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Abstract
The present work describes the evaluation of anticorrosion property of 4-hydroxy-N′-[3-phenylprop-2-en-1-ylidene] benzo-
hydrazide (HBH) on 6061 Al-15%(v)  SiC(P) composite (Al-CM) in 0.5 M hydrochloric acid medium. The results of electro-
chemical measurement and specimen morphology study are discussed in this work. The adsorption of HBH over the Al-CM 
surface is through physisorption and obeys the Langmuir’s isotherm model. Potentiodynamic polarization study showed that 
the HBH acted as mixed inhibitor. The electrochemical impedance spectroscopy (EIS) study showed that the increase in 
the adsorption tendency of HBH on to the metal surface is due to increase in the polarization resistance. Density functional 
theory (DFT)-based calculations were carried out for both neutral and protonated HBH molecules which is well supported 
by the experimental observations.
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Abbreviations
Al-CM  6061 Al-15%(v) SiC(P) composite
HBH  4-Hydroxy-N′-[3-phenylprop-2-en-1-ylidene] 

benzohydrazide
HCl  Hydrochloric acid medium
EIS  Electrochemical impedance spectroscopy
PDP  Potentiodynamic polarization
OCP  Open-circuit potential
Ecorr  Corrosion potential
%IE  Percentage Inhibition efficiency
CR  Corrosion rate
icorr  Corrosion current density
DFT  Density functional theory
SEM  Scanning electron microscope
EDX  Energy-dispersive X-ray
AFM  Atomic force microscope

1 Introduction

The pertinent problems faced by many industries are cor-
rosion of metals and material conservation. As the material 
comes in contact with corrosive environment, it leads to its 
destruction [1, 2]. Al and Al alloys are widely used in indus-
tries that show high corrosion resistance due to the passive 
film on their surface [3, 4]. However, their applications are 
limited due to their lower strength and stiffness. In order 
to enhance its strength and to provide better performance 
the requirement of such alloy is to reinforce with particles 
such as SiC. Aluminium alloy reinforced with SiC particles 
possess high-specific strength and hence find various appli-
cations in automobile, aviation, and military applications 
[5, 6]. The addition of SiC can cause discontinuities in the 
protective oxide film. This can lead to increase in the number 
of sites, where corrosion can occur and make the composite 
more vulnerable. The depletion of naturally occurring oxide 
layer takes place with reinforcement of SiC particulates 
which in turn accelerates the corrosion in corrosive envi-
ronment [7, 8] Micro-galvanic corrosion of Al-CM is more 
likely to occur during acid pickling and descaling procedures 
used in the surface preparation of such composite material. 
The ceramic particles function as efficient cathodic sites 
and trigger corrosion in the presence of corrosive liquids 
[9, 10]. To overcome such problem, the use of inhibitor is 
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considered as the most practical method. The organic com-
pounds containing hetero atoms, unsaturated bonds, aro-
matic rings showed very good inhibition efficiency against 
acid corrosion of Al-CM [11–13]. The literature study 
reveals the excellent corrosion inhibition tendency of some 
of the hydrazides, its derivatives and hydrazides contain-
ing imine group particularly on mild steel in different acid 
media [14–16]. The inhibitive nature of these compounds is 
accredited to their molecular structure. The unshared pair 
of electrons on the atoms such as N, O, S etc., π electrons, 
electron donating groups and planarity of the inhibitor mol-
ecule determines the film formation or adsorption of these 
molecules on the metallic surface. Despite its exceptional 
corrosion inhibition ability, only few hydrazides are used 
as inhibitor for Al and Al-based alloys and composites [17]. 
Hence, the purpose of the present work was to synthesize a 
hydrazide derivative, namely 4-hydroxy-N′-[3-phenylprop-
2-en-1-ylidene] benzohydrazide (HBH) and to study its cor-
rosion inhibition behaviour on Al-CM in 0.5 M hydrochloric 
acid medium at different temperatures by adopting electro-
chemical techniques. This study also includes the determina-
tion of activation, thermodynamic parameters and surface 
characterization using different techniques. Further theoreti-
cal calculations were done using DFT which is in agreement 
with the experimental results.

2  Experimental Details

2.1  Material

The present study makes use of 6061 Al-15%(V)  SiC(P) com-
posite (Al-CM) material as test specimen with composition 
depicted in Table 1. Cylindrical shaped test coupons of 
Al-CM material were mounted using cold setting resin. The 
flat specimen surface having exposed surface area of 1 cm2 
of the mounted part was then abraded using polishing papers 

of different grades followed by disc polishing using levigated 
alumina abrasive as per standard metallographic practice.

2.2  Preparation of Medium

The medium used was standard hydrochloric acid solution. 
A stock solution of hydrochloric acid (1 M) was prepared 
by diluting a known volume of 37% AR grade hydrochloric 
acid to an appropriate volume to get required strength and 
standardized by volumetric method.

