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Abstract
In recent years, coating technology has come into existence to fulfil the industrial demands. The coated product must be capa-
ble of operating in the extreme environment to face the various challenges posed by friction, corrosion, fatigue, temperature, 
erosion, and abrasion. The coating is applied to protect metallic surfaces to make sure lifelong safety for the performance of 
the product. Presently, there is a strong need to develop the advance and smart coating technology for corrosion protection 
for various applications. Thus, this review highlights the advance in coating technologies and their processes by considering 
their importance for corrosion protection of metal in all-around technical applications. Various coating techniques, such as 
thermal spray, electrochemical deposition, spark plasma sintering, along with state of the art technologies were discussed. 
Special attention is dedicated to analyzing the process and to enhance properties, such as mechanical strength, corrosion 
resistance, etc. A study of many conventional and recent surface modification techniques of composite material are reviewed 
and presented in this article.
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1 Introduction

In the field of material manufacturing, researchers have 
revealed the tremendous efficient properties of metal matrix 
composites (MMC). Due to the presence of metal as one 
of the mandatory constituent of composite, mechanical and 
structural properties are of MMCs offer widespread appli-
cations in aerospace, automotive, sports and architectural 
industries. Resistance to wear, abrasion, corrosion, high 
temperature, along with rigidity, and high stiffness, are 

some of the remarkable properties of MMCs. Researchers 
have investigated various manufacturing techniques for the 
development of material for various industrial applications. 
MMCs have been specifically used in applications in the 
field of the automotive sector, including piston for diesel 
engines, cylinder bore, propeller shaft, brake parts. The 
success of MMCs application was found in 1990 by Honda 
[1, 2]. Thermal management produces 1million MMC parts 
annually. Al/SiC offered lower weight for the satellite micro-
wave system. This includes printed circuit board cores, cold 
plates, etc. The last major market is for power semiconduc-
tor module base plates insulated gate bipolar transistors 
and laser diodes [2, 3]. From 1999 MMC market covered 
5% by mass and 14% by value. An aeronautical component 
includes anal fins, fuel door cover on fighter aircraft, rotor 
blade sleeves, and swashplate; these parts are manufactured 
from Al composites. The Ti/SiC material is used for nozzle 
actuators links in many aircraft engines [2]. The industrial 
application comprises 6% by mass and 13% by value of the 
MMCs market. Industrial applications like cemented carbide 
electroplated, impregnated diamond tools, Cu and Ag MMC 
for electrical arrangements, etc. Recently, a new growing 
demands for the MMCs as in special applications whereas 
hardness and resistance to wear is primary importance. 
MMCs are used in a wide range of industrial operations 
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such as piercing, circumrotary, hot metalworking, and draw-
ing, forming and punching. Other items include impact dies, 
check valves, extruder nipples; hot forging die inserts [3, 4]. 
Besides, wear resistance is a complicated feature of mate-
rial which depends on microstructure arrangement, chemi-
cal formation, surface hardness and coefficient of friction. 
Within surface engineering, the wear resistance and surface 
hardness can be considerably enhanced by adding the MMC 
coating layer.

Numerous surface modification methods were reviewed 
so far by the several research groups to enhance about the 
surface properties such as chemical vapor deposition, physi-
cal vapor deposition, laser beam cladding, electro-deposition 
coating, thermal spraying, etc. A very serious concern in the 
thermal spraying methods is the utilization of suitable coat-
ing materials. The method of producing coating materials 
has a certain impact on the opportunities of their application 
for various thermal spraying technologies. The tribological 
performance of coating materials has been challenging to 
understand just by taking into the record (surface hardness). 
As hard coatings do not adequately decrease the friction 

coefficient and may not defend the adjacent surface rough-
ness. Whereas, in wear, rougher and dense particles from 
the sliding surface could be quickly stripped off and thereby 
provoking destructive abrasive wear. Hence, it is important 
to consider and utilizes solid lubricant coatings technology 
that may diminish friction, wear, corrosion, erosion, tribo-
corrosion, high temperature and high pressure in extreme 
environmental conditions and enhance the mechanical prop-
erties of coatings [4–6]. The present study offers a critical 
overview of the state of the art coating processing and their 
influence over MMC.

2  Processing Techniques of MMC

2.1  Powder Metallurgy

Powder metallurgy [7] is generally used to enhance the 
mechanical and tribological properties of the material [8]. 
The detailed summary of work carried out in the field of 
powder metallurgy is depicted in Table 1.

