–4Zr–8Sn [142, 298]
Ti–45Nb [139]
Ti–15Mo [143, 299]
Ti–20Mo [136]
Ti–24.6Nb–5Zr–3Sn [135]
Ti–19.6Nb–4.5Ta–2.4Cr [135]
Ti–19Nb–7Mo–14Zr [300]
Ti–28Nb–8Mo–12Zr [300]
Ti–35Nb–7Zr–5Ta [144]

Accumulative roll bonding (ARB) Production of metallic materials with ultrafine 
grained microstructure to improve mechanical 
properties

Ti–10Zr–5Nb–5Ta [147, 148]
Ti–25Nb–25Ta [146, 149]
Ti–25Nb–3Zr–3Mo–2Sn [150, 151]

Fig. 1  a Schematic diagram of PMEDM process and examples for the resulting microstructures on Ti–35Nb–7Ta–5Zr alloy b before and c after 
treatment (adapted from [119] with permission from Springer)
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improved after SMAT treatment associated with the for-
mation of a denser passive oxide layer resulted from the 
grain refinement [128, 129]. However, corrosion resistance 
of Ti–5Al–2Sn–2Zr–4Mo–4Cr alloy in 3.5% NaCl solution 
was decreased after SMAT treatment due to residual internal 
stress created from the treatment process [130]. The authors 
reported that stress relief heat treatment of 250–350 °C can 
significantly improve the corrosion resistance of SMAT 
treated alloy. In vitro cell culture studies indicated a sig-
nificant improvement in cell adhesion, proliferation, differ-
entiation, extracellular matrix mineralization, and protein 
absorption of SMAT treated Ti–25Nb–3Mo–2Sn–3Zr alloy 
as compared to the non-treated alloy due to its superior 
hydrophilicity, nanostructured surface, and increased sur-
face roughness [131].

Ultrasonic nanocrystal surface modification (UNSM) 
is a novel method to induce severe plastic deformation at 
the surface to generate a gradient nanostructured surface 
layer on metallic materials. The process uses super-encap-
sulated ultrasonic vibration on the combination of static and 
dynamic loads to create high-strain rate plastic deformation 
on a material surface (Fig. 3a) [132]. Kheradmandfard et al. 
[133] applied the UNSM process to a Ti–29Nb–13Ta–4.6Zr 

alloy and obtained a significant increase on the surface 
hardness (≈ 385 HV) as compared to the untreated alloy 
(190 HV) owing to the surface structure having nanoscale 
lamellae and nanostructured subgrains (Fig. 3b), along with 
high dislocation density and α precipitates. The authors 
also reported that UNSM treated Ti–29Nb–13Ta–4.6Zr 
alloy presented significantly better wear resistance, cell 
adhesion, spreading, and proliferation attributed to both 
nanoscale grain refinement and micro-patterned surface 
effects (Fig. 3c) [134].

High-pressure torsion (HPT) is another commonly used 
severe plastic deformation technique to obtain ultrafine-
grained structure for improving mechanical properties, 
particularly hardness and ductility as well as its biofunc-
tionality [44, 135–138]. A schematic diagram of HPT pro-
cess is given in Fig. 4a together with the representative 
microstructures on Ti–45Nb alloy before (Fig. 4b) and after 
(Fig. 4c, d) HPT deformation with 5 GPa pressure and n = 5 
rotation number, where the grain size was reported to be 
decreased from around 20 µm to less than 100 nm [139]. 
As expected, HPT treatment improved the mechanical and 
microstructural properties of different β-Ti alloys [139–144]. 
Regarding corrosion, HPT treated Ti–13Nb–13Zr alloy 

Fig. 2  a Schematic diagram of SMAT process and representative microstructures on Ti–30Nb–8Zr–0.8Fe alloy b before and c after treatment 
(microstructure of alloy was taken from [127] with permission from Elsevier)

Fig. 3  a Schematic diagram of the UNSM process (adapted from [132]) and representative resultant surfaces on a Ti–29Nb–13Ta–4.6Zr alloy: b 
SEM image, c laser scanning microscope image (adapted from [133] with permission from Elsevier)
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showed significantly higher corrosion resistance in artificial 
saliva solution as compared to the untreated alloy associ-
ated with the grain size reduction to ultrafine range [140]. 
However, the quantities of released ions from HPT treated 
Ti–13Nb–13Zr alloy were higher than the quantities from 
untreated alloy, explained by its smaller grains, which was 
more prone to the release metallic ions [145]. In vitro cell 
culture tests revealed that the HPT treatment significantly 
increased the cell attachment, spreading, and proliferation on 
the treated samples influenced by their increased wettability 
due to their high internal energy given by the nano-sized 
grains having increased numbers of boundaries, interfaces, 
and dislocation density [140, 141]. Furthermore, alkaline 
treatment and the nanotubular layer formed on HPT treated 
β-Ti alloys presented better bioactivity as compared to the 
non-HPT treated one, explained by changing surface chem-
istry after chemical and anodic treatments [144].

Accumulative roll bonding (ARB) is another severe plas-
tic deformation technique that has been applied to differ-
ent β-Ti alloys to improve their functionality through grain 
refinement [146–151]. The studied β-Ti alloys presented 
better mechanical and corrosion behaviour as compared to 
the as-cast alloys due to the formation of nano-sized refined 
grains. However, biological studies are needed to understand 
the effect of ARB treatment on the bioactivity of β-Ti alloys.

2.2  Physical Surface Treatments

Physical surface treatments of β-Ti alloys including PVD, 
plasma spraying, plasma nitriding, gas nitriding, and ion 
implantation treatments are overviewed in Table 2 and dem-
onstrated in Fig. 5 with the examples of surface and sub-
surface microstructural images. PVD processes are carried 
out in vacuum and the material are coated with positively 
charged ions during the process, resulting with a very strong 
bonding between the coating film and the substrate (Fig. 5c). 
The plasma spray process is the spraying of molten or ther-
mally softened material to the surface to provide a coating 

[152]. On the other hand, ion implementation technique 
provides an easy control on the energy of ions, giving a 
good adhesion between the coating layer and the substrate 
resulted from gradient film coatings as shown in Fig. 5d, e. 
This technique allows to control the thickness of the coating, 
and eliminates the contamination since the process is carried 
out in vacuum [152].

Hydroxyapatite (HA,  Ca10(PO4)6(OH)2) is a bio-ceramic 
material having a very similar chemical and crystallo-
graphic structure to human bone. HA has remarkably high 
biocompatibility thus it is used to improve the osteointe-
gration process. However, its mechanical properties such 
as tensile strength and fracture toughness are quite poor, 
making it unsuitable for load-bearing implant applica-
tions. Various types of surface modification techniques 
have been used to deposit HA layers on Ti and its alloys, 
such as plasma spraying, sol–gel method, electrochemical 
deposition, and radio frequency (RF) sputtering. Zhao et al. 
[153] studied the microstructures, mechanical properties, 
and apatite-induction abilities of HA/Ti composite coat-
ing Ti–24Nb–4Zr–7.9Sn β-type alloy by plasma spraying. 
The authors reported that the microstructure, mechanical 
properties, and apatite-induction ability were influenced 
by the HA/Ti powders ratio used on processing. Also, the 
increase on Ti content led to an increase on the mechanical 
properties, however, decreased the apatite-induction ability. 
Zhao et al. [154] also studied the influence of the process-
ing temperatures on Ti–24Nb–4Zr–7.9Sn alloy surface after 
plasma sprayed HA coating and reported that martensitic 
transformation and recrystallization influenced the mechani-
cal properties resulting with a slight increase in the tensile 
and yield strengths but also led to a significant increase in 
Young’s modulus (from 56.9 to 73.2 GPa). The main disad-
vantage of the plasma spraying technique is the poor adhe-
sion between HA and the substrate materials. In order to 
improve the adhesion between HA and β-Ti alloys, some 
other techniques were also studied. He et al. [155] produced 
Ti–13Nb–13Zr–10HA composites by spark plasma sintering 

Fig. 4  a Schematic diagram of HPT process and representative 
microstructures: b optical microscope image of the initial Ti–45Nb 
alloy, c dark and d bright-field TEM images of the alloy after HPT 

treatment under 5 GPa pressure and 5 rotation number (adapted from 
[139] with permission from Elsevier)
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Table 2  Overview of physical surface modification methods applied for biomedical β-Ti alloys

Methods Objectives Alloys

Plasma spray Improving wear resistance, corrosion resistance and biological 
properties

Ti–24Nb–4Zr–7.9Sn [153, 154]
Ti–13Nb–13Zr [158, 159]

Gas nitriding Ti–27Nb [160, 167]
Ti–16Mo [170]
Ti–15Mo–5Zr–3Al [161]
Ti–15Mo–3Nb–3Al–0.2Si [169]

Plasma nitriding Ti–15Mo [163]
Ti–13Nb–13Zr [164]
Ti–15Mo–3Nb–3Al–0.2Si [162, 174]

PVD Ti–12Mo–6Zr–5Sn–0.4Fe [166]
Ti–13Nb–13Zr [294, 301, 302]
Ti–45Nb [165]
Ti–15Mo [163]

Sputtering Ti–35Ta–xZr (x = 3, 7, and 15) [157]
Ti–13Nb–13Zr [164]

Ion implantation Modifying surface composition; improving
wear, corrosion resistance, and biocompatibility

Ti–25Ta–25Nb [173]
Ti–35Nb–7Zr–5Ta [171]
Ti–10Zr–10Nb–5Ta [172]

