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Abstract
Understanding the corrosion behavior of rough surface contacts needs the contact interaction of rough surfaces at asperity level. 
Generally, single asperity-based statistical rough surface contact model is predominating one in exploring contact behavior of 
rough surfaces. The FEM-based single asperity contact model is being used extensively to explain the elastic, elastic–plastic, 
and fully plastic behavior of the rough surface contacts. The empirical expressions to calculate the exact transitions (elastic to 
elastic–plastic and elastic–plastic to fully plastic states) are still incomplete. The earlier FEM-based single asperity contact models 
didn’t give mathematical expressions to exactly calculate the elastic, elastic–plastic, and fully plastic transition states by account-
ing the combined effect of material properties. In this way, in the present work, empirical expressions are developed to calculate 
the exact transitions of elastic, elastic–plastic and fully plastic states by accounting the combined effect of Young’s modulus, 
material yield strength, and Poisson’s ratio. The empirical expressions to calculate the dimensionless contact load and contact 
area are developed for elastic, elastic–plastic, and fully plastic states in terms of dimensionless interference, E/Y ratio, and Pois-
son’s ratio. Further, it is observed that the plasticity index is not a complete parameter to explore the contact behavior of rough 
surface contacts. In high surface plasticity index case, the material properties influence significantly compared to the low surface 
plasticity index case. The Poisson’s ratio significantly influences in low E/Y ratio materials in all the surface plasticity index cases.
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List of Symbols
An  Nominal contact area
A  Real contact area
A*  Dimensionless real contact area, Ar/An
d  Separation based on asperity heights
d*  Dimensionless separation, d/σ
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Eʹ  Reduced elastic modulus
H  Hardness of softer material
h  Separation based on surface heights
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asperity heights

z*  Dimensionless height of an asperity
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EPE  Elastic–Plastic End
FPS  FullyPlastic Start

1 Introduction

Study of tribological systems in the applications of bear-
ings, clutches, brakes, mechanical seals, cams, gears, elec-
trical contacts, mechanical joints, biomedical components, 
and mechanical interfaces under corrosive environment is 
important one. Tribocorrosion explains the material degra-
dation process due to mechanical sliding and electrochemi-
cal processes. Understanding the fundamental of material 
degradation process in tribocorrosion systems at micro-
scopic level is an involved task. When two solid bodies 
come into contact due to surface irregularities, the contact 
occurs at discrete spots called as asperities. The asperities 
may deform elastically, elastoplastically, or plastically which 
lead to mechanical wear and wear accelerated corrosion. 
Stachowiak et al. [1], numerically simulated to predict tribo-
corrosion of passive metals. They represented the asperities 
as cuboids positioned at different heights. They used the 
passivation model to predict the corrosion wear and hard 
pin slides on metal asperities to calculate the mechanical 
wear. Cao et al. [2–4] developed a tribocorrosion model for 
passive metals by accounting plastic deformation of asperi-
ties and combined the mechanical wear, chemical wear and 
hydrodynamic lubrication to quantify the material damage. 
Guadalupe et al. [5] attempted the applicability of existing 
tribocorrosion model that include the mechanical, chemical, 
and lubrication concepts with three different CoCr inhomo-
geneous alloys. Dalmau et al. [6] applied boundary element 
method to simulate the contact surface deformation for the 
mechanical wear calculation based on Archard wear law and 
galvanic coupling model [7] to calculate chemical wear in 
order to evaluate the material degradation with time to pre-
dict the tribocorrosion. Ghanbarzadeh et al. [8, 9] numeri-
cally and experimentally studied the synergistic effects of 
corrosion wear and asperity-based mechanical wear through 
established electrochemistry model and Archard’s mechani-
cal model. Knowing the deformation behavior of contacting 
asperities in rough surface contact interaction will enhance 
the understanding tribocorrosion phenomenon. Contact 
interaction of rough surfaces is analyzed through statisti-
cal approach, deterministic approach, fractal approach, 
and experiments. In this way, several statistical rough sur-
face contact models have been proposed. A pioneer con-
tact model is the Greenwood and Williamson [10] elastic 
contact model. Abbott and Firestone [11] developed a fully 
plastic contact known as surface micro geometry model. 
Chang et al. (CEB model) [12] bridged the fully elastic and 