Table 1  Brief summary of the work carried out in the field of powder metallurgy

References Material system Powder size (µm) Significant findings Applications

[7] Ti + B4C + Al 22.4 Improvement in the micro-hardness 
of 754 HV and an average of 640 
HV

Wear resistance application

[8] MO2C + Cr3C2 +VC + C + Fe 20 Successful production of high vana-
dium high-speed steel

Hot rolling section

[9] W + SiC/Cu 8.6–30 Increase the thermal conductivity 
and flexural strength

Fuel cell or electrical resistive 
application

[11] 6061 alloy + AlSi6Cu4 – Manufacturing of metal foam with 
a high fraction of porosity and 
closed-cell microstructure

Car sandwich panel, in the bumper, 
and side protection of the car

[12] Zn +Ti + Mg – Used carbamide space holder 
technique for the production of 
open-cell Zn foam

Battery electrodes and fuel cell

[13] Mg + B + B4C – Ball milling method is used for 
the preparation of the material to 
increase the hardness of Mg

Light weight structural material 
used for automobile and aero-
space application

[14, 15] Commercially pure Al + SiC +Mg 38 In situ powder-metallurgy method 
is used to increase the micro-
hardness

Industrial applications

[16] Al + TiB2 10 The planetary ball milling process is 
used for the preparation of powder, 
in that increase in the bulk density 
were observed with the addition 
of  TiB2

Light weight application

[17] 7075Al +SiC 15–30 Corrosion rate is found to decrease 
with the addition of SiC

Industrial applications

[18] 6061 Al alloy + SiC + Gr 19–149 Uniform distribution of particles 
was achieved with the decrease in 
wear rate

Electric and recreation industry

[20] Ca10(PO4)6 (OH)2) + Ti 50 Successful development of 
hydroxyapatite-Ti biomaterial

Orthopaedics and dentistry
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Compacting is done under careful control of the atmos-
phere and most of the research work is done on Cu-compos-
ites/Al-composites [9] using the powder metallurgy method 
[10, 11]. Many of the researchers have successfully prepared 
the MMCs based on Mg, Ni, Ti, Ag, and Sn. Figure 1 shown 
the detailed process steps which include the mixing of the 
matrix with metal powder by grinding and some additives 
are added in it then the process is followed by compacting 
[19–23], sintering [24, 25], machining and then will get the 
final product. Apart from the process step, the main goal 
was to gaining good reinforcement by proper distribution of 
metal powder in the source material and coordinating must 
be done of reinforcement and the matrix [8].

2.1.1  Mixing and Sintering

MMCs are processed using these techniques are Cu-MMC, 
Al-MMC, Mg-MMC, Ag-MMC. In few situations only mix-
ing of the powder particle is used as the finished product but 
after realizing many of the critical arguments such as proper 
dispersion of filler in MMC and the intermediate bond 
between the filler in the MMC, the researcher had adopted 
the advance method for it. In the formation of MMC through 
the process like mixing, compacting and sintering, the one 
advanced and additional step is to coat with Ni, which will 
give good strength and wear resistance to the MMC materi-
als [26].

2.1.2  Mixing and Compacting

Some of the investigators have used hot compacting of 
powder mixtures. Many of the investigators here found 
that the hot compacting method is very much incorrect 
for the manufacturing of MMCs as it results in cluster-
ing. Achieving better results in proper distribution of filler 
in MMCs, coating of Ni must be done with the help of 
electrolysis before the hot compressing [27], which will 

ultimately enhance the development in the mechanical and 
the wear properties of the composites.

2.1.3  Spark Plasma Sintering

Researchers have introduced a comparatively new method 
for synthesizing MMCs. Current is passed through a die 
and the powder, which will produce fast heating and the 
sintering rate gets intensified by this spark plasma sinter-
ing method [28–30]. The systematic concentration of pow-
der can be accomplished in this process by spark impact 
pressure, electrical field diffusion, and joule heating. The 
method is commonly used for strengthening of powder, 
without granting plentiful time for grain growth. SPS is 
a high-temperature and high-pressure process, which will 
increase the strength and mechanical properties [31].