Plasma immersion ion implantation 
(PIII)

Ti–13Nb–13Zr [175]
Ti–15Mo–3Nb–3Al–0.2Si [303]

Glow discharge plasma Obtaining a clean, sterilize, oxide, nitride surface;
removing the native oxide layer

Ti–5Zr–3Sn–5Mo–15Nb [304]

Fig. 5  a Schematic illustration of physical surface functionaliza-
tion with resultant images: b cross-sectional SEM image of plasma 
sprayed HA/Ti coating on Ti–24Nb–4Zr–7.9Sn (adapted from [153] 
with permission from Elsevier), c cross-sectional SEM image of TiN 
coated on Ti–13Zr–13Nb alloy using cathodic arc physical vapor 

deposition (CAPVD) method (adapted from [294] with permission 
from MDPI, d TEM cross-section image of the nitrogen implanted 
Ti–35Nb–7Zr–5Ta alloy (adapted from [171] with permission from 
Elsevier), e cross-section SEM image of gas nitrided of Ti–15Mo–
5Zr–3Al (adapted from [161] with permission from Elsevier)
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process at sintering temperatures varying between 950 and 
1150 °C. The authors reported that mechanical properties of 
the composite, namely compressive strength, yield strength, 
and hardness were increased with the increased processing 
temperature. However, the processing temperatures above 
1050 °C led to an intense reaction between Ti and HA 
increased in the metal-ceramic reaction phases. Depending 
on the processing technique and processing temperature, 
the thermal decomposition of HA during the processing of 
Ti–HA composites may lead to a decrease in the corrosion 
resistance due to the formation of locally active sites on the 
HA-depleted zones [156]. However, if the decomposition of 
HA is not observed, Ti–HA composite surfaces may increase 
the corrosion resistance. For instance, Kim et al. [157] stud-
ied the surface characteristics of Ti–HA composite coatings 
developed on Ti–35Ta–xZr alloy surfaces having 3, 7, and 
15 wt% of Zr through RF and direct current (DC) sputtering 
and reported that the composite layer improved the corro-
sion resistance of the bare alloy by forming a stable barrier 
against corrosion.

The  Al2O3–13TiO2,  ZrO2 and the bilayered  (ZrO2/
Al2O3–13TiO2) nanoceramics coated by plasma spray tech-
nique on Ti–13Nb–13Zr alloy to improve its corrosion and 
wear resistance [158, 159]. The bilayered nanoceramic coat-
ing presented significantly higher corrosion resistance in 
Hank’s solution and wear resistance in SBF solution attrib-
uted to the presence of a large number of melted particles 
compared to other ceramics where they presented unmelted 
and melted particles, lower porosity and higher hardness for 
bilayered nanoceramic coating compared to other samples.

Titanium nitride (TiN) coatings by PVD, plasma nitrid-
ing, sputtering, gas nitriding, plasma immersion ion implan-
tation, and ion implantation treatments have been widely 
used to improve the corrosion and wear behaviour along 
with the bioactivity of metallic materials. TiN has attracted 
attention due to its excellent properties such as high hard-
ness, chemical stability, biocompatibility, haemocompat-
ibility, high wear, and abrasion resistance. Because of these 
unique properties, TiN has been used on various applica-
tions such as dental prostheses, orthopaedic implants (hip, 
knee, ankle joint), heart valve prostheses, and dental surgery 
tools. The structure and biological properties of nitrogen 
treatment on different β-Ti alloys have been investigated 
[160–174]. Mohan et al. [174] performed a plasma nitrid-
ing treatment on Ti–15Mo–3Nb–3Al–0.2Si alloy using 
inductively coupled RF plasma and studied the corrosion 
behaviour by electrochemical impedance spectroscopy 
(EIS), potentiodynamic polarization, and immersion stud-
ies in Hank’s solution. It was found that the surface hardness 
of the nitrided samples increased with increasing anneal-
ing temperature and hydrogen dilution. Although nitrided 
surfaces presented lower corrosion resistance, nitrided sam-
ples with hydrogen dilution displayed higher potential for 

apatite growth compared to that of the sample nitrided with 
100% nitrogen and the uncoated one. Gordin et al. [173] 
implanted nitrogen into Ti–25Ta–25Nb β-type alloy using 
an original ion implantation technique based on the use 
of an electron cyclotron resonance ion source to produce 
a multi-energetic ion beam from multi-charged ions. The 
corrosion resistance of the nitrogen implanted Ti alloy was 
evaluated in SBF complemented by in vitro cytocompat-
ibility tests on human foetal osteoblasts. It was found lower 
corrosion and ion release rate for the nitrogen implanted 
surface than for the non-implanted one whereas in vitro 
tests revealed a good level of cytocompatibility for both 
non-treated and nitrogen implanted Ti–25Ta–25Nb alloy. A 
high temperature gas nitrided Ti–27Nb alloy also presented 
significantly better corrosion resistance than the cp-Ti and 
untreated Ti–27Nb alloy in artificial saliva for different pH 
values, together with a good level of bioactivity [160, 167]. 
In wear point of view, the ion implantations, plasma nitrided 
and gas nitrided methods are more beneficial than the PVD 
techniques and sputtering mainly due to the formation of a 
gradient hardened layer and the good bonding strength of the 
nitrided layer resulted from the diffusion of nitrogen ions. 
For instance, the dense TiN coating deposited by sputtering 
presented lower wear resistance as compared to a compact 
plasma nitrided layer associated with the hard compound 
layer maintaining its integrity with the hardened nitrogen 
diffusion zone during the wear test [164]. While nitriding 
improves the corrosion and wear resistance, gas nitriding in 
high temperature is reported to cause low fatigue strength 
due to severe grain coarsening [161]. A possible approach to 
improve the tribological behaviour of the protective coatings 
can be achieved by increasing fracture toughness and hard-
ness with the replacement of monolayered coatings by mul-
tilayers. The multi-layered TiAlN/CrN coatings on Ti–45Nb 
alloy presented better wear resistance than the monolayered 
CrN and TiAlN coatings in dry sliding condition attributed 
to their small grain size, high surface hardness and adhesion 
resistance [165].

Another approach studied in the literature to improve the 
corrosion and wear behaviour of β-Ti surface is oxygen treat-
ment using plasma immersion ion implantation. Mohan and 
Anandan [175] implanted oxygen ions into Ti–13Nb–13Zr 
β-type alloy by plasma immersion ion implantation and 
investigated the influence of oxygen ion implantation on 
the apatite growth and corrosion behaviour in Hanks’ solu-
tion. Results showed that the implanted samples had a higher 
potential for inducing apatite growth as compared to the 
untreated samples. Furthermore, the authors stated based 
on potentiodynamic polarization and EIS studies that the 
implanted layer behaved like a near-ideal capacitor with bet-
ter passivation behaviour which can help in preventing the 
release of metallic ions from the implant material. Further-
more, the implanted surfaces displayed a lower coefficient 
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of friction during dry sliding wear tests, as compared to the 
untreated samples.

2.3  Chemical Surface Treatments

Chemical methods are attracting more attention owing 
to their lower cost, easier control and stronger adhesion 
between bones and implant surfaces compared to the sam-
ples treated by mechanical and physical methods. Through 
chemical surface modification, it is possible to provide direct 
bonding between bone and the implant. Chemical surface 
treatments can be used to generate a nanopatterned surface 
topography which is expected to be promising for the stimu-
lation of bone tissue growth (osteointegration of bone tissue) 
[176]. Acid treatment (HCl,  H2SO4,  HNO3, and HF, or a 
combination of them) is often used to remove the undesired 
material, to create a rough surface, and to obtain clean and 
uniform surface finishes. The schematic representation of 
chemical treatments and representative treated surfaces is 
given in Fig. 6, and the overview of chemical methods of 
β-Ti alloys are given in Table 3. 

Acid treatments commonly performed to clean metal-
lic surfaces or surface roughening to improve bonding 

quality of next coating layer or improve bioactivity of 
surfaces. The Ti–45Nb alloy surface modified by sand-
blasting, followed by acid etching in different solutions, 
chemical treated in  H2SO4:H2O2 (volume ratio of 1:1; pira-
nha solution) with ice cooling resulted with a nanopat-
terned surface that stated by the authors to be expected to 
stimulate bone cell interactions [92]. It has been reported 
significantly prolonged etching duration for Ti–Nb alloy 
compared to cp-Ti and Ti–6Al–4 V attributed to the excel-
lent chemical stability of Nb. Chemically treated Ti–40Nb 
alloy by piranha solution enhanced the adhesion and 
spreading of human mesenchymal stromal cells, together 
with better metabolic and enzyme activity [177]. However, 
chemically treated Ti–45Nb alloy presented lower corro-
sion resistance than untreated alloy due to the alterations 
on the surface chemistry and increase on the exposure area 
resulted from nanopatterning. Müller et al. [178] inves-
tigated the influence of different acid–alkali treatments 
on Ti–13Nb–13Zr alloy produced by powder metallurgy 
(P/M). The authors evaluated the rate of hydroxy carbon-
ated apatite (HCA) formation during in vitro bioactivity 
tests in SBF. After etching the samples by HCl, HF/HNO3/
H2O (1:6:18),  H3PO4, and then soaked in 10 M NaOH 

Fig. 6  a Schematic representation of chemical treatment process 
and representative treated surface SEM images of b HCl etched and 
c subsequently immersed in NaOH surfaces of Ti–13Nb–13Zr alloy 
(adapted from [178] with permission from Elsevier); SEM images 
of d NaOH treated and e piranha etched surfaces of Ti–40Nb alloy 
(adapted from [180] with permission from Elsevier); f representa-

tive SEM image of HA-coated surface on Ti–29Nb–13Ta–4.6Zr by 
MOCVD (adapted from [192] with permission from Elsevier);  g 
SEM image of a treated Ti–24Nb–4Zr–8Sn alloy surface in saturated 
Ca(OH)2 solution boiled for 30 min (adapted from [195] with permis-
sion from Elsevier)
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aqueous solution, the authors reported that the rate of 
HCA formation was the highest for the samples etched 
in HCl.

