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Abstract
The corrosion inhibition efficiency of newly synthesized Schiff bases, SB-1 [(4E)-N-((Z)-2-((furan-2-yl)methylimino) indolin-
3-ylidene)(furan-2-yl)methanamine] and SB-2 [(7Z,8Z)-6-chloro-N2,N4-bis(1-(pyridin-2-yl)ethylidene)pyrimidine-2,4-di-
amine], was investigated for aluminium corrosion in 1 M H2SO4 medium using mass loss and electrochemical techniques. 
Potentiodynamic polarization curves show that addition of Schiff bases in the acid solution shifts the corrosion potential 
(Ecorr) towards positive direction, suggesting that chosen SBs are performed as mixed-type inhibitiors. The adsorption process 
of Schiff bases on aluminium surface obeys Langmuir isotherm. Further, electrochemical impedance studies (EIS) reveal 
that the inhibition efficiency remarkably rises with increasing SBs concentration and the maximum inhibition efficiencies 
of 97% and – 95% were obtained for SB-1 and SB-2, respectively, for the inhibitor concentration of 500 ppm. Additionally, 
the associated activation parameters and thermodynamic data of adsorption were evaluated. Scanning electron microscope 
(SEM) studies further confirm that ligands of SB-1 and SB-2 have a strong tendency to adhere on top of aluminium and 
protect its corrosion against acidic media.

Graphic Abstract
The SEM micrographs of corroded and inhibited aluminium surfaces and the maximum inhibition efficiency of aluminium 
corrosion are achieved to be 97% for Schiff bases (SB-1) in 1 M H2SO4 solution with the concentration of 500 ppm.
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1  Introduction

Aluminium corrosion is one of the major issues that often 
occur in many industries and can also lead to serious dam-
ages, causing the economic consequences which are related 
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to repair, replacement and product losses. Additionally, alu-
minium and its alloys are viewed to be a great interest due 
to their cost-effectiveness, high electrical/thermal conduc-
tivities and high energy density [1–4]. Generally, formation 
of a stable protective thin film layer of aluminium oxide on 
top of aluminium metal prevents aluminium corrosion for 
some extend and makes them as corrosive-resistant materi-
als; however, these formed passive/protective layers are of 
amphoteric in nature and could easily get dissolved against 
strong acidic (HCl, HNO3 and H2SO4) or alkaline (NaOH/
NaCl) environment, wherein hydrogen evolution/product of 
aluminate ion arises by conjugate cathodic processes dur-
ing corrosion [5–13]. Thus, many significant attempts were 
employed in a concern with protecting aluminium and its 
alloys against strongly acidic and alkaline environment, 
among which utilization of corrosion inhibitor is regarded as 
most commonly used corrosion protective process or corro-
sion inhibition process because of their low-cost, facile syn-
thesis and highly abundant in the form of chemical or bio-
waste or plant extracts [14–16]. In this process, molecules 
those are present in the inhibitors get strongly adsorbed, 
either by chemisorption or physisorption, at the surface of 
aluminium and its alloys and form a passive layer which in 
fact prevents the further corrosion against any aggressive 
media [3]. In particular, the best corrosion inhibitor/mol-
ecule must possess the constituent elements of N, C, H, O, 
S, Cl, Br and/or multiple bond(s) in their molecular structure 
[17–23]. Especially, the molecular structure and presence of 
lone electron pairs on heteroatoms are indeed an essential 
requisite to be a best inhibitor as it determines the adsorption 
on active sites of aluminium metal surfaces.

Due to ecological concern and environmental safeties, 
search for the low-cost, eco-friendly and green high-perfor-
mance corrosion inhibitors, namely extracts of natural plants 
[24, 25], organic/inorganic compounds [26], Schiff bases [27, 
28] and unused drugs/medicinal wastes [4, 29, 30], is of an 
important challenge in corrosion inhibitor-based research and 
in metallurgical industries. Generally, organic or bio-degra-
dable polymer-based molecules are shown to have better 
adsorption behaviour, either physically and/or chemically on 
the active sites of aluminium surface and thereby create a pro-
tective layer that distinguishes out aluminium from its corro-
sive environment [3, 4, 31]. Among many corrosion inhibitors, 
Schiff base compounds were reported to be effective corrosion 
inhibitors for selected metals and alloys, such as aluminium 
[32–34] and mild steel [35–37], in acidic media due to their 
facile synthesis, eco-friendliness and their constituents. Inter-
estingly, the presence of –C=N– group in Schiff bases signifi-
cantly enhances their adsorption ability and thereby corrosion 
inhibition efficiency [38, 39]. Moreover, inhibitors based on 
Schiff bases get adsorbed effectively on the active sites of alu-
minium metal surface by the formation of coordinate cova-
lent bond (chemical adsorption) or the electrostatic interaction 