fully plastic contact approaches by an elastic–plastic contact 
model on the basis of volume of conservation of plastically 
deformed asperities. This model adopted an abrupt transition 
from fully elastic to fully plastic state. The results showed 
that the mean separation is large and real area of contact is 
small in elastic–plastic contact than elastic contact for the 
same plasticity index and contact load. Zhao et al. (ZMC 
model) [13] devised an elastic–plastic contact model, which 
interpolates the fully elastic to fully plastic states. This 
model used mathematical functions to smoothen the fully 
elastic, elasticplastic, and fully plastic states. Smaller mean 
separation and larger real area of contact were predicted by 
the ZMC model than the GW model at any given plastic-
ity index and contact load. ZMC model showed a complete 
elastic–plastic contact phenomenon between rough surfaces 
for wide range of plasticity index and contact load com-
pared to GW model and CEB model. The exact inception 
of elastic–plastic to fully plastic was not governed. Kogut 
and Etsion (KE Model) [14, 15] developed a FEM-based 
elastic–plastic single asperity-based rough surface contact 
model. This model developed generic empirical relation-
ship for dimensionless mean contact pressure, dimensionless 
contact load, and the dimensionless contact area with the 
dimensionless interference ratio. The results showed that 
the fully plastic deformation on the contact surface occurs 
at a constant dimensionless interference ratio of 110, at that 
stage the mean contact pressure ratio  (Pmean/Y) reaches 2.8. 
They incorporate the single asperity finite element results 
to predict the contact parameters of rough surfaces, i.e., the 
mean separation, contact load, and the real area of contact in 
dimensionless forms. For calculating the contact parameters, 
they used the same hardness value throughout the statisti-
cal model, but they varied the standard deviation of surface 
heights and the plasticity index from 0.5 to 8, as in the CEB 
model. Their results were identical with CEB model till the 
plasticity index of 0.6 as pure elastic. The plasticity index 
of 1.4 marked as the transition of elastic to elastic–plastic 
and above the plasticity value of 8 entered to fully plas-
tic. Jackson and Green [16, 17] (JG model) extended the 
Kogut and Etsion work to account the geometry and material 
effects in the analysis. For calculating the critical interfer-
ence, this model used von Mises yield criterion and material 
yield strength directly. This model formulated new empirical 
relationships to calculate contact load and contact area with 
respect to the deformation for elastic–perfectly plastic case 
based on the FEM results. The results showed that the mean 
contact pressure (p/Y) ratio does not reach 2.8 for most of 
the yield strength values. The end of the elastic–plastic state 
is not identified. Further the empirical expressions are not 
updated for the general elastic–plastic cases. The developed 
empirical relations of dimensionless contact parameters 
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are used to study the rough surface contact. In which, the 
plasticity index was varied from 0.5 to 100 by varying the 
material properties alone. They concluded that till the plas-
ticity index of 10, the KE model and their model can be 
interchangeable but for high plasticity index values, large 
differences are observed.

Brizmer et al. [18, 19] (BKE model) conducted FEM-
based single asperity contact model under perfect slip and 
full stick conditions till the dimensionless interference ratio 
of 110. This model considered the materials with E/Y greater 
than 500 and Et/E of 0.02 with Poisson’s ratio of 0.25, 0.35, 
and 0.45. The results showed the contact parameters are 
insensitive to contact conditions (perfect slip or full stick), 
independent of E/Y, Et/E, asperity radius but slightly depend 
on Poisson’s ratio. This model didn’t consider the high yield 
materials and the effect of tangent modulus. Shankar and 
Mayuram [20, 21] (SM model) extended the JG model to 
study the formation of elastic core, the transition of elas-
tic–plastic to fully plastic state and the effect of tangent mod-
ulus. The results showed that the elastic core formation, the 
maximum Pmean/Y ratio and the transition from elastic–plas-
tic to fully plastic state depend on E/Y and Et/E ratios. The 
effect of Poisson’s ratio is not considered. Megalingam and 
Mayuram [22] (MM model) found exact inceptions of elas-
tic–plastic and fully plastic contacts then, formulated com-
plex empirical relations for contact parameters but didn’t 
extend to study the contact of rough surfaces. Wang and 
Wang [23] developed a continuously differentiable cubic 
polynomial function based cubic elastic plastic single asper-
ity contact model (Cubic model) which greatly reduced the 
error of Wang’s [24] compact and continuous model but 
didn’t extend to study the effect of plasticity index. Recently, 
Peng et al. [25] initially studied the contact behavior of a 
single asperity with deformable substrate using finite ele-
ment method and extended to study the elastic–plastic con-
tact behavior of statistical rough surface contacts. Ghaednia 
et al. [26, 27] studied the contact behavior of a deformable 
sphere against a deformable flat for elastic perfectly plastic 
materials and strain hardening materials but didn’t cover 
wide range of materials.