2.3  Preparation of HBH

An equimolar mixture of trans-3-Phenyl-2-propenal 
(0.01 mol) and 4-hydroxy benzohydrazide (0.01 mol) was 
dissolved in ethanol. The product formed after refluxing the 
reaction mixture for about 3 h. Ethanol was used for recrys-
tallization of the product obtained after the filtration of reac-
tion mixture. The synthetic route for the preparation of HBH 
is represented by Scheme 1.

2.4  Electrochemical Techniques

An electrochemical work station (CH Instrument USA 
Model 604D series with beta version software) along with 
conventional three electrode cell was used to perform 
the electrochemical techniques. The cell constitutes of a 
platinum and calomel electrode as counter and reference 
electrode, respectively. Freshly polished working Al-CM 
specimen was exposed to 0.5 M HCl within a temperature 
range of 303 to 323 K. The open circuit potential (OCP) 
is observed at the end of 30 min and recorded. The speci-
men was then polarised from -250 mV cathodic to + 250 mV 
anodic with respect to OCP fixing a scan rate of 1 mV s−1, 
the Tafel curves were recorded. In case of EIS a small ampli-
tude of ac signal of 10 mV was applied to the system in the 
frequency range (10 kHz to 0.01 Hz) with respect to OCP 
and the Nyquist plot was recorded.

2.5  Quantum Chemical Study

The DFT calculations were done using Gaussian maes-
tro material science software with the correlation factor 

Table 1  Chemical composition of Al-CM material

Elements Cr Cu Mg Si Al

Composition (wt%) 0.01 0.02 0.61 1.00 Balance

NH
NH2

OH

O

H

O

+ H2SO4

-H2O
OH

NH
N

O

4-hydroxy benzohydrazide trans-3-phenyl-2-propenal 4-hydroxy-N'[3-phenylprop-2-en-1-ylidene]
benzohydrazide(HBH)

Scheme 1  Synthetic route for HBH
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(B3LYP) and 631 + G as basis set [18]. The energies of the 
highest occupied (EHOMO) and lowest unoccupied (ELUMO) 
molecular orbitals were evaluated and which are then used 
to calculate other quantum chemical considerations.[19, 20].

2.6  Surface Morphological Studies

Surface morphological study was done using scanning elec-
tron microscope (SEM) and surface roughness of Al-CM 
specimen was determined by atomic force microscope 
(AFM). Chemical analysis of the specimen surface was done 
using energy-disperse X-ray (EDX).

3  Results and Discussion

3.1  IR Characterization Results of HBH

Crystalline white solid (95%);  C16H14N2O2; m.p: 
264–266 °C; IR (KBr)  [cm−1]]: 3502 (OH str.), 3201 (NH 
str.), 3016 (Ar. CH str.), 1612 (C=O str.), 1558 (C=N str.), 
1504 (Ar. C=C str.). 1H NMR (400 MHz, DMSO-d6) δ 
(ppm): 11.53 (1H, OH), 10.13 (1H, NH), 8.22 (1H, CH=N), 
7.81–6.83 (9H, Ar. H), 2.15 (1H, CH). Figure 1a and b rep-
resents the IR and 1H NMR spectrum of HBH molecule.

3.2  Potentiodynamic Polarization (PDP) 
Measurements

The PDP plots for the dissolution of Al-CM in presence of 
uninhibited and inhibited solution are shown in Fig. 2. The 
anodic potential is displaced in a positive direction by anodic 
polarization and cathodic potential is displaced in a negative 
direction by cathodic polarization. The point of intersection 
between the two rectilinear polarization curves in the PDP 
plots gives corrosion current density (icorr), corrosion poten-
tial (Ecorr). The experimental results obtained for corrosion 
of Al-CM without and with HBH are tabulated in Table 2.

The added inhibitor molecules get adsorbed over the 
Al-CM surface and hence reduce the corrosion rate. Gen-
erally, the presence of reinforcing element (SiC) enhances 
the corrosion rate of aluminum composite compared to 
aluminum-based alloys. Since the electrode potential of 
Si (− 0.14 V) is more than the electrode potential of Al 
(− 1.67 V), SiC will act as cathode-making Al as anode 
which results in galvanic corrosion leading to disintegra-
tion of aluminum matrix. The heterogeneous nature of the 
composite material due to the presence of SiC, increases the 
availability of the active sites for the adsorption of inhibitor 
molecules [21].

The inhibitor can be distinctively considered as 
anodic or cathodic type if the displacement in the Ecorr 
exceeds ± 85 mV in the presence of inhibitor with respect 

to that of uninhibited solution [22]. However, it is evident 
from the above Tafel plot that the corrosion potential does 
not show much variation in the presence of HBH in compari-
son with uninhibited solution. This shows that HBH acts as 
mixed type inhibitor by retarding both anodic and cathodic 
reactions. From the obtained icorr values corrosion rate (CR) 
and percentage inhibition efficiency (% IE) were calculated 
using Eqs. (1) and (2), respectively.

where, icorr = corrosion current density in μA cm−2, 3270 
is a constant which defines the unit for the corrosion rate, 
EW = equivalent weight of corroding material and d = den-
sity of corroding material in g cm−3 [23].

where, icorr and icorr(inh) signify the corrosion current density 
in the absence and presence of inhibitors, respectively.