between the metal and the inhibitor (physical adsorption) [40]. 
Moreover, the presence of more electron donating groups in 
the Schiff bases provides a strong adsorption at metal surfaces 
that makes them to be efficient inhibitor for aluminium and 
mild steel [41]. However, most of the recently reported Schiff-
based organic ligands utilized as potential inhibitor for mild 
steel in the aggressive acid environments [42]. In particular, 
Chaitra et al. have recently shown that Schiff base of 3-(cyano-
dimethylmethyl)-benzoic acid furan-2-ylmethylene-hydrazide 
performed as an efficient inhibitor with inhibition efficiency 
of 92% for mild steel corrosion in 0.5 M HCl solution [43]. 
Further, some of the Schiff based ligands, such as H: N2,N6-
bis-(4-methylbenzylidene)pyridine-2,6-diamine [44], chitosan 
Schiff bases [45], 3-((4-hydroxy benzylidene)amino)-2-meth-
ylquinazolin-4(3H)-one [46], N′-(4-hydroxybenzylidene)nic-
otinic hydrazone [47], (4-((thiophene-2-ylmethylene)amino)
benzamide) [48], have been recently proposed to be the best 
corrosion inhibitors for mild steel in HCl environments. How-
ever, there are very few reports, to the best of author’s knowl-
edge, were seen wherein Schiff bases have been utilized as 
high-performance corrosion inhibitor for aluminium corrosion 
against acidic media. In particular, Gomma et al. have been 
shown that Shiff base of aniline, N-(p-methoxybenzylidene) 
effectively adsorbs at the active sites of aluminium and pre-
vents aluminium corrosion by forming the protective layer on 
top of it in the HCl medium [49].

Here, we have successfully synthesized two Schiff 
ligands, SB-1 [(4E)-N-((Z)-2-((furan-2-yl)methylimino) 
indolin-3-ylidene)(furan-2-yl)methanamine] and SB-2 
[(7Z,8Z)-6-chloro-N2,N4-bis(1-(pyridin-2-yl)ethylidene)
pyrimidine-2,4-diamine] and studied their corrosion inhibi-
tion ability for aluminium against aggressive H2SO4. Poten-
tiodynamic polarization curves show that addition of Schiff 
bases in the acid solution shift the corrosion potential (Ecorr) 
towards positive direction, suggesting that chosen SBs are 
performed as mixed-type inhbitiors. Electrochemical imped-
ance studies reveal that the inhibition efficiency remarkably 
rises with increasing SBs concentration and the maximum 
inhibition efficiencies of 97% and − 95% were obtained for 
SB-1 and SB-2, respectively, for the inhibitor concentration 
of 500 ppm. Surface morphology studies further confirm 
that compounds of SB-1 and SB-2 have a strong tendency 
to adhere on top of aluminium and protects its corrosion 
against acidic media.

2 � Experimental Methods

2.1 � Synthesis of Schiff Base Compounds

Two Schiff base ligands, SB-1 [(4E)-N-((Z)-2-((furan-2-yl)
methylimino) indolin-3-ylidene)(furan-2-yl)methanamine] 
and SB-2 [(7Z,8Z)-6-chloro-N2,N4-bis(1-(pyridin-2-yl)
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ethylidene)pyrimidine-2,4-diamine] were synthesized and 
their inhibition performance against aluminium corrosion 
in acidic solution is also explored. A brief synthesis method 
of SB-1 and SB-2 has been discussed below.

SB-1 ligand was synthesized by refluxing the homoge-
neous mixtures of furfurylamine (0.005 mol) and isatin 
(0.0025 mol) in ethanol solution for 3 h. The product thus 
obtained as solid form was cooled down to room tempera-
ture, filtered, washed in ethanol and subsequently dried in 
the desiccators. SB-2 was prepared by refluxing method, 
where the homogenous mixtures of 2,6-diamino-4-chloropy-
rimidine and 2-acetyl pyridine were added in ethanol and the 
solution was refluxed for 2 h. The final product was cooled 
down to room temperature, washed in ethanol solution and 
dried out in the desiccators. The synthesized final products 
in solid form were used for inhibition of aluminium corro-
sion against acidic media.

These Schiff bases were characterized by infrared (IR) 
spectroscopy, UV–Visible and 1H-NMR Spectra. The 
synthetic scheme for SB-(1 & 2) is shown in Fig. 1. The 
purity of the synthesized SB was determined by thin-layer 

chromatography using ethyl acetate/n-hexane (4:6) on the 
silica plate TLC plates aluminium (Al) silica.