From the foregoing literature survey, it is observed 
that the exact transition of contact state is not completely 
explained. Apart from other single asperity contact mod-
els, MM model explored the influence of Young’s modulus, 
yield strength, and Poisson’ ration on the transition states 
(elastic, elastic–plastic, and fully plastic) but didn’t calculate 
the interference ratios of elastic, elastic–plastic, and fully 
plastic transition states and also didn’t extend to study the 
statistical contact behavior of rough surfaces. In this way, 
the present work attempts to calculate the exact transition of 
contact states and to study the contact behavior of Gaussian 

rough surface by accounting the combined effect of Pois-
son’s ratio, E/Y ratio, and surface roughness.

2  Single Asperity Contact Model

In statistical rough surface contact model, a single asperity 
contact model is initially developed and then it is extended 
to the whole rough surface. In this way, in the present work, 
a deformable spherical asperity contact against rigid flat 
plane is modeled and analyzed using ANSYS package. Due 
to axi-symmetric nature of spherical asperity, a quarter of a 
circle is considered as the asperity and it is allowed to con-
tact against a rigid line acts as rigid flat plane. The model is 
discretized with 1,04,176 eight node solid elements (PLANE 
82) in which 80% of elements are occupied near the contact 
zone which is shown in Fig. 1. The surface-to-surface con-
tact elements, CONTAC 172 and TARGE 169, are used to 
define the contact interaction with prefect slip condition. 
The material properties, Young’s modulus of 200 GPa, 
Poisson’s ratios of 0.25, 0.35, and 0.45, and yield strength 
ranging from 210 to 2520 MPa are considered [22, 28]. The 
rigid flat plane is constrained to move in all direction. The 
vertical side of the hemispherical asperity is assigned as 
axi-symmetric one whereas the top side is given vertical 
displacement to interfere with the rigid flat plane as shown 
in Fig. 1. The contact load and contact length are extracted 
from the nodal results. The meshed model is verified with 
Hertz elastic solution and the mesh density is doubled in 
order to achieve less than 1% deviation in contact parameters 
results between the iterations under elastic–perfectly plastic 
condition.

In the present work, the critical interference, critical con-
tact load and critical contact area of asperity are considered 
from the BKE model. The empirical relations [Eqs. (2) and 
(3)] are developed to calculate the exact elastic, elastic–plas-
tic, and fully plastic contact states’ interference ratios from 
the results of FEM model. Figure 2 shows the elastic, elas-
tic–plastic, and fully plastic contact zones and their bound-
ary which is affected by E/Y ratio and Poisson’s ratio signifi-
cantly. The incompressibility phenomenon is sustained till 
the asperity reaches the elastic–plastic contact state limit but 
beyond this limit, the above phenomenon decreases and the 
high Poisson’s ratio material attains the fully plastic contact 
state quickly. Such a behavior is observed for wide range 
of E/Y ratio materials with certain significant deviations. 
The deviation among the Poisson’s ratio cases is small at 
elastic–plastic contact state for all E/Y ratios but beyond the 
elastic–plastic limit the deviation among the Poisson’s ratio 
cases decreases as the yield strength decreases.
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Fig. 1  Finite element model of single asperity in contact with a rigid flat plane