As abovementioned, HA has excellent bioactivity, but 
its application has been limited in clinics due to its poor 
mechanical properties. Hence, the formation of a dense 
and uniform bone-like apatite layer grown on Ti alloys 
through alkaline treatment and soaking in SBF has been 
attractively studied as an alternative to HA coating tech-
niques. A schematic illustration of apatite formation mech-
anisms in SBF is given in Fig. 7. It may be expected that 
the precipitated apatite coatings from soaking in SBF will 
be close to that of the biological apatite presents in human 
bone, where the SBF solution reproduces the human blood 
plasma. After alkaline treatment, a ~ 1 μm thick unstable 
sodium titanate layer is formed, and using heat treatment 
it is converted to a denser and mechanically stable layer. 

Acid and heat treatment was not effective for inducing 
apatite formation on Ti-based alloy attributed to enriched/
remained alloying elements on their surfaces [179]. Also, 
while the chemical pre-treatments of alloy surfaces have 
a slight impact on apatite morphology, they do not affect 
the deposition process and its phase composition [180]. As 
can be seen from Fig. 7, during SBF soaking, the Ti–OH 
groups are formed resulted from the exchanged  Na+ and 
 H3O+ ions. The negatively charged Ti–OH groups are 
combined with positively charged  Ca2+ ions through elec-
trical force and form calcium titanate. Similarly, the posi-
tively charged surface combines with negatively charged 
phosphate ions to form amorphous calcium phosphate, and 
apatite grows on the surface spontaneously by consuming 
the calcium and phosphate ions. It is reported that apatite 
was grown more quickly on the β-Ti alloy than Ti–6Al–4V 
alloy [181].

Table 3  Overview of chemical surface modification methods applied for β-Ti alloys

Methods Objectives Alloys

Acid treatment Removing oxide scales and contamination Ti–40Nb [177, 180, 305]
Ti–45Nb [92, 306]
Ti–13Nb–13Zr [178, 187]
Ti–15Mo–5Zr–3Al [179]
Ti–15Zr–4Nb–4Ta [179]
Ti–35Nb–10Ta–1.5Fe [307]
Ti–27Nb–13Zr [308]
Ti–29Nb–13Ta–4.6Zr [183, 184, 

190, 191, 309]
Ti–24Nb–4Zr–8Sn [189, 252]
Ti–5Mo–3Fe [186]
Ti–20Nb–13Zr [310]
Ti–15Mo [185]
Ti–16In–3Nb–4Ta [181]

Alkaline treatment Improving biocompatibility, bioactivity
or bone conductivityHydrogen peroxide treatment

Sol–gel treatment Ti–29Nb–13Ta–4.6Zr [311–314]
Ti–15Mo [315]

CVD Improving wear resistance, corrosion resistance and blood 
compatibility

Ti–29Nb–13Ta–4.6Zr [192]
Ti–13Nb–13Zr [316, 317]
Ti–12Mo–6Zr–2Fe [318]

Hydrothermal treatment Improving hard tissue compatibility Ti–30Nb–1Fe–1Hf [210, 215]
Ti–29Nb–13Ta–4.6Zr [193]
Ti–13Cr–1Fe–3Al [193]
Ti24Nb–4Zr–7.9Sn [194, 195]
Ti–25Nb–3Mo–3Zr–2Sn [196, 319]

Fig.7  Schematic illustration of the apatite formation mechanism on the surface of alkali and heat-treated Ti-based alloy soaked in SBF
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The structure and bioactivity of alkali and heat treatment 
of β-Ti alloys have been investigated [180, 182–189]. Take-
matsu et al. [184, 190, 191] performed three different alkali 
solution treatments (electrochemical, hydrothermal, and 
hydrothermal-electrochemical) on Ti–29Nb–13Ta–4.6Zr 
alloy and compared the bioactivities and other character-
istics of the modified surfaces. The authors showed the 
influence of the process to the surface morphology where 
electrochemical treatment resulted in a flat surface, hydro-
thermal treatment resulted in a smooth and fine mesh-like 
structure, and hydrothermal-electrochemical treatment led 
to a rough mesh-like structure. Moreover, apatite inductiv-
ity in SBF was reported to be influenced by surface rough-
ness and chemical composition where increased roughness 
and decreased Nb content on the surface led to a higher 
apatite-induction ability. Also, the authors reported that a 
thicker oxide layer or presence of surface cracks decreased 
the adhesion strength, where cracks usually initiated as a 
result of thermal stress.

It has been reported that alkali [182] and alkali-hydrogen 
peroxide [185] treated Ti–15Mo alloy can induce bone-
like apatite formation in vitro. The effect of alkali and 
hydrogen peroxide treatment on the electrochemical and 
biological performance of the Ti–5Mo–3Fe alloy surface 
was evaluated by Kumar et al. [186] and it was found that 
the alkali-treated alloy immersed in SBF solution exhib-
ited notably higher corrosion resistance when compared 
with untreated and hydrogen peroxide treated samples. 
Furthermore, it was stated based on MG-63 in vitro cell 
culture studies that the alkali-treated samples showed bet-
ter cell adhesion and spreading compared to the untreated 
and hydrogen peroxide treated samples. Zheng et al. [189] 
performed alkali treatment for calcium phosphate coatings 
on Ti–24Nb–4Zr–7.6Sn alloy and determined the adhesion 
and proliferation of rat osteoblast. The authors found that 
both the adhesion and proliferation of osteoblast cells on 
apatite formed Ti–24Nb–4Zr–7.6Sn were much better than 
on uncoated Ti–24Nb–4Zr–7.6Sn and cp-Ti.

Surface treatments with acid, alkali, hydrogen peroxide, 
and mechanical polishing, or a combination of these treat-
ments are being applied to improve the adhesive strength of 
HA films [180]. Studies showed that the adhesive strength 
of such films can be improved by increasing the roughness 
of the underlying substrate. Hieda et al. [192] investigated 
the effect of acid treatment and mechanical polishing treat-
ments on the adhesive strength of HA films deposited on 
Ti–29Nb–13Ta–4.6Zr alloy through metal–organic chemi-
cal vapor deposition (MOCVD) to increase the hard tis-
sue compatibility. The authors reported that the adhesive 
strength of the HA layers formed on Ti–29Nb–13Ta–4.6Zr 
substrates treated with an HF solution significantly increased 
as compared to that of the HA film deposited on a pol-
ished Ti–29Nb–13Ta–4.6Zr surface. Also, the HA films 

on Ti–29Nb–13Ta–4.6Zr substrates treated with an  H2SO4 
solution exhibited lower adhesive strength than HA films on 
Ti–29Nb–13Ta–4.6Zr substrates treated with HF solution, 
regardless of the surface roughness of the substrates. Addi-
tionally, it was reported that the nanoscale surface asperities 
contributed to the adhesive strength, which was not observed 
for macroscale asperities.

The hydrothermal method is found to be very useful due 
to the formation of uniform coatings on complicated shapes, 
low processing temperature, low cost, and particularly 
because of strengthening the adhesion between the resultant 
coating and substrate. The surface wettability of implants is 
a crucial factor in their osteoconductivity because it influ-
ences the adsorption of cell-attached proteins onto the sur-
face. In this respect, Zuldesmi et al. [193] compared the 
polished, hydrothermal treated, and anodic treated surfaces 
of Ti and four different Ti alloys (Ti–6Al–4V, Ti–6Al–7Nb, 
Ti–29Nb–13Ta–4.6Zr, and Ti–13Cr–1Fe–3Al). Hydrother-
mal treatment was performed in distilled water at 180 °C 
for 3 h whereas anodic treatment was performed in 0.1 M 
 H3PO4 solution by applying potentials from 0 to 150 V with 
0.1 V s−1 scanning rate. It was found that hydrothermal treat-
ment increased the surface hydrophilicity of all types of Ti 
alloys and the osteoconductivity of Ti alloys after hydro-
thermal treatment and immersion in phosphate-buffered 
saline solution increased five times compared with that of 
the untreated samples.