The icorr and CR values in the absence of HBH increased 
with rise in the temperature. This may be due to increase 
in the conductance of medium. Whereas as the addition of 
inhibitor resulted in decrease in both icorr and CR which in 
turn increases the %IE. This can be due to the adsorption or 
film formation of the HBH molecules on to the surface of 
the specimen and thereby blocking sites on the metal surface 
[24]. 4. The Tafel slope shows the variation in electrode 
potential if the current flowing in it varies by one order of 
magnitude. Thus, if the slope (mV decade−1) is lower means 
less over-potential is required to get high current. That is, 
application of small-positive potential can cause the reac-
tion to go to a greater extent. In the present case the anodic 
(βa) and cathodic (βc) slope values do not vary much with 
addition of HBH. This suggests that there is no change in the 
mechanism of corrosion both in the absence and presence 
of inhibitor [25].

3.3  Electrochemical Impedance Spectroscopy (EIS) 
Studies

EIS is used to study the corrosion behaviour at the metal-
solution interface. Nyquist plots for the corrosion inhibition 
of Al-CM at different concentrations of HBH at 313 K are 
given in Fig. 3. The Nyquist plots of Al-CM consist of high-
frequency (HF) capacitive loop and intermediate frequency 
(IF) inductive loop. Shape of these impedance plots agree 
very well with those reported in the literature [25].

The capacitive loop formed at higher frequency range 
corresponds to the oxidation of Al-CM at  M+/oxide/solution 
interface.  Al1+ will be oxidized to  Al3+ during the corro-
sion process which is because of the transport of  Al1+ from 

(1)CR
(

mmy−1
)

=
3270 × EW × icorr

d

(2)IE(%) =
icorr − icorr(inh)

icorr
× 100
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Fig. 1  FTIR spectrum of HBH
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 M+/oxide interface through oxide/electrolyte interface and 
also  O2− and  OH− ions are formed at oxide/solution inter-
face. The formation of single capacitive loops in the Fig. 3 
indicate that it is undergoing all the above three processes 
which might be either due to the overlapping of loops during 
the corrosion process or domination of one process over the 
other. The formation of passivating oxide film on the metal 
surface attributes to the capacitive loop in high-frequency 
region. The resistance offered by the metal towards the cor-
rosion process is increased with increase in the diameter of 
the semicircle [26]. At lower frequency (LF) the origin of the 
inductive loop has often been attributed to surface or bulk 
relaxation of species in the oxide layer. The LF inductive 

loop may be related to the relaxation process obtained by 
adsorption and incorporation of chloride ions, oxide ion and 
charged intermediates on and into the oxide film. The induc-
tive loop is also attributed to anodic adsorbed intermedi-
ates controlling the anodic process [27, 28]. The capacitive 
loops of the Nyquist plots are comparatively depressed due 
to the inhomogeneity, roughness of the working electrode 
surface, deposition of the corrosion product or adsorption 
of the inhibitor molecules [29].

To carry out mathematical analysis of the EIS technique, 
the Nyquist plots were simulated with the equivalent cir-
cuit. This circuit constitute five elements namely resistance 
offered by the solution (RS), resistance offered by charge 
transfer process (Rct), inductive element (L) and inductive 
resistance (RI). It also consists of CPE (Constant Phase Ele-
ment, Q), which is parallel to resistors and inductive ele-
ment shown in the Fig. 4. Similar circuits were reported by 
other researchers for AL-CM in acid medium [17, 25]. The 
polarization resistance (Rp) from the above circuit can be 
evaluated using Eq. (3).

During the circuit fitment the real capacitance  (Cdl) is 
replaced by constant phase element CPE (Q), because the 
impedance plots for composite materials are depressed 
semicircles. The depression in the semicircle is attributed 
for frequency dispersion that occurs during the impedance 
analysis because of surface inhomogeneity/surface rough-
ness [29]. The CPE impedance (ZCPE) is calculated using 
the following equation,

(3)Rp =
Rct × RL

Rct + RL

× 100

Fig. 2  PDP curves for the corrosion behaviour Al-CM in 0.5 M HCl 
at 313 K in absence and presence of HBH

Table 2  PDP results for 
the corrosion of Al-CM in 
0.5 M HCl in the absence and 
presence of HBH at different 
temperatures

Temp
(K)

Conc. Of HBH
(M)

Ecorr
(mV SCE−1)

− βc
(mV dec−1)

βa
(mV dec−1)

icorr
(mA cm−2)

CR
(mpy)