Fig. 2  Elastic, elastic–plastic, 
and fully plastic contact zones 
with their boundary
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The empirical relations of Eqs. (4) to (13) are developed 
from FEM results using MATLAB curve fitting technique 
to calculate dimensionless contact load and dimensionless 
contact area in elastic, elastic–plastic, and fully plastic con-
tact zones which are

Contact Load Calculation: 79.36 ≤ (E/Y) ≤ 219.418
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Contact area calculation: 79.36 ≤ (E/Y) ≤ 219.418
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Elastic–plastic contact
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3  Validation of Present Model

In order to validate the present work, the material proper-
ties, E = 1.39 × 105 N/mm2, ν = 0.33, and σy = 345 N/mm2 
are considered from the experimental work of Ovcharenko 
et al. [29] and are applied in the present FEM model and 
the developed empirical relations. The results are shown in 
Fig. 3 as the variation of dimensionless contact area with 
dimensionless contact load. The present FEM results show 
good agreement with experimental result [29]. Additionally, 
the contact load and contact area are calculated using the 
developed equations for the same material properties which 
are shown in Fig. 3. The results of developed equations show 
good agreement with FEM results and experimental results.

4  Statistical Rough Surface Contact Model

In statistical rough surface contact model, the asperities are 
of same size and shape. The heights of the asperities are 
normally assumed to follow Gaussian distribution. If the 
asperities are assumed to spherical in nature, then they have 
same radius of curvature and are not interacting themselves 
as shown in Fig. 4.

Based on single asperity contact model results and Green-
wood and Williamson model assumptions, contact param-
eters like total contact area and total contact load with mean 
separation are calculated with the following steps:

Some base parameters that should be considered between 
contacting rough surfaces. Mainly two reference planes can 
be defined. (i.e., mean of asperity heights and mean of the 
surface heights). Let z and d are the asperity heights and 
separation of the surfaces with R is the radius of the asperity. 
h is the separation of the surfaces from the reference planes.
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All the models utilized Gaussian distribution for the 
asperity height distribution and that is given as

The standard deviation �s and � correspond to the asperity 
and surface heights, respectively, and are related by [30]:

All the dimensions are normalized by � and the dimen-
sionless values are denoted by *.

Critical interference can be normalized with σ to give:

y∗
s
 is the difference between h* and d* and is calculated by

The number of asperities on the contacting surface can be 
found by multiplying the nominal surface by the area density 
of the asperities:

Then, the total number of asperities in contact is defined as 
follows:

�∗(z∗) =
1√
2�

�

�s
exp

�
−0.5

�
�

�s

�2

(z∗)
2

�

�2 = �2
s
+

3.717 × 10−4

�2R2

�∗
c
=

�c

�

y∗
s
= h∗ − d∗ =

1.5√
108��

N = �An

Fig. 4  Statistical rough surface 
contact model
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The individual asperity contact area, A, and force, P, are 
functions of each asperity’s interference, ω. Thus, the contri-
bution of all asperities of a height z to the total contact area 
and total contact force can be calculated as:

Then, the total area of contact and total contact force 
between the surfaces is found by simply integrating the 
above equation over the entire range of asperity contact:

Greenwood and Williamson [1] defines plasticity index 
to relate the critical interference and the roughness of the 
surface to the plastic deformation of the surface and the rela-
tion is

The plasticity index also relates the critical interference 
and the roughness of the surface to the plastic deformation 
of the surface. Here, the surface roughness as well as the 
material properties is also varied.

5  Result and Discussion

In order to assess the present empirical relation-based rough 
surface contact model, the Zhao et al. model [13] material 
properties E1 = E2 = 207 GPa, ν1 = ν2 = 0.29 and σy = 700 MPa 
and surface parameters as given Table 1 are considered.