Nanostructured  TiO2 coatings are found to be favoura-
ble for the early osteointegration and biocompatibility due 
to their bioactivity. Liu et al. [194] studied the biocompat-
ibility and early osteointegration of nano-TiO2 hydrother-
mally coated Ti–24Nb–4Zr–7.9Sn alloy compared with 
those of uncoated Ti-2448. The biocompatibility was 
evaluated using MTT assays, the histocompatibility was 
determined by observing the histological sections stained 
with HE (subcutaneous implantation, endosseous implan-
tation), and the early osteointegration was tested using the 
alkaline phosphatase (ALP) activity and TGF-β1 expres-
sion. The authors reported an enhanced proliferation and 
cytocompatibility on the functionalized surfaces based 
on the MTT results, and better histocompatibility of the 
subcutaneous and endosseous implantation based on the 
in vivo studies. Zheng et al. [195] studied the function-
alization of Ti–24Nb–4Zr–7.9Sn alloy by thermal treat-
ment followed by hydrothermal treatments in supersatu-
rated Ca(OH)2 solution. The treatment resulted in a layer 
containing  CaTiO3,  CaCO3, Ca(OH)2, and  TiO2, and the 
authors reported a formation of Ca–P layer after soaking 
in SBF for 3 days. Tao et al. [196] investigated the sur-
face properties of the Ti–25Nb–3Zr–2Sn–3Mo alloy after 
functionalization by a hydrothermal treatment in urea solu-
tion at temperatures varying between 105 and 170 °C, fol-
lowed by a heat treatment at 400 °C. The authors showed 
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that changes in temperature on hydrothermal treatment 
affected the surface structure where nanosheet films of 
ammonium titanate were observed after the treatment 
at 105 and 120 °C, whereas nanoparticle film of anatase 
 TiO2 containing  Nb2O5 was formed at 150 °C. Moreo-
ver, the authors reported enhanced hydrophilicity on the 
functionalized surfaces after water contact angle measure-
ments around 68° and 10° for untreated and treated alloys, 
respectively.

2.4  Electrochemical Surface Treatments

Electrochemical processes are performed by chemical 
action on the metal surface under an electric current pass-
ing through an electrolyte. The electrochemical setup and 
the examples of resultant porous with volcano-like struc-
ture, nanotubular, and HA-containing layers are presented 
in Fig. 8. These methods are simple and cost-effective, 
allowing the incorporation of bioactive elements, and can 
increase the corrosion resistance of the modified materials 
owing to a more stable and thicker oxide layer formed on 
the surface [197]. Oxide layers with different morpholo-
gies, thickness, roughness, wettability, chemical com-
positions, and crystalline structures are formed on the 

substrates depending on the applied voltage and electrolyte 
composition [198].

2.4.1  MAO

MAO treatment has been used by several authors to modify 
the surfaces of Ti and its alloys for several biomedical appli-
cations. Rafieerad et al. [199] reviewed the surface character-
istics and corrosion behaviour of calcium phosphate-based 
composite layers on Ti and its alloys via MAO treatment. 
The authors concluded that the fabrication of bioactive sur-
faces to improve the osteointegration of Ti-based implants 
is strongly recommended via MAO treatment. It is possible 
to obtain different morphologies, microstructures, thick-
ness, and crystalline structures of the anodic layers using 
different electrolytes, voltages, currents or treatment time. 
Furthermore, this type of treatment allows the incorporation 
of bioactive elements such as Ca and/or P using electrolytes 
such as Ca(H2PO2)2 [197, 200–206],  H3PO4 [200, 204, 206, 
207] or a mixture of both [200, 208], calcium acetate (CA) 
[209–215], a mixture of CA and β-glycerophosphate (β-GP) 
[211, 212, 214–216], and  NaH2PO4 [217]. Apart from bioac-
tive elements, MAO also allows the incorporation of antimi-
crobial elements, such as Ag, Cu or Zn [218]. Some authors 
had reported the possibility of incorporation of bioactive 
additives into Ti-based alloys MAO layers such as tricalcium 

Fig. 8  a Schematic representation of the electrochemical surface 
modification set up, and the representative resultant surfaces with 
process parameters: b nanopores (adapted from [225] with permis-
sion from Elsevier, c nanotubes (adapted from [295] with permission 

from Elsevier), d porous oxide layer formed by MAO (adapted from 
[209] with permission from Elsevier), e plate-like HA, and f needle-
like HA (adapted from [180] with permission from Elsevier)
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phosphate (TCP,  Ca3(PO4)2), wollastonite  (CaSiO3) or  SiO2 
particles which are known to enhance osteointegration [197, 
201–205].

Simka et al. [200] and Kasek-Kesik et al. [201, 202] 
treated β-Ti alloy (Ti–15Mo) via MAO. The authors used 
 H3PO4, Ca(H2PO2)2 or (HCOO)2Ca as an electrolyte and 
observed that the morphology and chemical composition 
of the anodic layers were strongly dependent on the applied 
voltage and chemical composition of the electrolyte used 
during the treatment. Independently of the electrolyte, 
when the voltage increased, the pore size of the anodic lay-
ers increased, however, more cracks were observed. The 
incorporation of Ca and/or P was, as well, dependent on 
the applied voltage. Moreover, the thickness of the anodic 
layers was dependent on both applied voltage and electro-
lyte concentration. For example, thicker anodic layers were 
observed for the highest concentration of (HCOO)2Ca. MAO 
parameters or electrolyte concentrations also influence the 
crystalline structure of the anodic layers. Simka et al. [200] 
found only a single crystalline phase  TiO2 after treatment in 
a mixture of Ca(H2PO2)2 and  H3PO4 electrolytes, indicating 
that  TiO2 layers were amorphous. However, after decreasing 
the concentration of Ca(H2PO2)2, the authors reported the 
existence of the anatase phase.

Kazek-Kesik et al. [201, 205] used Ca(H2PO2)2 as elec-
trolyte together with TCP, wollastonite or silica particles. 
The authors stated that the particles from the electrolyte 
suspension were successfully incorporated into the porous 
anodic layers for voltages higher than 150 V. However, 
while increased concentrations of TCP and wollastonite 
led to an increase in Ca and P incorporation the opposite 
was observed on the increased silica particle addition. 
Regarding the surface roughness, no significant influ-
ence was found when wollastonite or silica particles were 
used. However, the highest roughness value was found for 
the highest concentration of TCP particles. Kazek-Kesik 
et al. [202] also compared the influence of the substrate 
(Ti–6Al–7Nb, Ti–13Nb–13Zr and Ti–15Mo) on their 
anodic layer characteristics after MAO treatment. The 
authors added TCP particles into Ca(H2PO2)2 electrolyte 
for MAO treatment and observed that TCP particles were 
mainly deposited on the top of the anodic layers and filled 
the pores of the outer porous layer. Moreover, the formed 
oxide layers were different in terms of thickness, rough-
ness, chemical composition, and crystalline structures, 
depending on the substrate. As well, their total thickness 
increased significantly with the incorporation of TCP 
particles. Oppositely, the roughness of the anodic layer 
with TCP particles decreased when compared with only 
anodized titanium alloys leading to an influence on the 
wettability. Bio-functionalization of Ti–13Nb–13Zr sur-
face via MAO was studied by Kazek-Kesik et al. [197, 
219] using a Ca(H2PO2)2 electrolyte with the addition of 

TCP, wollastonite or silica particles where the microstruc-
tures and chemical composition of the anodic layers were 
strongly dependent on the applied voltage. Moreover, the 
final surface roughness reported to be increased after the 
treatment.

Another β-Ti alloy that had been treated by the MAO 
process is Ti–30Nb–1Fe–1Hf [210, 214, 215]. Ou et al. 
[210, 215] used a calcium acetate (CA) and β-GP mixture 
as an MAO electrolyte and reported a three-layer structure, 
namely, an amorphous and crystalline outmost porous layer 
followed by an inner layer with several pores, and finally a 
thin and compact layer. Moreover, the presence of Nb pro-
moted the formation of the amorphous phase of the anodic 
layer. Oppositely to cp-Ti, when the voltages on MAO 
treatment increased, the crystallinity of the anodic layers 
decreased on Ti–Nb alloys. The incorporation of Ca and 
P was also succeeded with a Ca/P ratio maximum of 1.91 
depending on MAO parameters. On the other hand, Pan 
et al. [214] used similar electrolyte to modify the surface 
of the same alloy and reported that the presence of Nb in Ti 
alloy can promote both layer rupture voltage and dielectric 
breakdown voltage due to the mixture of oxides (Ti and Nb 
oxides) that are known to stabilize the amorphous structure 
and delay oxygen generation.

Gebert et al. [220] used a NaOH alkaline solution as 
electrolyte during the MAO process and reported surfaces 
having a compact and thin inner layer followed by a much 
thicker outer layer with micro-pores and micro-channels. 
Moreover, the presence of Nb enhanced the thickness growth 
of the outer layer. On the other hand, Sharkeev et al. [207] 
performed MAO treatment on Ti–40Nb using a mixture of 
 H3PO4, biological HA, and calcium carbonate. The authors 
pointed the need for performing crystallization annealing 
treatment after the MAO process to obtain a crystalline 
structure on the anodic layer. The anodic layer was formed 
by a thin compact oxide layer, intermediate sublayer, and the 
typical porous CaP layer. As the voltage of MAO treatment 
increased, the thickness of the anodic layer also increased 
linearly from 35 to 90 μm. Moreover, when the voltage 
ranged between 200 and 300 V, the CaP layer presented 
spheres and pores. However, when the voltage increased up 
to 400 V, the transformation of micro-arc discharges into 
arcs caused the destruction and fragmentation of the spheres 
leading to a decrease of the anodic layer porosity. By using 
voltages under 200 V, XRD analysis just showed intense 
peaks of Ti and Nb and poor reflexes of  NbO2 phases, mainly 
due to the small thickness of the anodic layer. The absence of 
 TiO2 phases into the anodic layers was explained by higher 
thermal conductivity and lower electrical resistivity as com-
pared to Ti. When the process voltage increased up to 300 V, 
the anodic layer was formed by an amorphous phase and 
crystalline phases such as  CaHPO4 and β-Ca2P2O7. Further 
increase on the process voltage up to 400 V led to a decrease 
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on the peak intensity of the characteristically crystalline 
phases of the anodic layers.