2.1.4  Distortion Method of Powder Compacting

To achieve better density many of the researchers have 
inspected the possibilities of deformation during powder 
compacting [32–34]. Cu-MMCs can be rolled as a better 
option than extrusion while considering their alignment 
in MMCs. It can identify the reinforcement quality of the 
product. With the help of the rolling process, the advance-
ment in the wear resistance and the coefficient is observed. 
Al-MMCs can be processed with the help of hot extru-
sion of cold isostatic pressing and hot-pressed compacts. 
High-temperature results in the Al-MMC accumulation at 
the intersection. Recently, a new technique, ball milling 
of powder mixture is used to improve the properties and 
also used for the fabrication by hot extrusion of the com-
pact. Mg-MMCs are also being prepared by hot extrusion 
[35–37].

3  Coating Deposition Methods

3.1  Melting and Solidification

Figure 2 shows the most traditional method for the manu-
facturing of MMCs. Some of the researchers had employed 
the melting and solidification process for the manufacturing 
of MMC due to their high temperature for melting. Due to 
high temperature, this process can be chemically reacted to 
the surface of the composites. So that the reason it, gener-
ally preferred low melting point matrix material. Also, the 
time recommended for the solidification is greater than the 
melting of the phase change matrix, due to the significance 
of natural convection [38, 39].

Fig. 1  Powder Metallurgy. Powder metallurgy consists of three main 
categories: 1. Powder mixing, 2. Compacting, 3. Sintering
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3.2  Metal Infiltration

Melt infiltration technique is used to produce a compos-
ite network by creating a porous solid formation with 
dispersed reinforced material and then infiltrating liq-
uid metal into the pores and then solidification. Figure 3 
explains the metal infiltration in detail. Higher attempts 
of even spreading of the reinforcing material in the metal 
matrix which makes composite structure dense that is 
achieved by filling up the pores. High reinforcement vol-
ume fraction, uniform distribution and complex structures 
are achieved with liquid metal infiltration technique [40, 
41]. In pressure infiltration process a molten metal or an 
alloy is injected in a mold and solidified with continuous 
or discontinuous reinforcement materials. Spaces between 
dispersed phase reinforcement get filled when dispersed 
phase reinforcement is soaked in the molten metal matrix. 
Either capillary force or an external force is applied to 
drive this infiltration process [42, 43].

3.3  Melt Spinning

The metal-spinning process is extensively used in the for-
mation of amorphous and nano-crystalline alloy ribbons, 
as it manifests advancement in properties such as high effi-
ciency, energy-saving, short and simple flow path [44, 45]. 
Figure 4 shows the melt spinning process. In this process, 
the melt polymer is poured into the metering pump to get it 
filtrated. Gradually pouring molten material drop by drop 
into the wheels forms a glass composite ribbon-like struc-
ture with the continuous rotation of wheels. The size of the 
metal–glass composite ribbon is 50 µm [46, 47].

4  Types of Coatings

4.1  Thermal Spray

Recently the automotive industry is seeking for lightweight 
materials to reduce vehicle weight to make it efficient as well 
as to reduce emissions [48, 49]. Thermal spray coating is the 
process in which molten or semi-molten metal is sprayed on 
the product’s surface to form a coating as showed in Fig. 5.

The deposition of a coat on the surface is done by bump-
ing and calcification. The main pro of the thermal spray 
coating is a large cooling rate, which offers the formation of 
amorphous structure in the coating. Classification of thermal 
spray process according to the heat source is flame spraying, 
plasma spraying, high-velocity oxy-fuel (HVOF) spraying 
or cold spraying. In the plasma spraying process, the main 
heat source is plasma which is formed by the ionization 
of inert gas by an arc struck between a tungsten cathode 
and concentric copper anode. In HVOF, the heat source is 

Fig. 2  Melting and solidification

Fig. 3  Metal infiltration Fig. 4  Melt spinning
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high-pressure combustion of a fuel–oxygen mixture. The 
fuel used such as propylene, methane, propane or hydrogen, 
or liquid such as kerosene. Bulk amorphous materials can 
also be coated with the help of thermal spray coating. Com-
plex geometrical parts and intricate shapes are being coated 
by spraying on rotating mandrels. Thermal spray coating of 
Inconel 625 alloy is used in the application of anti-corrosion 
coatings in chlorine-containing environments [50] and NiCr/
Cr3C2–NiCr coating is used for industrial applications where 
good corrosion resistance is needed with cost-effectiveness 
[51].