The fraction of total real area of contact in apparent area 
of contact as a function of dimensionless mean separation 

Nc = �An

∞

∫
d

�(z)dz

A(z) = �AnA(z − d)�(z)

P(z) = �AnP(z − d)�(z)

A(d) = �An

∞

∫
d

A(z − d)�(z)dz

P(d) = �An

∞

∫
d

P(z − d)�(z)dz

� =

√
�s

�c

for different plasticity index is shown in Fig. 5a–c. For the 
plasticity index case of 0.5 (Fig. 5a), the maximum dimen-
sionless contact area deviation is 3%, 5.5%, and 5.5% for 
Cubic model, BKE model, and JG model, respectively, 
with the present model due to more number of elastically 
deforming asperities. For the plasticity index case of 1.0 
(Fig. 5b), the maximum dimensionless contact area devia-
tion is 4%, 6.7%, and 7.5% for Cubic model, BKE model, 
and JG model, respectively, with the present model due to 
large number of elastic deformation of asperities, few elas-
tic–plastically deforming asperities, and the difference in 
the formulation of elastic–plastic contact area calculation 
in each model. For the plasticity index case of 2.5 (Fig. 5c), 
the maximum dimensionless contact area deviation is 3.3%, 
4.6%, and 5.7% for Cubic model, BKE model, and JG model, 
respectively, with the present model due to more number of 
elastic–plastic deformation of asperities and the difference 
in the formulation of elastic–plastic contact area and fully 
plastic contact area calculations in each model. The present 
model dimensionless contact area shows good agreement 
with the other models in all the plasticity index cases.

The dimensionless contact load against the dimensionless 
mean separation is provided for all plasticity index cases in 
Fig. 6a–c. In ψ = 0.5 case (Fig. 6a), the maximum dimension-
less contact load deviation is 4%, 5.0% and 4.8% for Cubic 
model, BKE model and JG model, respectively, with the 
present model at d/σ of 0.08. In the case of ψ = 1.0  (Fig. 6b), 
the maximum dimensionless contact load deviation is 5.4% 
at d/σ of 0.08 with the present model but the BKE model and 
JG model showed 4.0% and 3.0%, respectively, with the pre-
sent model at d/σ of 3.0. In the case of ψ = 2.5 (Fig. 6c), the 
maximum dimensionless contact load deviation is 10.8%, 
4.9%, and 4.6% for Cubic model, BKE model, and JG model, 
respectively, with the present model at d/σ of 0.08 due to dif-
ferent formulation of contact load calculation and the cut off 
elastic–plastic contact state differs in each model.

The dimensionless contact area against the dimension-
less contact load for different plasticity index is shown in 
Fig. 7a–c. The present model shows larger bearing area 
support for the same dimensionless contact load compared 
to other models due to the appropriate prediction of elas-
tic–plastic behavior. In the case of ψ = 1.0, the present model 
and cubic model behave similarly whereas the JG model 
and BKE model underestimate. In the case of ψ = 2.5, the 
cubic model overestimates compared to other models due to 
its mathematical formulation. In general, the present model 
shows good agreement with other models in low and high 
plasticity cases.

5.1  Effect of E/Y Ratio and Poisson’s Ratio

In order to explore the effect of E/Y ratio and Poisson’s 
ratio on rough surface contacts parameters, two extreme 

Table 1  Surface parameters and 
plasticity index values [13]

σ/R β ψ

8.75 × 10−5 0.0302 0.5
3.02 × 10−4 0.0414 1.0
1.77 × 10−3 0.0601 2.5
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Fig. 5  a Variation of dimension-
less real area of contact with 
dimensionless mean separation 
for plasticity index ψ = 0.5. b 
Variation of dimensionless real 
area of contact with dimen-
sionless mean separation for 
plasticity index ψ = 1.0. c Vari-
ation of dimensionless real area 
of contact with dimensionless 
mean separation for plasticity 
index ψ = 2.5
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Fig. 6  a Variation of dimen-
sionless contact load with 
dimensionless mean separation 
for plasticity index ψ = 0.5. 
b Variation of dimensionless 
contact load with dimensionless 
mean separation for plasticity 
index ψ = 1.0. c Variation of 
dimensionless contact load with 
dimensionless mean separation 
for plasticity index ψ = 2.5
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Fig. 7  a Variation of dimen-
sionless real area of contact 
with dimensionless contact load 
for plasticity index ψ = 0.5. b 
Variation of dimensionless real 
area of contact with dimension-
less contact load for plasticity 
index ψ = 1.0. c Variation of 
dimensionless real area of con-
tact with dimensionless contact 
load for plasticity index ψ = 2.5
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cases of E = 200 GPa, ν = 0.25 and 0.45, σy = 210 MPa, and 
2520 MPa are considered from [22]. Figure 8a shows the 
variation of dimensionless real area of contact as a function 
of dimensionless mean separation for plasticity index of 0.5. 
The effect of Poisson’s ratio on contact area is insignificant 
for low and high strength materials but the low strength 
material marks larger bearing area support compared to high 
strength material due to large number of elastically deformed 
asperities. Figure 8b shows the variation of dimensionless 
real area of contact as a function of dimensionless contact 
load for plasticity index of 0.5. As like contact area, the 
effect of Poisson’s ratio on contact load is insignificant 
for low and high strength materials but the high strength 
material shows increased contact load than the low strength 
material. For the difference of 91%yield strength, three order 