Tao et al. [209] studied the effect of Nb, Zr, and Sn on 
the characteristics of the anodic layers formed by MAO. The 
authors used a CA electrolyte with an applied voltage of 
250 V and after the samples were heat-treated at 600 °C for 
1 h in air. The anodic layer porosity increased with increas-
ing voltage, and at 250 V, the porous structure covered 
uniformly all the surfaces. Although the surface roughness 
increased with the working voltage, it was not affected by 
the heat treatment. After heat treatment, the anodic layers 
were mainly composed of  TiO2 (anatase and rutile),  Nb2O5, 
CaO, and  SnO2. However, the diffraction intensity of  Nb2O5, 
CaO, and rutile increased after heat treatment. A study using 
the same alloy was reported by Gao et al. [213] where the 
authors also used the similar MAO treatment parameters. 
However, XRD analysis only detected Ti, anatase and rutile 
peaks while elements such as Ca, Nb, Zr, and Sn were only 
detected by EDS analysis. These results showed the impor-
tance of the post-heat treatment on the crystallinity of the 
anodic layers as reported by Tao et al. [209].

Other alloys as TiZrSnMoNb [211, 212], TiAlNb [202], 
TiCrAlFe [217] have also been modified by MAO. How-
ever, the effect of the alloying elements on the MAO treat-
ment of the new alloys is yet to be fully understood. Besides, 
although the MAO process has been successfully used to 
modify β-Ti alloy surfaces mainly to increase the bioactiv-
ity, very little is known on the growth mechanisms of MAO 
layers including the incorporation process of the bioactive 
elements.

Apatite forming ability has been used to access the bio-
activity, however, apatite forming ability depends not only 
on the chemical composition of the anodic layers but also on 
the volume of SBF solution used during the soaking process. 
Thus, due to these factors, different results are reported in 
the literature. Kasek-Kesik et al. [204] reported that accord-
ing to the mechanism of apatite crystallization, the pres-
ence of anatase and rutile may be negatively charged in 
SBF and adsorbs  Ca2+ ions.  Ca2+ ions also attract  OH− and 
 HPO4

2− groups. If an anodic layer does not have phospho-
rous compounds, the formation of apatite may be delayed 
or not exist, however, it is still possible by the formation 
of calcium titanate  (CaTiO3) on the anodic layer since the 
presence of  CaTiO3 facilitates the adsorption of hydroxyl 
radicals and phosphate leading to the formation of apatite.

Several authors reported that apatite forming ability is 
induced on MAO-treated surfaces of β-Ti alloys, indepen-
dently of the chemical composition of the substrate [204, 
206, 209, 212]. Tao et al. [209] concluded that a heat treat-
ment after MAO on Ti–24Nb–7Zr–7.9Sn alloy improved the 
apatite forming ability. The same behaviour was described 
by Kazek-Kesik et al. [204] for Ti–15Mo alloy treated by 
MAO and post-treated by heat treatment. On the other hand, 

Yu et al. [212] reported that in situ formation of apatite 
on the MAO-treated surfaces of Ti–3Zr–2Sn–3Mo–25Nb 
in SBF was related to Ca- and P-containing compounds. 
Moreover, apatite nuclei were formed after approximately 
14 days of immersion and it continued to grow, firstly filling 
the pores and after spreading over the entire surface. Sowa 
et al. [206] modified surfaces of Ti–13Nb–13Zr alloy by 
MAO and the authors were able to detect small amounts of 
apatite precipitates formed on the modified Ti alloy surface 
after immersion in SBF, although the treated surfaces pre-
sented Ca/P ratios bellow 1.67 (Ca/P atomic ratio of stoi-
chiometric HA).

Immersion of MAO-treated surfaces in SBF to promote 
apatite forming ability and thus bioactivity has been widely 
studied. However, the reliability of evaluation of bioactivity 
of those surfaces by simply immersing in SBF has been criti-
cized due to the lack of proteins presence or bacterial activ-
ity. Thus, in vitro and/or in vivo studies have been reported 
to access the biological response of the modified surfaces. 
Kazek-Kesik et al. [202] developed multi-layered surfaces by 
electrophoretic deposition of TCP particles on MAO-treated 
surfaces of V-free alloy (Ti–6Al–7Nb, Ti–13Nb–13Zr, and 
Ti–15Mo). The number of incorporated TCP particles was 
higher for Ti–13Nb–13Zr and Ti–15Mo alloys than for 
Ti–6Al–7Nb. The adhesion and number of MG-63 osteo-
blast-like cells were investigated by Kazek-Kesik et al. [202] 
and it was observed that independently of the base alloy, 
none of the modified surfaces were cytotoxic. The high-
est biological activity was found for MAO + TCP treated 
Ti–15Mo alloy, while the surface modification did not sig-
nificantly influence the cell proliferation on Ti–6Al–7Nb and 
Ti–13Nb–13Zr alloys. On the other hand, another study from 
the Kazek-Kesik et al. [204] modified Ti–15Mo alloy by 
MAO and showed that after 5 days of culture, hBMSC cells 
have well adhered to all modified surfaces. However, the 
anodic layers with the highest atomic ratio of Ti/Ca pre-
sented higher ALP activity, collagen production, and miner-
alization when compared with the untreated alloy. Moreover, 
these surfaces showed only a single strain of attached D. 
desulfuricans bacteria and it was not observed the formation 
of bacteria biofilm. Furthermore, the Zn, Cu, and Ag-doped 
CaP MAO composite was formed on Ti–40Nb alloy, pre-
sented an improvement on the antibacterial activity [221].

The biological performance of low Young’s modulus 
Ti–24Nb–4Zr–7.9Sn alloy bio-functionalized by MAO 
has been reported [209, 213]. After heat treatment, the 
anodic layers consisted of  TiO2, CaO,  Nb2O5, and  SnO2. 
In vitro studies on rabbit’s osteoblast showed a considerable 
improvement in cell proliferation due to the increased rough-
ness of the surfaces but as well due to the incorporation 
of Ca into the anodic layers [209]. Although no heat treat-
ment was performed after MAO, Gao et al. [213] showed 
that MAO-treated surfaces presented significantly higher 
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absorbance of cells when compared to the untreated alloy. 
Moreover, the porous structure and chemistry of the anodic 
layers led to a stronger and faster bone response of the modi-
fied surfaces.

Ou et al. [215] functionalized Ti–30Nb–1Fe–1Hf alloy by 
MAO using a Ca- and P-rich electrolyte followed by a post 
hydrothermal treatment. In vitro studies with MG-63 cells 
indicated no significant differences between the untreated 
and treated alloy on optical cell density and ALP activity. 
However, cell adhesion and cell spreading were reported to 
be improved by hydrothermal treatment. Sowa et al. [206, 
222] modified Ti–13Nb–13Zr alloy by MAO in an electro-
lyte containing Ca and P elements. The authors observed 
that the incorporation of Ca and P into the anodic layer 
enhanced the differentiation of hBMCs into osteoblasts. 
Moreover, the increased roughness after MAO promoted cell 
spreading. A similar improvement was achieved for Ti–45Nb 
alloy through 26 days of cell culture [223].

Bioactive surfaces were produced by Zhao et al. [211] 
on Ti–5Zr–3Sn–5Mo–15Nb alloy using MAO where bet-
ter osteoblasts adhesion, spread, viability, and differen-
tiation were observed. However, by increasing the applied 
voltage of MAO treatment, better cell spread and viability 
was observed. The authors stated that this behaviour might 
be explained by the increased roughness together with an 
increased Ca/P ratio obtained at the highest voltage. On the 
other hand, Yu et al. [212] used similar alloy and MAO treat-
ment conditions but performed further activation in an ami-
nated solution. Results showed that MC3T3-E1 cell prolif-
eration was favoured and hard tissue implantation indicated 
that the activated surfaces exhibited good biocompatibility 
and better osteointegration than the untreated alloy. Chen 
et al. [217] bio-functionalized Ti–13Cr–3Al–1Fe alloy using 
MAO in  NaH2PO4 electrolyte. In vitro tests using MC3T3-
E1 cell line and in vivo tests in distal femora of Japanese 
white rabbits showed that the rutile-rich  TiO2 layer gave bet-
ter biocompatibility and osteointegration performance than 
anatase rich phase, suggesting that MAO-treated implant 
may achieve better bone formation and on growth.

In addition to their increased bioactivity, anodic layers 
on Ti-based alloy created by MAO can also increase the 
corrosion resistance of the base alloys. Kazek-Kesik et al. 
[197, 201, 202, 219] reported the corrosion behaviour of dif-
ferent low Young’s modulus alloys modified by MAO. The 
corrosion behaviour of Ti–6Al–7Nb, Ti–13Nb–13Zr, and 
Ti15Mo MAO-treated alloys was studied in Ringer’s solu-
tion [202]. Surface modification caused an increase in the 
corrosion resistance for all substrates. However, the highest 
differences in the electrochemical parameters were found 
between treated and untreated Ti–15Mo alloy.

It has been reported [201] that MAO treatment in TCP, 
wollastonite or silica particle-containing electrolytes 
improved the corrosion resistance of Ti–15Mo alloy due to 

the barrier-type oxide layer formed on the alloy surface. The 
highest corrosion resistance was recorded for the electro-
lyte containing TCP particles owing to the thicker and more 
compact oxide layer. Similar MAO treatment was performed 
on Ti–13Nb–13Zr by Kazek-Kesik et al. [197, 219]. Results 
showed that the OCP values in Ringer’s solution were much 
nobler on the treated samples, showing a lower tendency 
to corrosion when compared with the untreated alloy. Fur-
thermore, the polarization resistance increased and current 
density decreased, independently of the incorporated parti-
cles, as compared to the untreated alloy [197]. By immers-
ing the treated alloy in Ringer’s solution for 5 months, the 
authors could observe the degradation of the anodic layers 
due to the dissolution of Ti, Nb, and Zr phases [219]. The 
concentration of dissolved Ti ions in electrolyte was found 
to be influenced by the applied voltage during MAO treat-
ment as a consequence of increased surface roughness with 
increasing applied potential. Apart from Ti ions, Nb and Zr 
ions were also detected but their amounts were very small.