% IE

303 0 − 671 585 507 0.0134 4863 –
5 × 10–5 − 680 680 599 0.0047 2026 64.7
1 × 10–4 − 687 707 696 0.0030 1304 77.3
5 × 10–4 − 691 782 781 0.0024 1039 81.9
1 × 10–3 − 727 867 1520 0.0019 818.7 85.7

313 0 − 675 456 484 0.0174 7495 –
5 × 10–5 − 682 615 549 0.0086 3707 50.5
1 × 10–4 − 689 662 583 0.0055 2362 68.4
5 × 10–4 − 703 681 726 0.0032 1393 81.4
1 × 10–3 − 724 687 1100 0.0029 1253 83.2

323 0 − 692 401 457 0.0255 10,960 –
5 × 10–5 − 685 509 499 0.0155 6650 39.0
1 × 10–4 − 687 586 515 0.0119 5130 53.2
5 × 10–4 − 709 631 681 0.0058 2491 77.2
1 × 10–3 − 717 635 769 0.0050 2146 80.4
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where Q is the proportionality coefficient, wmax is the 
angular frequency, i is the imaginary number and n is the 
exponent related to the phase shift. The values of phase shift 
(n) lies between 0 and 1 (0 ≤ n ≤ 1) [30]. This is related to the 
deviation of CPE from the ideal capacitive behaviour. The 
modification in the capacitance to its real value is calculated 
using the relation 5.

(4)ZCPE = Q−1
(

i wmax

)−n

where Cdl is the double-layer capacitance, Rp is the polari-
zation resistance and fmax is the frequency in Nyquist plot 
at which the imaginary part of the impedance is maximum 
[30].

The % IE can be obtained using the Eq. 6 [31].

where Rp and Rp(inh) are the polarization resistance for the 
blank and in the presence of HBH. Table 3 represents the 
results of EIS studies for HBH. It is clear from the Table 
that, polarisation resistance (Rp) values of Al-CM increases 
with the addition of HBH and the increase is consistent with 
rise in the concentrations of the HBH. This indicates the 
resistance against the flow of electrons due to the film forma-
tion of inhibitor on the metal surface [31]. The capacitance 
of electrical double layer (Cdl) decreased with increase in 
inhibitor concentrations. This may be due to increased thick-
ness of the electrical double layer at metal-solution inter-
face. There will be formation of electrical double layer at the 
metal surface and solution which is equivalent to an electri-
cal capacitor. Further, the decrease in Cdl values may be due 
to the replacement of initially adsorbed water molecules on 
the metal surface by the HBH molecules [32].

(5)Cdl =
1

2�Rctfmax

(6)%IE =
Rp(inh) − Rp

Rp(inh)

× 100

Fig. 3  Nyquist curves for the corrosion behaviour Al-CM in 0.5  M 
HCl at 313 K in absence and presence of HBH

Fig. 4  Equivalent circuit used 
to fit the experimental EIS 
data obtained for the corrosion 
behaviour of Al-CM in the pres-
ence of HBH
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3.4  Evaluation of Kinetic Parameters

The study of effect of temperature enables calculations 
of kinetic factors such as activation energy (Ea), enthalpy 
(ΔH#) and entropy (ΔS#) of activation. These parameters 
are useful in determining the mode of adsorption of HBH 
molecules on to the specimen surface. The % IE of HBH 
is found to be decreased with increase in temperature. This 
could be due to possible desorption of adsorbed HBH mol-
ecules from the Al-CM surface. Further the adsorption of 
HBH on the specimen surface decreases at higher tempera-
ture due to the higher rate of hydrogen gas evolution [33]. 
This type of behaviour suggests physisorption of the HBH 
molecules on Al-CM. Using Arrehnius Eq. (7) the energy 
of activation (Ea) can be calculated [34],

where B is an Arrehnius constant which depends on the metal 
type, and R is the universal gas constant (8.314 J K−1 mol−1), 
CR is corrosion rate, Ea is energy of activation, T is absolute 
temperature. Figure 5 shows the Arrehnius plot of ln CR vs 
1/T for the Al-CM in different concentrations of HBH in 
0.5 M HCl. Ea values are evaluated from the slope of straight 
line (slope = Ea/R) obtained.

The transition state equation [35] is used to compute 
the enthalpy (ΔH#) and entropy (ΔS#) of activation for the 
corrosion of Al-CM in the absence and presence of HBH.

(7)ln (CR) = B −
Ea

RT

where h is Plank’s constant (6.626 × 10–34 J s), and N is Ava-
gadro’s number(6.023 × 1023 mol─1). Figure 6 is the plot of 
ln (CR/T) vs.1/T for Al-CM in 0.5 M HCl in various con-
centration of HBH. Change in values of ΔH# an ΔS# were 
calculated from the slope and intercept, respectively, of the 
plot. Table 4 indicates the activation parameter values for the 
Al-CM in 0.5 M HCl using various concentration of HBH.