4.2  Electrochemical Deposition

Electrochemical deposition is the next most prevalent 
method following the powder metallurgy for its simplicity 
and effectiveness. The coating is done in the range from 
20 to 180 µm microscopic levels [52]. This coating is used 
in applications such as nano-sensors [53], electrodes [54], 
and magnetic recorder head in computer applications. Two 
techniques are used for the fabrication of MMCs are elec-
trodeposition and electro-less deposition. Figure 6 shows 
the electrodeposition method, in this method, electrochemi-
cal cells in which composite coating is installed by current 
flowing from cathode to anode.

The second technique is electro-less deposition, where 
metallic salts thermo-chemically decomposed in a bath with 
the release of metallic ions forming metal matrix composite 
[55, 56]. Villa-Mondragon et al. [57] proposed an excellent 
alternative of composite coating to protect the steel parts 
against wear. Martinez-Hernandez et al. [58] recommended 
a composite coating as a replacement to highly polluting 
coatings of hard Cr and Ni–B. Monteiro et al. [59] provided 
a composite coating to raise the hardness of the film. How-
ever, Table 2 summarised the comparatively impact on coat-
ing technology based on existing literature.

4.3  Molecular Mixing

The corrodible sealing coating is ordinarily used in aircraft 
engines and gas turbine engines to magnify the efficiency 
of the compressor or turbine, to lessen the fuel loss, and 
to defend the rotating blade [60]. To avoid wear caused by 
rotating blades working at higher temperatures, the sta-
tionary parts are treated with coating [61]. Figure 7 illus-
trates the molecular mixing of MMC material. The process 
requires the reinforced material to be acid-treated and gath-
ering them before injecting them into the metal salt bath, 
thus assisting the reinforcement material suspension and 
surface metal deposition on their surface. After adding all 
those material the bath is subjected to ultrasonic vibration to 
serve the reinforcement metal matrix. The prepared material 
is then passed through the oven at a specific temperature and 
then the reduction process is done in sequence to create the 
metal matrix composite powder [62–64]. Nie et al. [65] pre-
pared a copper reduced graphene oxide, with the help of the 
molecular mixing process to enhance tribological properties.

4.4  Sputtering

Many of the new categories of coatings were introduced 
in the arena of nano-composites coating to intensify the 
mechanical properties that have shown the growing appli-
cations in the automotive, electronics, and space flights [66]. 
Some researchers have put efforts to manufacture MMCs 
by sputtering technique [67, 68]. The sputtering process 
is depicted in Fig. 8 shows the use of silicon wafers as 
substrates.

Fig. 5  Thermal spray coating

Fig. 6  Electrochemical deposition
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In this process, the sputtering source metal has given 
positive supply, and the deposited material plate has given 

negative where the thin film of metal is created [69–71]. 
Arab et al. [72] and Ji et al. [73] fabricated a very thin 

Table 2  Comparison between thermal spray and electrochemical deposition coating

References Coating material Substrate material Coating size (µm) Significant findings Applications

Thermal spray coating
 [48] Cr + Ni + Mo + Fe Alumina 50 Coating provides high bond 

strength and thermal 
cycling resistance

Al brake rotor disks in the car 
and light trucks

 [50] Al + ZnAl + 625 Inconel 
alloy

Stainless steel 304L 10 Anti-corrosion coating 
in chlorine- containing 
environment

Marine application

 [51] Cr3C2 NiCr 20–30 Improved in corrosion 
behaviour and more 
economically preferred for 
industrial application

Corrosion protection applica-
tion

Electrochemical deposition
 [53] SnO2 Alumina 6–100 The prepared film is suit-

able for gas sensing due to 
porosity and high surface 
area

Gas sensing devices/gas 
sensors

 [54] NiCO2O4 Ni foam 2–500 Interconnected mesoporous 
nano-sheets were elec-
trodeposited on Ni foam 
which severed as binder-
free and free electrodes 
conductive agent

Supercapacitor electrode 
material

 [57] SiC Co-B 8–10 Sic coating can be applied 
to steel parts to protect 
against wear

Excellent alternative to 
replace Cr coating

Machine fabrication, parts, 
and metal structures 
exposed to high stress

 [58] COCl26H2O + H3BO3 + KCl Co-B 100 Alternative for Cr and Ni 
with smooth and shiny 
coating

Aerospace and automobile 
industrial tools

 [59] Ni–B with diamond nano 
particles

Steel 1–2 Gain improvement in hard-
ness

Industrial application

 [55] Cr/AgNPs Ni/AISI1018 steel 2.12 ± 0.02 Possess decorative, resist-
ant, and anti-bacterial 
characteristics

Shopping carts, handrails 
or busses, railing, surgical 
material

Fig. 7  Molecular mixing
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film of the nano-composite coatings by sputtering with 
loss effectiveness.