2.4.2  Nanotubular Structures

TiO2 nanotubular surface structures have been widely 
reported for biomedical applications since protective stable 
oxides on Ti-base surfaces lead to a favourable osteointegra-
tion [201, 224].  TiO2 nanotube growth is obtained by anodic 
treatment using  F− containing electrolytes. The nanotube 
growth has been reported on binary, ternary and quater-
nary β-Ti alloys such as Ti–Nb [220, 224], Ti–13Zr–13Nb 
[225, 226], Ti–25Ta–xZr [227], Ti–35Nb–xZr [228, 229], 
Ti–29Nb–13Ta–4.6Zr [230], and Ti–24Nb–4Zr–7.9Sn [231, 
232].

Gebert et al. [220] compared the growth of the nanotubes 
on Ti–40Nb and cp-Ti (grade 2) in fluoride-containing solu-
tions and observed a similar growth. Moreover, the oxide 
nanotubes presented amorphous structures and mixed com-
positions as  (TixNb1−x)O2. On the other hand, Jang et al. 
[224] produced nanotubular surfaces on Ti–xNb (x = 10, 
20, 30 and 40 wt%) alloys using 1.0 M  H3PO4 electrolyte 
containing 0.8 wt% NaF. The nanotubes formed on the 
Ti–xNb alloy surface presented a wide range of diameters 
(55–220 nm). More specifically, as Nb content increased, the 
length of the nanotubes increased from 730 nm to 2 µm. The 
authors also reported that the initial structure of the nano-
tubes was an amorphous  TiO2–Nb2O5 layer. After annealing 
at 300 and 450 °C, the formation of crystalline anatase, and 
after annealing at 600 °C, in addition to anatase, the forma-
tion of rutile was detected.

Ossowska et  al. [225] and Hernández-López et  al. 
[226] performed anodic treatment to obtain nanotubes on 
Ti–13Zr–13Nb alloy using a mixture of 1 M  H2SO4 and 
0.035  M HF. Hernández-López et  al. [226] stated that 
shorter anodizing times resulted in nanostructured layers 
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with a porous morphology, whereas after longer anodizing 
times, the anodic film showed a nanotubular structure. More-
over, the average molecular composition given by Ruther-
ford backscattering spectroscopy (RBS) analysis was (TiNb
ZrO)0.450.081TiF40.102NbF50.081ZrF4 for the nanoporous 
layers while the nanotubular layers presented a molecular 
composition as (TiNbZrO)0.610.078TiF40.098NbF50.078
ZrF4. On the other hand, Ossowska et al. [225] compared the 
nanotube growth on dense and porous Ti–13Zr–13Nb alloy. 
Results showed a fine nanotubular structure with long nano-
tubes, moreover, the nanotubular structure is formed also 
inside the pores in the case of the porous alloy. However, the 
nanotube dimension was smaller on the porous alloy when 
compared to the dense alloy.

Li et al. [231] and Hao et al. [232] modified the surface 
of Ti–24Nb–4Zr–8Sn by anodic treatment. Both authors 
performed the anodic treatment in a neutral electrolyte with 
1 M  (NH4)2SO4 and 0.15 M  NH4F. Hao et al. [232] stated 
that the outer diameter of the nanotubes increased from 30 
to 90 nm as the treatment voltage increased from 10 to 25 V. 
Results showed that the contact angle decreased sharply with 
increased nanotube diameters from 30 to 70 nm and then 
was constant with the further increase of diameter to 90 nm. 
The authors suggested that the surface energy increases with 
an increase of nanotube diameter up to 70 nm, which was 
explained by the formation of surface oxides and their con-
tribution to surface roughness. XPS analysis showed that the 
outmost nanotubular layer consisted of amorphous mixed 
oxides of  TiO2,  Nb2O5,  SnO2, and  ZrO2. Similar results 
regarding the chemical composition of the oxides were also 
reported by Li et al. [231].

Similar to MAO-treated β-Ti alloys, studies investigating 
the corrosion behaviour of nanostructured surfaces on β-Ti 
alloys are scarce. Jang et al. [224] performed potentiody-
namic polarization tests in 9 g/L NaCl at 36.5 ± 1 °C for 
nanotubes formed on Ti–xNb alloys and found that the cor-
rosion resistance of nanotubular structured alloys was lower 
as compared to the untreated alloys. The authors explained 
this behaviour by the defected structure of the nanotubular 
surfaces that may promote the current transport. However, 
the anodic treated samples presented a wider range of a pas-
sive region when compared with the untreated alloys, sug-
gesting that the mixture of  TiO2 and  Nb2O5 film was more 
stable. On the other hand, Ossowska et al. [225] and Hernán-
dez-López et al. [226] reported that the proper formation of 
nanotubular structures by anodic treatment resulted with a 
better corrosion behaviour as compared to the bare alloy.

Nanotubular structures on ternary and quaternary β-Ti 
alloys have been reported to stimulate rapid cell proliferation 
and osteoblast differentiation as well as to accelerate oste-
ointegration and facilitate the transport of nutrients and bone 
ingrowth [231, 232]. It has been shown that the formation of 
ordered nanotubes on Ti–24Nb–4Zr–7.9Sn alloy via anodic 

treatment improved cytocompatibility, as well, enhanced 
bone implant integration in vitro and in vivo [231]. Hao 
et al. [232] obtained nanotubular surfaces with mixed oxides 
 (TiO2,  Nb2O5,  SnO2, and  ZrO2) and reported after biological 
studies with osteoblast-like MG-63 cells that smaller nano-
tube diameter was beneficial for the cell adhesion, prolifera-
tion, and differentiation. Also, the antibacterial behaviour of 
Ti–35Nb alloy was improved with the corporation of Sn as 
an alloying element [233].

2.4.3  HA Electrochemical Deposition

HA and calcium phosphate ceramic coatings are widely used 
in the biomedical field due to their excellent response to 
cell adhesion and proliferation, as well as their ability to 
enhance bone ingrowth and osteointegration processes. The 
deposition conditions have a great effect on the structure 
and biofunctionality of HA coatings. The electrochemical 
deposition of HA coatings on metallic biomaterials has 
unique advantages and it is an attractive technique because 
highly complex structures can be coated quickly at low tem-
peratures. Moreover, the coating morphology and chemical 
composition of HA can be well controlled by varying the 
electrochemical potential, current, electrolyte concentration, 
and temperature.

Several studies reported the electrochemical deposition 
of HA [180, 210, 234–237]. Schmidt et al. [180] studied 
the influence of electrolyte temperature and different chemi-
cal pre-treatments on Ti–40Nb alloy for the deposition of 
the HA layer. The authors performed potentiostatic deposi-
tion of HA using a mixture of Ca(NO3)2 and  NH4H2PO4 
on grounded surfaces, etched surfaces with piranha solu-
tion, and alkali-treated surfaces. The morphology of the HA 
deposit was dependent on the electrolyte temperature. When 
the electrolyte temperature increased from 60 to 80 °C, the 
morphology of HA passed from plate-like to needle-like 
shape. However, the use of different pre-treatments did not 
have a significant effect on HA layer morphology. On the 
other hand, Byeon et al. [237] performed HA deposition on 
Ti–xNb alloy by cyclic voltammetry in two different elec-
trolytes (CaP—a mixture of Ca(NO3)24H2O and  NH4PO4; 
and Zn–CaP—a mixture of Ca(NO3)24H2O,  NH4PO4 and 
Zn(NO3)24H2O). Although different Ca- and P- rich elec-
trolytes were used, the Ca/P ratio kept constant, and the HA 
layer presented a nanoscale rod-like HA for CaP electrolyte, 
while the Zn–CaP electrolyte led to a nanoscale network-
like Zn–HA layer. Although the authors reported successful 
Zn–HA layer deposition, further studies are needed to get a 
better understanding of the formation and properties of these 
layers on Ti–Nb alloys.

Kim et al. [234] used a mixture of Ca(NO3)2 and  NH4PO4 
as an electrolyte to deposit HA by cyclic voltammetry over 
nanotubular structured anodic layer on Ti–25Ta–xZr alloy. 
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Although all the deposited surfaces showed a Ca/P ratio 
lower than 1.68, a successful HA layer was deposited on its 
surfaces. The HA precipitate morphology was influenced by 
the Zr content of the alloy; as the Zr content increased, HA 
precipitates morphology changed from plate-like or leaf-like 
shape to needle-like or flower-like shape. A similar electro-
lyte was used by Kim et al. [235] to deposit HA layers on 
highly ordered nanotubular surfaces of Ti–25Nb–xHf alloys. 
The authors observed that the needle-like nucleation and 
growth of the HA particles were promoted on the increased 
number of cyclic voltammetry cycles. However, the mor-
phology of HA precipitates was influenced by Nb and Hf 
contents.