increased bearing load support is provided by high strength 
material.

Figure 9a shows the variation of dimensionless real area 
of contact as a function of dimensionless mean separation for 
plasticity index of 2.5. The effect of Poisson’s ratio on contact 
area is insignificant for high strength material. In low strength 
and high Poisson’s ratio material case, the incompressibility 
phenomena decrease due to elastic–plastic and fully plastic 
deformation of asperities so larger bearing area support is 
achieved for the same interference. Figure 9b shows the vari-
ation of dimensionless real area of contact as a function of 
dimensionless contact load for plasticity index of 2.5. As like 
contact area, the effect of Poisson’s ratio on contact load is 
insignificant for high strength material. In low strength mate-
rial case, low Poisson’s ratio material shows increased contact 

Fig. 8  a Variation of dimen-
sionless contact area with 
dimensionless mean separa-
tion for plasticity index of 0.5. 
b Variation of dimensionless 
contact area with dimensionless 
contact load for plasticity index 
of 0.5
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load than the high Poisson’s ratio material due to lack of 
incompressibility phenomena after the inception of yielding. 
For the difference of 91% yield strength, two order increased 
bearing load support is provided by low strength material.

6  Conclusion

• Empirical relations are developed to calculate exact tran-
sition interference of elastic, elastic–plastic, and fully 
plastic contact states in terms of E/Y ratio and Poisson’s 
ratio.

• Empirical relations are developed to calculate elastic, 
elasticplastic, and plastic states dimensionless contact 
load and contact area in terms of interference ratio, E/Y 
ratio, and Poisson’s ratio.

• The developed statistical Gaussian rough surface contact 
model shows good agreement with BKE model compared 
to JG and Cubic models in low to high plasticity index 
cases.

• In low plasticity index case: for 12 times increased E/Y 
ratio, the dimensionless contact area is increased 0.7 
times than low E/Y ratio of 79 whereas dimensionless 
contact load is increased three order in low E/Y ratio 

Fig. 9  a Variation of dimen-
sionless contact area with 
dimensionless mean separa-
tion for plasticity index of 2.5. 
b Variation of dimensionless 
contact area with dimensionless 
contact load for plasticity index 
of 2.5
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for the same dimensionless contact area but the effect 
of Poisson’s ratio is negligible due to large number of 
elastically deformed asperities.

• In high plasticity index case: in low Poisson’s ratio case, 
for 12 times increased E/Y ratio, only 0.3 times increased 
dimensionless contact area is attained whereas the high 
Poisson’s ratio achieved two order increased dimension-
less contact area due to large number of elastic–plasti-
cally deformed asperities.

• In high plasticity index case: for 12 times increased E/Y 
ratio, two (low Poisson’s ratio) to three (high Poisson’s 
ratio) order increased dimensionless contact load is 
attained for same dimensionless contact area.

• In high plasticity index case: the effect of Poisson’s ratio 
is negligible in the low E/Y ratio case but in 12 times 
increased E/Y ratio case, the low Poisson’s ratio case 
marked maximum of 0.6 times increased dimensionless 
contact load compared to high Poisson’s ratio due to large 
elastic–plastic and plastic deformation of asperities and 
the difference exists in incompressibility nature.
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Appendix

Previous Elastic–Plastic Contact Models
Jackson and Green Model (JG model)
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