4.5  Vapour Deposition

An efficient way of countering the automotive parts from 
wear is the surface coating by the physical vapour deposi-
tion (PVD) and composite electrochemical coatings (CEC) 
techniques are the most widely investigated coatings pro-
cess due to its versatility in tailoring physio-mechanical and 
tribological performance [74–76]. The coating by PVD is 
applicable where there are some chances of physical dam-
age, so the coating should be even, pore-free, well clung, 
and self-healing [77]. The deposition of thermally vaporized 
material is done by the PVD coating process represented in 
Fig. 9.

The metal is vaporized at the vapor pressure of 1500 °C 
[78]. The evaporation is the extremely speedy process with 
deposition rates in mm/s, although, the quality of the film 
on substrates can suffer due to having less energy (around 
0.2 eV) of evaporated particles [79]. The evaporated par-
ticles get to come across the plasma containing zone are 
ionized, and consequently capable of generating a denser 

film [80]. Li et al. [81] in 1992 first published the article 
of Ti–Si–N film, and the first report for the design of super 
hard Ti–Si–N nano-composites was from Veprek et al. 
[82]. Next, Veprek et al. [83] reported multiphase nano-
composite coatings with a hardness range from 80 to 105 
GPa and proposed the lowest hardness to be 158 GPa [84]. 
Chemical vapour deposition (CVD) is the most reliable 
method for manufacturing sturdy coatings with a uniform 
layer [85, 86]. The layers of CVD are coated purposefully 
to improve oxidation, thermal resistance and also intensify 
the mechanical properties of coated materials. One of the 
major advantages of CVD is a simple implementation with 
low-cost precursors [87].

Figure 10 showing the CVD process where various 
temperatures, gas flow, and pressure is selected based on 
the requirement. The electron probe micro-analyzer imple-
mented with a wavelength-dispersive spectrometer is used 
to determine the coating’s chemical composition [88, 89]. 
Table 3 shows manifest the researcher done in the area of 
various novel techniques.

4.6  Plasma Spray Coating

For the improvement of surface characteristics like hard-
ness, resistance to wear and corrosion, thermal and electri-
cal insulation; a plasma spray method is one of the com-
mercial coating methods employed to coat the automobile 
parts. Coating ductility is improved as it provides uni-
form deposition [91–94]. Plasma spray coating is being 
a clean, economic, and eco-friendly process, which also 
provides greater flexibility over powder particle size from 
5 to 100 mm [95]. Figure 11 represents a schematic of 
the plasma spray coating process. Plasma spray process 
is employed to coat 250 mm thick  TiO2 coating on the 
Al/SiC substrate. The bonding coat of Ni–Cr alloy is also 
applied to improve the adhesion of the coating with the 
substrate [96–104].

Fig. 8  Sputtering process

Fig. 9  Physical vapor deposition Fig. 10  Chemical vapor deposition



 Journal of Bio- and Tribo-Corrosion (2020) 6:12

1 3

12 Page 8 of 18

4.7  Plasma‑Induction Polymeric Coating

For a variety of applications, particularly non-thermal plas-
mas, enable one to have a controlled process of depositing 
polymers on any substrate. The highly cross-linked structure 
is associated with good mechanical resistance [105, 106]. 
Figure 12 shows the plasma induction polymeric coating, 
which is similar to the conventional polymerization pro-
cess. Polymer retains the structure of its starting material 
in plasma induction, whereas in plasma polymerization 
the product will have an entirely different structure and the 
starting material serves only as a source of radicals for the 
polymerization to proceed.

In plasma-induced polymerization, the starting mate-
rial must contain polymerizable structures such as olefinic 
double bonds, triple bonds, or cyclic structures. Plasma 

Table 3  Influence of various novel techniques on the coating system

References Coating material Substrate material Powder size (µm) Significant findings Applications

Molecular mixing
 [64] Cu Carbon nanotubes 2 Coated material has eight 

times higher efficiency than 
SiC particles and three times 
higher than SiC whisker