A study on the electrochemical deposition of HA on nano-
tube-formed Ti–Nb–Zr alloys was reported by Jeong et al. 
[236]. The authors studied deposition protocols using 5, 10, 
and 30 cycles of the pulsed current method and two electro-
lytes based on a mixture of Ca(NO3)4H2O and  NH4PO4. The 
HA layer morphologies changed from a mixture of rough 
particles and plate-like shape particles to entirely plate-like 
shapes depending on the number of deposition cycles and 
the Ca and P concentrations in the electrolyte.

2.5  Laser Surface Treatments

Most of the laser surface treatments for β-Ti alloys were per-
formed in a nitrogen-rich environment resulted in the nitrided 
surface. Laser nitrided Ti–20Nb–13Zr alloy presented sig-
nificantly higher hardness, hydrophilicity, coefficient of fric-
tion, and corrosion resistance in artificial saliva and SBF 
compared to the untreated alloy, cp-Ti, and Ti–6Al–4V 
alloy due to formation of a uniform 9 μm thick nitrided 
layer [238, 239]. Similar behaviour was reported for differ-
ent β-Ti alloys namely Ti–35Nb–7Zr–5Ta [240], Ti–45Nb 
[241], Ti–13Nb–13Zr [242], Ti–35Nb–2Ta–3Zr [243], 
Ti–35Nb–7Zr–5Ta [244], and Ti–35.3Nb–7.3Zr–5.7Ta 
[245]. Femtosecond lasers are being used to increase the 
surface roughness and reported to provide significant advan-
tages for hole formation compared to nanosecond lasers. Its 
advantages are negligible heat transfer and the absence of a 
liquid phase since the vapor and plasma phase are formed 
very quickly. In addition to these advantages, the periodic 
nanostructures are self-organized in the laser-irradiated field. 
Jeong et al. [229] evaluated the nanotubular surfaces formed 
on the femtosecond laser-treated Ti–35Nb–xZr (x = 3 and 15 
wt%) and reported an extensive proliferation and spreading 
of the MG 63 cells. Similarly, laser treatment was reported 
as a sufficient pre-treatment for HA and β-TCP bio-ceramic 
coatings associated with the formation of oxides diversity 
and irregular morphology on Ti–15Nb alloy.

Saud et al. [246] investigated the microstructure, cor-
rosion behaviour, bioactivity, and antibacterial activity of 
graphene oxide (GO) coated by dip coating on femtosecond 

laser surface modified Ti–30Nb alloy. The authors reported 
that laser-treated and GO-coated samples displayed higher 
corrosion resistance than the GO-coated and uncoated sam-
ples in SBF at 37 °C. Moreover, the GO coating on Ti–30Nb 
alloy led to a superior antibacterial activity against Gram-
negative bacteria as compared with the uncoated samples. 
Similarly, fibre laser nitrided Ti–35Nb–7Zr–6Ta alloy drasti-
cally improved the mesenchymal stem cell attachment, pro-
liferation and differentiation, and also led to a reduction on 
staphylococcus aureus bacterial attachment due to formation 
of a hard rough surface with low hydrophobicity [247, 248].

2.6  Immobilization of Biomolecules

Bioactive molecules are also used to enhance the soft tissue 
compatibility on metallic biomaterials. Many studies inves-
tigated the biopolymer coated cp-Ti and Ti–6Al–4V alloy, 
however, a very limited number of studies are available on 
biopolymer coated β-Ti alloys [188, 249–253]. The sche-
matic diagram for the immobilization process is presented in 
Fig. 9. Biochemical modification of the Ti–25Nb–16Hf alloy 
with elastin-like polymers (ELPs) was performed, and their 
influence on the cell response was analyzed by González 
et al. [249]. ELPs presented remarkable biocompatibility and 
one of these polymers contains the well-known cell adhesion 
amino acid sequence, arginine-glycine-aspartic (RGD). It 
was found that the RGD interface presented enhanced results 
in terms of cell adhesion and spreading but no improvement 
was observed on the numbers and differentiation of the cul-
tured cells. Hsu et al. [250] investigated the biocompatibility 
of NaOH treated Ti–25Nb–8Sn alloy surface and found that 
the RGD peptide grafted Ti–25Nb–8Sn alloy significantly 
enhanced the cell adhesion, proliferation, and differentiation.

Adhesiveness to metallic materials is an important issue 
for biomedical polymer coatings from the viewpoint of 
long-term durability. Silane-coupling treatment is a tradi-
tionally popular route for increasing the adhesive strength 
between metallic materials and polymers. Hieda et  al. 
[251] investigated the effect of terminal functional groups 
and silane layer thickness on the adhesive strength of 
Ti–29Nb–13Ta–4.6Zr alloy to segment polyurethane (SPU) 
and reported that silane-coupling treatment led to a signifi-
cant increase on the shear bond strength for all tested types 
of terminal functional groups and the silane layers thickness. 
Moreover, an immobilized 3-aminopropyltriethoxysilane-
reduced graphene oxide (APTES-RGO) nano-layer coated 
on Ti–29Nb–13Ta–4.6Zr alloy presented better tribological 
behaviour as compared to the uncoated alloy [188].

2.7  Hybrid/Multi‑layered Treatments

The hybrid treatments have been aimed to effectively 
enhance the mechanical and biological properties, and also 
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reduce the interfacial failure. Bio-functionalization of β-Ti 
alloys by combining different techniques are studied in the 
literature. Choe [254] developed a double-layered surface 
on Ti–30Nb–xZr (x = 3 and 15 wt%) having a nanotubu-
lar inner layer formed by anodic treatment and a HA outer 
layer formed by electron beam-physical vapor deposition 
(EB-PVD). The author investigated the corrosion behav-
iour of the functionalized surfaces in 9 g/L NaCl solution 
at body temperature and reported the spalling of the HA 
layer on the samples only coated with a single HA layer, 
and cracking of the HA layer on the double-layered sur-
faces due to the differences on the size of the nanotubes 
affected the corrosion behaviour mainly leading to the 
appearance of a breakdown potential on the passive region, 
which was not observed on the bare alloy. A similar double-
layered structure was also developed by Jeong et al. [228] 
on Ti–35Nb–10Zr alloy having a femtosecond laser-treated 
surface to increase the roughness. The authors stated that the 
application of femtosecond laser-treated created microscale 
features can be beneficial for mechanical interlocking with 
bone. Moreover, based on the SEM observations, the authors 
reported a higher trend on the attachment and spreading of 
MG-63 cells on the double-layered surfaces developed on 
the femtosecond laser-treated alloy. Similar hybrid struc-
ture (NT + HA) was developed on Ti–25Nb–xHf (x = 0 and 
7) [235], Ti–29Nb–xZr (x = 3 and 15) [236], Ti–25Ta–xZr 
(x = 0, 3, 7 and 15) [234], Ti–13Ta–2Mo–6Zr [255], and 
Ti–20Ta–1Mo–8Zr [255]. The authors reported that the 
HA structure was significantly influenced by morphology, 

diameter of tubes, and distribution of nanotubular layer, 
which were changing by microstructure and composition of 
the alloy. Apatite precipitation was also affected by nano-
tubes diameter, where the largest diameter presented bet-
ter apatite formation for Ti–35Nb–2Zr–0.2O alloy [256]. 
In addition to biological improvement observed by in vitro 
studies, membranes treated by this hybrid structure on 
Ti–20Ta–1Mo–8Zr alloy were covered on rat calvarial 
defects, and tomography, histologic and fluorescent analysis 
indicated higher bone mineral density and a contact osseoin-
tegration, suggesting durable osteogenesis at the early stage 
of bone defect repair [255].

RF sputtered TiN coatings on nanotubular Ti–25Ta–xZr 
alloys (x = 0, 3, 7, and 15 wt%) were studied by Kim et al. 
[227]. The authors reported that as the Zr content in the 
alloys increased, the average thickness of the nanotubular 
layer increased. For the alloy with the highest Zr content, 
the nanotubular surfaces were covered entirely with the RF-
sputtered TiN film. The authors concluded that the Zr con-
tent affected roughness and wettability, leading to highly 
hydrophilic properties on the nanotubular surfaces. As dis-
cussed in Sect. 2.6, the immobilization of bio-functional 
polymers is important for improving the tissue compat-
ibility. A poly(sodium styrene sulfonate) (PNaSS) biopol-
ymer grafted with nanotubular layer grown on Ti–15Mo 
and a significant improvement of bioactivity and decrease 
of bacterial adhesion was reported [257]. However, these 
polymers may not sufficiently adhere to metallic materials. 
Nanostructures (nanopores and nanotubes) were formed on 

Fig. 9  Demonstration of the immobilization process of biomolecules on a bare surface
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Ti–29Nb–13Ta–4.6Zr surfaces through anodic treatment to 
improve the adhesive strength of SPU [230]. It was found 
that the anchor effect given by the nanostructures increased 
the adhesive strength of SPU.

The MAO/HA structure is another commonly studied 
hybrid treatments for β-Ti alloys [210, 258–261]. Park 
et al. [258] electrochemically deposited HA on MAO layer 
grown on Ti–3Ta–xNb (x = 0 and 10), and it was found 
that the particle size and morphology of HA was affected 
by the composition of the alloy and alkaline treatment. 
Also, a biodegradable poly(lactide-co-glycolide) (PLGA) 
polymer was deposited on the MAO layer formed on the 
Ti–15Mo alloy [203]. Additionally, the PLGA loaded with 
the drug of amoxicillin layer was coated on MAO layer of 
Ti–15Mo using a dip coating technique, and it was reported 
an improvement on corrosion and bacterial resistance of 
substrate [261]. The main goal of the polymer-oxide layer 
was to explore the active substance to be released after 
implantation.