From Table 4, it is evident that Ea value is higher in the 
presence of HBH than in case of uninhibited. This is because 

(8)CR =
RT

Nh
exp

(

ΔS#

RT

)

exp

(

−ΔH#

RT

)

Table 3  EIS results for the corrosion of Al-CM in 0.5 M HCl in the 
absence and presence of inhibitor at different temperatures

Temp
(K)

Conc of HBH
(M)

Rp
(Ω cm2)

Cdl
(µF cm−2)

n % IE

303 0 4.100 8.04 0.780 –
5 × 10–5 10.27 4.12 0.775 60.5
1 × 10–4 16.24 2.44 0.784 75.0
5 × 10–4 20.82 1.13 0.797 80.5
1 × 10–3 24.02 0.70 0.808 83.1

313 0 1.700 40.0 0.785 –
5 × 10–5 3.547 18.4 0.766 52.8
1 × 10–4 4.852 10.3 0.78 65.5
5 × 10–4 7.822 4.90 0.789 78.6
1 × 10–3 8.455 3.20 0.804 80.2

323 0 0.800 95.8 0.775 –
5 × 10–5 1.489 70.4 0.754 43.4
1 × 10–4 1.960 31.1 0.765 57.0
5 × 10–4 3.267 16.2 0.782 74.2
1 × 10–3 3.587 9.90 0.836 76.5
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Fig. 5  Arrhenius plot for the corrosion of Al-CM in 0.5 M HCl con-
taining different concentrations of HBH
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Fig. 6  Plots of ln(CR/T) vs (1/T) for the corrosion of Al-CM in 0.5 M 
HCl containing different concentrations of HBH
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of increase in the energy barrier for the corrosion in the 
presence of HBH. The physical adsorption of the inhibitor 
molecules on the metal surface can be ascertained due to the 
increase in the Ea value with increase in the HBH concentra-
tion [36]. During corrosion reaction the charge transfer on 
the surface of the composite will be blocked by the physical 
adsorption of the HBH molecules which is indicated by an 
increase in the Ea value [37]. The negative value of ∆S# 
indicates that the randomness is decreased on going from 
reactants towards the activated complex.

3.5  Mechanism of Adsorption

The adsorption isotherm furnishes basic details about the 
interaction between inhibitor and the metal surface which 
helps to determine the corrosion inhibition mechanism 
by appropriately fitting the experimental results to differ-
ent adsorption isotherms models. The fraction of surface 
covered (θ) for different concentration of the HBH was 
determined. In the present study, Langmuir’s adsorption 
isotherm (Eq. 9) showed the best correlation between the 
isotherm function and the results which were obtained 
experimentally [38].

where θ is the surface coverage, C is the concentration of 
the HBH, K is the equilibrium constant (L  mol−1). The plot 
of Cinh/θ versus Cinh is a straight line with an intercept of 
1/K. The Langmuir adsorption isotherm for the adsorption 
of HBH on Al-CM is depicted in Fig. 7. The straight lines 
with the linear correlation coefficient  (R2) values close to 
unity, which suggests that the adsorption of HBH in 0.5 M 
HCl medium on Al-CM surface obeys the Langmuir adsorp-
tion isotherm model [39]. The slope values of these lines are 
range from 1.15–1.17 in the temperature range of 30–50 °C, 
respectively, suggesting that the adsorbed molecules form 
monolayer on the Al-CM surface and there is no interaction 
among the adsorbed inhibitor molecules.

(9)
Cinh

�
=

1

K
+ Cinh

The standard-free energy of adsorption 
(

ΔG
◦

ads

)

 of  the 
HBH on the metal surface, is related to adsorption/desorp-
tion constant K by the Eq. (10).

where, K is the equilibrium constant, T is absolute tempera-
ture, R is the universal gas constant and 55.5 is the concen-
tration of water in solution in mol/dm3 [40].

The plot of ΔG◦

ads
 Vs T which gives a straight line is 

shown in Fig. 8. The intercept and slope values are used to 
calculate the values of standard enthalpy 

(

ΔH
◦

ads

)

 and stand-
ard entropy 

(

ΔS
◦

ads

)

 of adsorption, respectively, using the 
Eq. (11) and the calculated adsorption parameters for the 
corrosion of AL-CM in 0.5 M HCl in the presence of HBH 
are recorded in Table 5.