Reinforcement of composite 
material

 [90] GO Alumina 1–500 Enhancement in mechanical 
properties

High strength application

 [65] GO Cu 1–100 Improvement in tribological 
properties

Electrical sliding contacts, 
such as brushes, bearing and 
contact wire

Sputtering
 [69] TiNla-C Steel 1.5 Enhancement in corrosion 

resistance property
Industrial applications

 [70] ITO Silica 0.300–0.320 Deposition of ITO coating can 
be used as a hard transparent 
electrode

Solar cell or tablets

 [71] Bismuth Cu(ln,Ga)Se2 3 Enhancement of the photovol-
taic performance of CIGS

Solar cell

PVD
 [74] TiO2 and N-TiO2 Glass 0.1–5.0 and

0.6–6.0
Shown high photocatalytic 

activity
solar cell and dielectric applica-

tion
 [75] CuNP Al 4015 26–54 Enhancement in optical proper-

ties
Thermal solar applications

 [76] Zn Mg alloys (AM50) – Lower weight and excellent 
mechanical properties

Automotive components

 [77] Ti Stainless steel 50–200 Increased in hardness and elas-
tic modulus

Manufacturing of load-bearing 
parts

CVD
 [81] Ti–Si–N HSS 10 Increase the hardness and shows 

glass-like structure
Cutting tools, dies and bearings

 [82] TiN,  Si3N4,  TiSi2, 
nc-TiN, and nc-
TiSi2

Steel 3–20 Material having an enhance-
ment in some properties like 
high hardness, high fracture 
toughness and elastic recovery

Industrial applications

 [86] Ni Graphene nano-flakes 50–100 Used Raman technique to syn-
thesis graphene nano-flakes

Nano-electronics

Fig. 11  Plasma spray coating
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polymerization has multiple steps involving intermediate 
species, whereas in induction polymerization step by step 
reaction takes place. By-product does not form in the plasma 
induction polymerization process, the reaction between the 
solid product and reactive gaseous intermediates do not dis-
turb its kinetics [107–113].

4.8  Laser Cladding

Laser cladding is a surface improvement method that prac-
tices a powerful laser beam as a heat source to melt sup-
plementary material along with a vital portion to form a 
homogeneous alloyed surface layer with new phases and 
compositions [114–123].

The method is carried out in two steps; Fig. 13 shows the 
laser cladding process. In the first step, a separate layer was 
deposited to investigate the processing window of multi-
layer laser cladding. The intensity of the laser beam is uni-
formly distributed in the cross-section perpendicular to the 

propagation direction and the powder flow is provided with 
the help of a nozzle. Each laser layer was deposited in six 
layers. To reduce the number of cladding experiments the 
gradient technique was applied [124–129]. In the second 
stage, optimized processing parameters are used to coat the 
overlapping of the laser pathways. After overlapping the 
laser pathways the coating was cut along the cross-sectional 
direction, polished and preparing the samples for the mor-
phological investigation like SEM and EDS [130–140].

4.9  Electro‑deposition Coating

Figure 14 shows the enhancement of the surface proper-
ties of the material by the electrodeposition coating process. 
The surface of the material plays a very vital role in many 
applications [141–145]. Many of the components of machine 
abandon due to defects such as wear, corrosion, and fatigue. 
The properties like tribological, mechanical and corrosion 
resistance get improved by the coating the reinforcement 
material on it [146]. The surface to be coated is connected 
to the cathode and the coating material is connected to anode 
during the electro-deposition process [147–151]. Coating 
provides a broad range for a variety of different automobile 
and industrial applications due to more favourable tribologi-
cal and corrosion properties [152–155]. Table 4 describes 
the types of coating technologies in detail.

5  Types of MMC and Their Coating Processes

5.1  Aluminum MMC

Aluminum MMCs are extensively used in various fields like 
aircraft, aerospace, automobiles [156–158]. High strength 
and lightweight are the demanding applications of aluminum 
alloys. Some of these applications could be in wrought form. 
The components that compose the major surface property 
are the wear resistance. All aluminum alloys exhibit poor 

Fig. 12  Plasma-induction polymeric coating

Fig. 13  Laser cladding Fig. 14  Electro-depositing coating
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Table 4  Investigation done in the region of coating technology

References Coating material Substrate material Powder size (µm) Significant findings Applications

Plasma spray coating
 [92] Ti Magnesia-stabilized 

zirconia
0.10–0.50 Obtained higher shear 

strength with smooth 
surface finished

Biomedical applications

 [93] Hydroxyapatite– tantalum Mg alloy (ZK60) 10–50 Improvement in corrosion 
resistance and surface 
hardness