2.8  Other Methods

In the literature, other methods such as producing composite 
layers (metal matrix composite and HA biocomposite) or 
bioactive element addition were also studied. Xiaopeng et al. 
[262] produced Ti–35Nb–2.5Sn—15 wt% HA biocomposite 
with mechanical alloying followed by sintering under high 
vacuum at 1100 °C. The authors reported that the samples 
ball-milled during 4 h presented a relative density of 95.55% 
and Young’s modulus of 20 GPa (defined by compressions 
tests). On the other hand, biological studies performed with 
MC-3T3 osteoblast-like cells revealed higher cell viabil-
ity and proliferation. Majumdar et al. produced TiB in situ 
reinforced Ti–35Nb–5.7Ta–7.2Zr [263] and Ti–13Zr–13Nb 
[264] matrix composites with addition of 0.5 wt% B parti-
cle to improve the wear resistance, however, the biological 
studies performed with MG63 cells revealed a decreased 
cell proliferation on the in situ composites, which may be 
explained by cytotoxicity of B. For instance, Málek et al. 
[265] produced in situ TiB reinforced Ti–35Nb–6Ta matrix 
composites with 0.05, 0.1, 0.3 and 0.5 wt% B particle and 
claimed that 0.1% and higher B addition had a slightly 
adverse effect on cytotoxicity.

Ou et al. produced Ti–27.5Nb alloy with the addition of 
0.2, 0.7 and 1.2 wt% Ag by arc melting to obtain antibacte-
rial properties [266]. The authors did not observe any influ-
ence of Ag on the adhesion and proliferation of MG-63 and 
NIH-3T3 cells, however, reported excellent antibacterial 
properties against Staphylococcus aureus and Escherichia 
coli with antibacterial rates approaching 100%.

Another important approach is producing highly porous 
alloy to facilitate the ingrowth of bone tissue through the 
pores, leading firm fixation, allowing the transportation of 

body fluid into implant acting a living prosthesis, and to 
reduce the Youngʼs modulus [267, 268]. Several processing 
methods have been used such as powder metallurgy with 
space-holder technique, microwave sintering, polymeric 
sponge process, gel-casting, and selective laser melting 
(SLM) to produce porous β-Ti Ti–Nb and Ti–Mo based 
alloys [269–273]. Furthermore, several morphologies of 
HA was electrochemically deposited on porous low Youngʼs 
modulus Ti–40Nb alloy by various electrolytes and treat-
ment times [270].

3  Discussion

Particularly during the last decade, β-Ti alloys have been 
extensively developed to reduce the high Young’s modu-
lus of cp-Ti and Ti–6Al–4V alloy. Although the developed 
β-Ti alloys still have higher Young’s modulus compared to 
bone, the values close to 45 GPa reported for several alloys 
by adjusting the amount and type of β stabilizer alloying 
elements [274–277]. Similar to cp-Ti and Ti–6Al–4V, β-Ti 
alloys are bioinert materials, thus require surface modifica-
tions to obtain bioactivity. Furthermore, lower corrosion, 
wear, and tribocorrosion behaviour of β-Ti alloys have been 
recently reported compared to Ti–6Al–4V alloy, which 
are other crucial factors for long-term implants [58, 86, 
278–280].

Mechanical treatments are being performed to form 
a nanocrystalline surface layer and grain refinement to 
improve the surface roughness and hardness or to alter 
the surface topography to gain bio-functions [281]. The 
mechanical, corrosion, wear, and biological behaviour of 
β-Ti alloys have been improved by HPT, SMAT, UNSM, 
and ARB severe plastic deformation techniques mainly due 
to the grain refinement from coarse grains to ultrafine grains. 
The ultrafine-grained Ti alloys prepared by severe plastic 
deformation are reported to have higher strength and cell 
bioactivity than the untreated ones [68]. However, tribocor-
rosion behaviour of severe plastic deformed β-Ti alloys are, 
to the best of our knowledge, yet to be studied.

Physical surface treatments of β-Ti alloys including PVD, 
plasma spraying, plasma nitriding, gas nitriding, and ion 
implantation treatments have been widely used to improve 
the corrosion and wear behaviour along with the bioactiv-
ity of metallic materials. Although physical surface treat-
ments can improve the wear resistance of β-Ti alloys to some 
extent, physical deposition methods mostly require complex 
equipment and the resulting surfaces prone to delaminate 
under sliding conditions [95].

Chemical and electrochemical methods, allowing the 
incorporation of bioactive elements and providing stronger 
adhesion between bones and implant surfaces compared to 
the materials treated by mechanical and physical methods, 
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are attracting more attention owing to their lower cost and 
easier process control. These surface treatments can be used 
to generate a nanopatterned surface topography which is 
expected to be promising for the stimulation of bone tissue 
growth (osteointegration of bone tissue) [176]. One of the 
most used methods for bio-functionalization of β-Ti alloys 
is MAO treatment. As described previously, the MAO-lay-
ers on β-Ti alloys are characterized in terms of biological 
response by in vitro and in vivo studies. However, studies 
on the corrosion behaviour of these layers is still scarce and 
there is still lack of information regarding their corrosion 
mechanisms mainly, particularly the role of oxides of β 
stabilizer alloying elements, which may change the chem-
istry, structure and mechanical properties of MAO layer. 
Moreover, the corrosion behaviour should also be studied 
under conditions closer to in vivo, for instance, in a dynamic 
electrolyte and/or under the presence of proteins, enzymes, 
microorganisms, and biofilms. After implantation, micro-
movements occur between the implant and the hosting bone, 
or between the parts of the prosthesis, thus, understanding 
the effect of the combined action of corrosion and wear 
(tribocorrosion) is extremely important. Furthermore, the 
combined actions of corrosion and mechanical solicitations 
(fatigue-corrosion) also needs to be studied.

The nanotubular layer formation on β-Ti alloys is another 
common surface functionalization method. The nanotubular 
layer formation on the new alloys and its corrosion behav-
iour has been studied in the literature, however, the wear 
and tribocorrosion behaviour of these nanotubular layers 
are scarcely researched. The nanotubular layer grown on Ti 
has significantly poor adhesion to the substrate. Although 
some efforts are given in the literature [282–289], adhesion 
is still a major limitation for different applications [283, 290, 
291]. To our best knowledge, there is no published study yet 
that investigates the tribocorrosion behaviour of nanotubular 
layer formed on β-Ti alloys, but the dry sliding behaviour of 
nanotubular layer formed on Ti–35Nb are reported, where 
the nanotubular layer improved the tribological behaviour 
of Ti–35Nb alloy even though this improvement was due to 
the tribolayer formed after smashing of the nanotubular layer 
during sliding [292].

Laser surface treatment is becoming one of the most effi-
cient and versatile surface modification techniques, allowing 
to control changes in the mechanical, chemical, and physical 
properties of the surface through direct interaction of beam 
and substrate [293]. Laser treatment is being used to modify 
the substrate surfaces like texturing, hardening, remelting, 
and cladding, which can also be used to add calcium phos-
phate or HA. Based on the published studies, it can be stated 
that laser surface treatments are beneficial pre-treatments for 
the adhesion of nanotubes and bio-ceramic coatings, also 
they make a positive influence on corrosion, wear, and bio-
activity of β-Ti alloys. However, laser texture and remelting 

may cause cracks on the surface, and the heat affected zone 
under the melting layer may lead to poor mechanical integ-
rity. Also, in vitro and in vivo biological behaviour of laser-
treated substrates are yet to be completely understood.

Recently, hybrid/multi-layered treatments have been 
attracted attention as a route to multifunctional materials. 
Depending on the target implant application, the surface of 
β-Ti alloys can be tailored by hybrid treatments. So far, HA/
Nanotubes and HA/MAO has been the most studied hybrid 
treatments mainly to improve the adhesion of the HA layer 
through mechanical interlocking. Also, TiN coating on nano-
tubes has been studied to improve the wear resistance [227]. 
However, as discussed above, the main concern with nano-
tubular layers is the poor adhesion strength of nanotubes to 
the substrate. Thus, if a sufficient adhesion is not obtained 
between the substrate and the nanotubular layer, detached 
hard TiN particles may lead to catastrophic wear by acting as 
extra abrasives during relative movements. Therefore, even 
though each treatment has promising behaviour, individu-
ally, overall mechanical and triboelectrochemical responses 
of the hybrid/multi-layered surfaces need to be explored.

4  Concluding Remarks

β-Ti alloys show high durability, high toughness, non-toxic-
ity, and high strength, which are specific advantages against 
other biomaterials. However, β-Ti alloys are typical artificial 
materials having bioinert behaviour. Therefore, the surface 
of a β-Ti alloy needs modification to improve the wear resist-
ance and bioactive properties. In this review, an overview 
was given on the surface bio-functionalization methods 
applied to β-Ti alloys. Mechanical, physical, chemical, elec-
trochemical methods, and immobilization of bio-functional 
molecules were discussed. The bioactivity, biocompatibil-
ity, haemocompatibility, wear and corrosion (tribocorro-
sion) resistance of β-Ti alloys can be improved by surface 
modification with desired properties, altering the surface 
composition or removing the undesired material from the 
alloy surface. Mainly, the bio-functionalization of β-Ti alloys 
include increasing the surface roughness and incorporating 
bioactive agents (Ca, P, Sr, Ag, Zn) or coating with HA and 
biomolecules. Undoubtedly, the ongoing work in this area 
will bring new materials and new techniques to enhance the 
quality of implant materials, which eventually can improve 
the quality of patient lifestyle.
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