The spontaneous adsorption and stability of the adsorbed 
HBH on the Al-CM surface was quantified by the nega-
tive values of ΔG◦

ads
 . Generally, if the measure of ΔG◦

ads
 is 

around − 20  kJ  mol−1 or less negative, then it indicates 
physisorption of inhibitor molecule, while those with 
around − 40 kJ mol−1or more negative, shows chemisorp-
tion of the inhibitor molecules on the metal surface [41]. The 
ΔG

◦

ads
 values for HBH were shown to lie in between − 20 and 

− 40 kJ mol−1 which suggests mixed adsorption with predomi-
nant physisorption of HBH on Al-CM. The negative value 
of ΔH◦

ads
 specifies the exothermic process due to the phys-

isorption of HBH and the negative value of ΔS◦

ads
 indicates 

(10)K =
1

55.5
exp

(

−ΔG
◦

ads

RT

)

(11)ΔG
◦

ads
= ΔH

◦

ads
− TΔS

◦

ads

Table 4  Activation parameters obtained for the corrosion of Al-CM 
in 0.5 M HCl acid containing various concentrations of HBH

Conc. of HBH
(M)

Ea
(kJ mol−1)

ΔH#

(kJ mol−1)
ΔS#
(J mol−1 K−1)

0 33.07 30.47 − 104.2
5 × 10–5 48.34 45.74 − 61.15
1 × 10–4 55.62 53.02 − 41.07
5 × 10–4 60.38 57.78 − 26.56
1 × 10–3 64.08 61.47 − 16.09

Fig. 7  Langmuir’s adsorption isotherm for Al-CM in 0.5 M HCl con-
taining various concentrations of HBH at different temperature



Journal of Bio- and Tribo-Corrosion (2020) 6:59 

1 3

Page 9 of 15 59

the decrease in dis-orderness from the reactant to the adsorbed 
species [42].

3.6  Mechanism of Corrosion Inhibition

Aluminum composites are comprised of aluminum matrix 
and ceramic SiC (Silicon Carbide) particulates. In presence 
of SiC particulates, the continuous oxide layer of aluminum 
gets broken down. The discontinuous oxide film on aluminum 
surface increases the corrosion rate. However, aluminum with 
lower standard electrode potential of − 1.66 V acts as anode 
and undergo oxidation readily whereas SiC particulates being 
semi-conductors behaves as cathodic site. These cathodic sites 
favour hydrogen reduction. Formation of micro-galvanic cell 
is also quite probable in presence of conducting medium [43].

The protective oxide layer formed on aluminum gets 
depleted in the presence of HCl medium leading to corrosion. 
The following reactions occur as the potential of aluminum 
is − 1.66 V.

(12)Al → Al3+ + 2e−

(13)Al3+ + Cl− ⇆ AlCl2+
(ads)

The cathodic reduction reaction in acid medium is,

The process of corrosion inhibition is a surface phenom-
enon. Several factors like number of active centres on the 
metal surface, charge density, size of inhibitor and metal-
inhibitor interactions play a very important role in protecting 
the metal against corrosion [44]. In case of HBH, the het-
ero atoms such as oxygen and nitrogen, unsaturated double 
bonds and Π electrons of the benzene ring are considered as 
some of the adsorption centres. The adsorption of the HBH 
onto the AL-CM in aqueous solution is regarded as aquasi-
substitution between the inhibitor molecule in aqueous phase 
[Inh(aq)] and water at the metal surface  [H2O(sol)].

In the presence of acidic medium HBH molecules get 
protonated and adsorbed to  AlCl−(ads) and decreases the 
further oxidation reaction. The charge on the Al-CM decides 
the process of adsorption in an aggressive environment. 
Metal usually surrounded by the positively charged ions in 
the aggressive environment. This is because of the electric 
field that emerges at the interface on immersion into the 
electrolyte.

The charge on the metal depends upon the value of the 
 pHZch, which is defined as the pH at the point of zero charge 
potential. Since the  pHZch value for aluminium is 9.1, thus it 
acquires positive charge in the vicinity of an acidic environ-
ment. The positively charge metal ions repulse the adsorp-
tion of protonated inhibitor molecule and facilitate the 
adsorption of negatively charged chloride ions. The nega-
tively charged metal surface attracts the protonated HBH 
molecule from the corrosive environment through electro-
static interaction and forms a protective physical barrier on 
the metal surface. The protective layer isolates the metal 
from direct contact with the aggressive environment and 
reduces the material loss [45]. The schematic representation 
for the adsorption of HBH on Al-CM through electrostatic 
interaction is shown in Fig. 9.

(14)AlCl2+
(ads)

+ Cl− → AlCl+
2
+ 3e−

(15)H+ + e− → H(ads)

(16)H(ads) + H(ads) → H2

(17)Inh(sol) + xH2O(aq) → Inh(aq) + xH2O(sol)

Fig. 8  Plot of ΔG◦

ads
 vs. T for Al-CM in the presence of HBH in 

0.5 M HCl

Table 5  Adsorption parameters 
for the corrosion of AL-CM in 
0.5 M HCl containing various 
concentrations of HBH at 
different temperature

Temp
(K)

Kads
(M−1)

Slope R2
ΔG

◦

ads

(kJ mol−1)
ΔH

◦

ads

(kJ mol−1)
ΔS

◦

ads

(J mol−1 K−1)

303 48,258.8 1.15 0.999 − 37.28
313 28,946.6 1.16 0.999 − 37.18 − 48.74 − 0.037
323 14,687.1 1.17 0.999 − 36.56
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Further, the inhibition efficiency of HBH is compared 
with the similar type of inhibitor compounds as reported 
in the work [17], the hydrazide derivative, namely 4-(N,N-
dimethyl amino) benzaldehyde thiosemicabazone on 6061 
Al-15 vol. pct. Sic(p) composite in a mixture of 1 M hydro-
chloric and 0.5 M sulphuric acid medium. It showed inhibi-
tion efficiency in the range of 50% to 79% at higher inhibitor 
concentration (1000 ppm) at different temperatures in 1 M 
HCl + 0.5 M  H2SO4, whereas HBH showed higher inhibi-
tion efficiency in the 80 to 85% at much lower concentration 
(~ 200 ppm).