Orthopaedic bio-implant 
applications

 [94] 10TiO2 -Cr2O3 Steel – Enhancement in the 
mechanical properties

Turbine

 [95] Ni 1018 Steel 45–56 Increment in the mechani-
cal properties

Industrial applications

 [97] Ba(Ni1/3Ta2/3)O3 Steel/alloys of metal 1–5 Excellent phase stability Anti-oxidation protection of 
gas turbine engines hot-
section components

 [100] hafnium-carbide (HfC) Copper 110 Enhancement in the ther-
mal shock and oxidation 
resistance of materials 
under ultra-high tem-
perature environments

Thermal ablation field

Plasma-induction polymeric coating
 [108] Al Cu 0.5–2.5 Modified the bactericidal 

properties of polymer
Industrial applications

Laser cladding
 [113] Ni + Y2O3 Ti6Al4V

Alloy
4–100 Micro-hardness is 

enhanced by three times 
than the titanium

Automobile manufacturing, 
aerospace, biomedical 
devices and petrochemical 
industries

 [115] Ni45 and Mo H13 K 50–100 Enhancement in the 
micro-hardness of the 
material

Widely used in manufactur-
ing industries

 [116] Zr Metallic glass (MG) 20–500 Improvement in hardness 
and corrosion resistance

Biomedical Implant Appli-
cation

 [117] ZrO2 and  Al2O3 Ti6Al4V alloy 5–10 Improvement in the 
biocompatibility of the 
material

Applied to load-bearing 
applications

 [118] Ni60 + C+TiN + Mo Ti6Al4V
Alloy

50–100 Enhancement in the wear 
properties of the mate-
rial by 26.7 of titanium

Automotive and aerospace 
industries wear high spe-
cific strength is required.

 [122] TiN 1020 steel 1–100 Exhibited higher hardness 
and wear resistance

Material engineering appli-
cations

 [125] Fe-Cr3C2 35CrMo Steel 50–100 Improvement in the 
wear resistance of the 
material

Industrial applications

Electrodeposition coating
 [143] Ni–Al2O3 Mild steel 100 Improvement in the 

surface properties of the 
material

Any type of engineering 
materials

 [144] Ni–TiC, Ni–TiN, and Ni–
TiC–TiN

Tungsten carbide 5–12 Improvement in the anti-
wear characteristics of 
the coated material

Cutting tool coating

 [145] Zn–SiC Alloy 5–500 Smooth surface finished is 
obtained

Industrial application

 [143] Ni–Al2O3 Mild steel 2–100 Improvement in the 
surface properties of the 
material

Automobile and industrial 
applications.
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tribological characteristics, due to these limited the applica-
tions of aluminum alloys in many sliding components, tools, 
and parts that are requiring wear resistance [159–164]. The 
main reason for such poor tribological properties is the low 
surface hardness and high friction coefficient of aluminum 
alloys. For adequate wear resistance, the surface should be 
rigid. To improve the hardness of the material some harden-
ing techniques should be employed like surface coatings. To 
advance the wear resistance of the component many surface 
technologies, such as a hard anodizing, electroplating, and 
physical vapor deposition, have been applied [165, 166]. 
Powders of carbides or other refractory phases have been 
added to reinforce the surface coating layers on aluminum 
alloys to enhance the surface performance of aluminum 
alloys [167, 168]. Variety of surface modification techniques 
are available like laser cladding [114–123], plasma spraying 
[91–95], vapour deposition [74, 157]. Among all these tech-
niques laser cladding is largely used for surface modification 
[169, 170].

5.2  Copper MMC

Cu-MMCs are having higher thermal conductivity and 
extraordinary tribological properties, so broadly employed 
to many sorts of applications [171, 172]. The answer to the 
broad application of Cu-MMCs is the property modifica-
tion of reinforcement components [171]. B [173, 175], Cr 
[173, 174] and Ti [174, 176] are the alloying metal matrix 
with elements to develop the interfacial bonding. Most of the 
alloying elements with metal matrix have shown a remark-
able impact on the thermal conductivity of the matrix mate-
rial. It has been noted that the high thermal conductivity 
is accomplished in Cu matrix composites reinforced with 
Cr-coated alloying element particles [176, 177]. The surface 
modification technique used for these Cu-MMCs is electro-
deposition coating [52].