3.7  Theoretical Studies

Quantum chemical calculations were done to understand 
the structure activity relationship between the molecular 
structure of HBH and its inhibition efficiency. Generally, 
corrosion mitigation ability of organic compounds mostly 
depends upon the electron donating tendency as well as on 
the nature of its interaction with the surface of the metal 
[1, 46]. The validation of these effects can be done using 
DFT study. The DFT calculations points out the electron 

donating and proton accepting sites in the molecules, fron-
tier molecular (HOMO and LUMO) orbital energies, the 
energy gap between them HOMO and LUMO and the Mul-
likan’s charges present on the molecule. Mullikan charges 
are widely used to analyse the possible adsorption sites in 
the inhibitor molecule and also the electron donor–accep-
tor relation between inhibitor molecules and metal surface. 
Generally, the hetero-atoms with more negative Mullikan 
charge are considered to be the most active site for the 
donor–acceptor relation with the metal surface [47]. The 
Mullikan charges on the different atoms of HBH is shown 
in Fig. 10. The more negative charges are noticed on oxygen 
atoms of OH (− 0.62) groups and on the nitrogen (− 0.56) 
atoms. These negative centres can be the adsorption sites 
for the inhibitor molecules which effectively mitigate the 
corrosion of Al-CM in acid medium [48].

The optimized structures of the neutral and protonated 
forms of HBH is depicted in Fig. 11a and b, respectively. 
The protonated forms were considered alongside the neutral 
molecules as HBH can undergo protonation in the presence 
of HCl medium. The optimized structures are supposed to 
be the most stable ground state geometries of the HBH mol-
ecules. Both the neutral and protonated molecule of HBH 
have planar geometries. These planar molecules show a ten-
dency to aid maximum interactions of the atoms with the 
metal surface. The co-planarity of the hetero-atoms and the 
π-electron systems in the inhibitor molecule is accountable 
for the higher inhibition efficiencies exhibited by the HBH.

The highest occupied molecular orbital (HOMO) and 
lowest occupied molecular orbitals (LUMO) for neutral and 
protonated forms of HBH molecules are given in Fig. 12a 
and b, respectively. Accordingly, some of the studied quan-
tum chemical parameters for neutral and protonated HBH 
are listed in Table 6.

Generally, the electron density is more localized on het-
ero atoms of the inhibitor molecule for both HUMO and 
LUMO. EHOMO may be attributed to the ability to transfer 
electrons by donation to a definite centre with low empty 
molecular orbital energy of the molecule that can accept 

Fig. 9  Schematic representation of physical adsorption of the inhibi-
tor molecule on the metal surface

Fig. 10  Mullikan charges on 
the different atoms of HBH 
molecule
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these charge. The added inhibitor can also capture the 
charge from the metal d-orbital formation of a feedback 
bond. This type of bonds depends mainly on ELUMO values, 
which ensure that the acceptance of electrons from the 
metal d orbital [49, 50]. The results in Table 6 indicate 
that the protonated HBH molecules show a remarkable 
increase in EHOMO value compared to neutral HBH mol-
ecule pointing out an increase in the electron-donating 
tendency. Similarly, the lower ELUMO values of protonated 
HBH shows a greater tendency of accepting the electrons 
with respect to neutral HBH molecules. The other essen-
tial parameter is the energy gap or separation energy 
(ΔE), (the difference between EHOMO and ELUMO). The 
lower value of ΔE suggest stronger adsorption activity 

of inhibitor molecule while the chemical reactivity of the 
inhibitor increases with decrease in ΔE. This facilitates the 
adsorption of HBH on to the Al-CM [47]. In the present 
case the ΔE value for the protonated HBH molecules is 
lower than the neutral molecules indicating the protonated 
HBH molecules possesses a higher anti-corrosion ability.