5.3  Nickel MMC

Ni-MMCs coating having outstanding corrosion and wear 
resistance so it is used frequently [178]. Currently, nickel 
films plated on reinforcements have been used to improve 
the adhesion and wettability during composite fabrication 
[179]. The electro-less process offers a coating of nickel by 
chemical reduction of nickel ions onto the catalytic surface. 
The reaction continues as long as the surface remains in 

contact with the electro-less nickel solution as the coat itself 
is catalytic to reduction. Uniform coating over all surfaces, 
regardless of size and shape is obtained by this nickel MMC 
coating. The nickel MMC coating also improves the prop-
erty of weldability as compared aluminum MMC coating. 
The electro-less coating technique is mostly used for surface 
modification in Ni-MMCs [178].

5.4  Magnesium MMC

Mg-MMCs having high specific strength and low density as 
compared to other structural metals, so it is accepted com-
mercially. It not only has the lowest density of all metal 
elements, but it is also very strong, highly resistant to corro-
sion and efficiently machinable [180]. Due to poor hardness, 
low ultimate strength and wear resistance the utilization of 
Mg alloys is reduced [181, 182]. To improve the properties, 
the proper selection of reinforcement of material is made. 
In Mg-MMC, fiber distribution is important to enhance 
mechanical properties [183, 184] and also the electro-spin-
ning technique is mostly used for surface modification in 
Mg-MMCs [185].

6  Properties Affecting on MMC Coating

6.1  Wear and Friction

Wear and friction are the very important property for coating 
and many of the wear studies are on Ni-MMCs coating pre-
pared by electro-less or electro-deposition techniques [186]. 
Some of the studies on Cu-MMCs and Al-MMCs are also 
present. In the development of wear resistance and reduc-
tions in COF, MMCs reinforcement material plays a very 
crucial role. The maximum change in wear properties had 
shown by the powder metallurgy technique [7, 8] using Ni-
MMCs. Molecular-level-mixing technique had also served to 
advance the wear properties of Cu-MMCs, occurring reduc-
tion in wear loss [60, 61].

6.2  Hydrogen Storage Properties

Hydrogen (H) is the most stimulating option of a clean 
energy source because it contains huge energy as compare 
to other chemical fuels [187]. Due to this advantage, H 
energy can be applicable in automobiles. The effective use 

Table 4  (continued)

References Coating material Substrate material Powder size (µm) Significant findings Applications

 [153] Mn/Co Steel 20–200 Enhancement in the 
electrical resistance of 
the material

Solid oxide cells stacks
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of H energy is important to promote reliable and effective 
H storage systems. Presently, several species of H storage 
materials are investigated, such as metal hydride systems 
[188], and nano-fibers [189–191], etc. H storage mate-
rials have the scarce pleasanter H-storage capacity and 
absorption–desorption rate than Mg-MMCs [187]. The US 
Department of Energy had set a goal of 6.5 wt% content of 
H storage for commercial applications [192]. Some of the 
methods to increase the H sorption properties such as ball 
milling [193, 194], metal catalysts [195, 196] addition or 
H storage materials [197–199].

7  Conclusions

Numerous coating deposition technologies have been 
developed till date by the researchers to protect the mate-
rial from wear and corrosion nevertheless very few of them 
succeeded as the technical realization of coating technolo-
gies within an industrial scale is very challenging with 
respect to surface engineering. The presented work sum-
marizes various surface modification techniques, param-
eters affecting the microstructure of material, properties 
(like mechanical, tribological, thermal, etc.) of deposited 
material along with the structure of the coating. Moreo-
ver, numerous coating technologies were studied with their 
specific applications, some of the important aspects are 
as follows:

• Complex geometrical parts with intricate shapes were 
being coated with the assist of thermal spray coating.

• Enhancement in the properties like mechanical, tribo-
logical and thermal can be achieved with the employ-
ment of PVD and CVD as they produce denser films. 
The PVD surface with the addition of surfactant based 
solution is found to be the desirable method for control-
ling tribological losses.

• Plasma spray coating helps alteration of structural pat-
terns surface by applying Ni–Cr alloy to improve adhe-
sion of the coating with the substrate.

• Laser cladding process provides very thin layer of uni-
formly distributed coating with the help of laser beam.

There are enormous processes of coatings technologies 
accessible for protecting metal and alloys. Still, the popu-
lar uses of metal in the automotive industries are stopped 
by the lack of relevant protective coatings that can resist 
severe service conditions. A vast deal of research is yet 
required to produce more reliable, manageable, and afford-
able coating technologies.
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