As per the acid–base theory the chemical hardness and 
softness parameters are related to its inhibition character-
istics of the molecule. A soft molecule has higher tendency 
to react whereas a hard molecule has lower tendency. The 
decrease in the chemical hardness and increase in the soft-
ness values for protonated HBH molecules indicate the 
greater contribution towards corrosion inhibition process 
[51]. It is observed that the values of ΔN for neutral and 

Fig. 11  Optimized structures of a neutral HBH and b Protonated form of HBH

Fig. 12  HOMO and LUMO 
structure for a neutral HBH and 
b protonated form of HBH

Table 6  Quantum chemical 
parameters for neutral and 
protonated HBH

Inhibitor EHOMO (eV) ELUMO (eV) ΔE (eV) η σ (eV) ΔN

Neutral HBH − 5.6962 − 1.8474 − 3.848 1.924 0.519 0.080
Protonated HBH − 14.748 − 12.819 − 1.929 0.969 1.031 − 5.004
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protonated HBH are 0.080 and − 5.004, respectively. This 
indicates that the protonated form of HBH has electron 
accepting tendency while neutral HBH has a tendency to 
donate the electrons to Al-CM surface [52, 53].

3.8  Surface Morphology Studies

3.8.1  Scanning Electron Microscopy (SEM)

The SEM image of the AL-CM in 0.5 M HCl in the absence 
of HBH is shown in Fig. 13a. The image showed a rough 
surface with large number of cavities on the surface of speci-
men. The increase in the roughness of the surface of Al-CM 
immersed in 0.5 M HCl can be due to the following reasons.

As the Al-CM comes in contact with acid medium, SiC 
particulates get removed which leads to formation of cavities 
on the surface. Generally, galvanic type of corrosion takes 
place between cathodic SiC particles and anodic aluminum 
matrix [54]. During the fabrication of composite material, 
SiC reacts with molten Al to form intermetallic compound 
 Al4C3.  Al4C3 further reacts with acid by forming  AlCl3. The 
 Cl− ions of the medium interact with  AlCl3 and forms  AlCl4 
[55]. When  AlCl4 detaches from the matrix, it leads to the 
formation of pits. Aluminum and aluminum-based alloys are 
known for their passive and protective nature due to the pres-
ence of an oxide layer on their surface. The reinforcement 
of SiC particulates in to the matrix may rupture the passive 
film present on the surface leading to the access of the corro-
sive medium to the underlying material and hence enhances 
corrosion [56, 57]. The SEM image of AL-CM obtained in 

the presence of 0.5 M HCl containing HBH showed smooth 
surface as shown in Fig. 13b. The smooth surface is obtained 
by addition of inhibitor which blocks the separation of SiC 
particulates thus preventing the formation of cavities.

3.8.2  Energy Dispersive X‑Ray Spectroscopy (EDX) Analysis

To determine the elemental composition of the metal surface 
with and without HBH, EDX studies were carried out. The 
EDX spectra consists of selected regions of SEM images are 
given in Fig. 14a and b, respectively. The atomic percentage 
of elements corresponding to uninhibited and inhibited sam-
ple is given in Table 7. Oxygen and chlorine % composition 
increased in uninhibited solution which is an indication of 
stable oxide layer undergoing dissolution in the corrosive 
medium and adsorption of  Cl− on to the metal surface. The 
increase in the % composition of aluminium, carbon and 
decrease in the oxygen concentration confirms the adsorp-
tion of HBH on the metal surface.

3.8.3  Atomic Force Microscopy (AFM)

Figure 15a and b indicates the 3D image of the Al-CM 
specimen dipped in uninhibited and inhibited 0.5 M HCl 
solutions, respectively. Table 8 includes the average surface 
roughness (Ra) values and root mean square (RMS) rough-
ness (Rq) value. The Ra and Rq value of inhibited specimen 
were lower than the uninhibited suggesting the adsorption or 
binding of the HBH molecules on to the metal surface [45].

Fig. 13  SEM image of a Corroded Al-composite b Al-composite immersed in the medium containing inhibitor
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4  Conclusion

Based on the present study carried out of Al-CM in 0.5 M 
HCl, the following conclusions are drawn.

• HBH can be a potential inhibitor for the corrosion control 
Al-CM

• Inhibition efficiency of HBH was found to increase with 
increase in its concentration and decrease with increase 
in temperature

• HBH functioned as a mixed type of inhibitor and fol-
lowed Langmuir’s adsorption isotherm

• Mixed adsorption behaviour of HBH is observed with 
predominant physisorption

• The electronic properties of the inhibitor derived from 
DFT study clearly explains the inhibition efficiency 
exhibited by HBH.

• The surface morphological studies such as SEM, EDX 
and AFM also substantiate the formation of adsorbed 
layer on the surface of Al-CM

Fig. 14  EDX spectrum of AL-CM a exposed to 0.5 M HCl b exposed to 0.5 M HCl containing 1 × 10–3 M HBH

Table 7  EDX parameters obtained for the corrosion of Al-CM in the 
absence and presence of HBH

Samples % Composition

Al Si O Cl C

Specimen + 0.5 M HCl 33.21 4.29 43.72 1.62 17.17
Specimen + 0.5 M
HCl + 1 × 10–3 M HBH

41.43 7.35 29.25 – 21.96

Fig. 15  3D image of AL-CM material a immersed in 0.5 M HCl b immersed in 0.5 M HCl + HBH
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