2.2 � Materials and Chemicals

Aluminium specimens with the purity of 98.5% were used 
for all corrosion-based experimental studies. The dimensions 
of used aluminium specimens were 2.5 × 1.0  × 0.2 cm3, 
wherein surface area of 1 cm2 was exposed to the epoxy 
resin during electrochemical experiments. Before testing, 
aluminium coupons were finely polished using silicon car-
bide papers with the grade sizes range of 600–1200. The 
polished samples were properly rinsed and then degreased 
by using AR grade acetone. The aggressive test solution of 
1 M H2SO4 solution was prepared by dilution of analytical 
grade with double distilled water.

2.3 � Gravimetric Experiment

The weight loss of aluminium coupons in 1 M H2SO4 in the 
presence and absence of various concentrations of inhibitors 

(a) (b)

Fig. 1   The detailed reaction scheme of synthesis of Schiff base ligands, a SB-1 and b SB-2
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is determined at different temperatures, ranging from 303 
to 333 K in the absence and presence of SB-1 and SB-2 
inhibitors after 3 h of immersion time. The corrosion rate 
was calculated using equation:

where W is the mean value of weight loss of three parallel 
aluminium coupons, A is the total area of aluminium coupon 
and t is the immersion time (3 h). The percentage of inhibi-
tion efficiency (η%) and surface coverage (θ) was calculated 
from the evaluated corrosion rates using following relation:

where W is the mean value of weight loss of three paral-
lel aluminium coupons, A is the total area of a aluminium 
coupon and t is the immersion time (3 h). The percentage 
of inhibition efficiency (η%) and surface coverage (θ) was 
calculated from the evaluated corrosion rates using follow-
ing relation:

where CR and CR(i) are corrosion rate (mg cm−2 h−1) values 
of aluminium coupons in the absence and presence of inhibi-
tors, respectively.

2.4 � Electrochemical Experiment

Electrochemical measurements were performed by the 
method as described previously [50]. The electrochemical 
impedance measurements (EIS) were performed on alumin-
ium specimens in the frequency range of 100 kHz to 0.01 Hz 
under potentiostatic conditions using an AC at open circuit 
potential with amplitude of 10 mV peak to peak. The charge 
transfer resistance was calculated from Nyquist plot from 
which corrosion inhibition efficiency was calculated using 
following equation:

where Ri
ct

 and Ro
ct

 charge transfer resistances in the presence 
and absence of SBs, respectively.

The potentiodynamic polarization studied was performed 
on aluminium specimens by automatically changing the 
electrode potential from − 250 to + 250 mV/SCE versus 
open circuit potential at a scan rate of 1 mV s−1. The corro-
sion current density (icorr) was calculated by extrapolating 
the linear segments of the cathodic and anodic Tafel slopes 

(1)CR =
W

At
,

(2)�% =
CR − CR(i)

CR

× 100,

(3)� =
CR − CR(i)

CR

,

(4)�% =
R
i
ct
− R

o
ct

R
i
ct

× 100,

from which corrosion inhibition efficiency was calculated 
using the following equation:

where io
corr

 and icorr are the corrosion current densities in the 
absence and presence of SBs.

2.5 � Scanning Electron Microscope

Aluminium was immersed in 1 M H2SO4 solution in the 
absence and presence of optimum concentration of the SB 
for 3-h immersion time. Thereafter, aluminium specimens 
were taken out, washed with double distilled water, dried 
and finally analysed by SEM method. The SEM study was 
carried out using a Zeiss Evo 50XVP instrument at an accel-
erating voltage of 5 kV and × 500 magnification.

2.6 � Study of Synergistic Effect

The synergistic effect of halide ions with the inhibitor on the 
corrosion inhibition was studied by potentiodynamic polari-
zation studies. The synergism parameter was estimated using 
the following equation proposed by Aramki and Hacker-
mann [51–53],

where I1+2 = (I1 + I2); I1 is the inhibition efficiency of the 
halide, I2, the inhibition efficiency of inhibitors and I′(1+2) 
the inhibition efficiency for SB-1 and SB-2 in combination 
with halide ion.

3 � Results and Discussion

3.1 � FT‑IR Spectroscopy Analysis

FT-IR spectra of the Schiff base ligands of SB-1 and SB-2 
are presented in Fig. 2. In the spectra, the observed sharp 
peaks at 3181 and 3317 cm−1 represent the presence of N–H 
group. From Fig. 2, it is seen that the azomethine group has 
the medium intensity weak bands at 1613 and 1642 cm−1. 
Moreover, the second strong bands at 1151 and 1272 cm−1 
are responsible for C–N group. In addition, the band appears 
at 1192 cm−1 in the IR spectrum of the SB-1 which belongs 
to C–O stretching vibrations of the furfurylamine [54]. Thus, 
presence of these functional groups in the Schiff bases form 
a protective layer at aluminium surface and thereby enhance 
the anti-corrosion. In particular, the adsorption active ele-
ments of O, N, C, H and functional groups of N–H, C–N, 

(5)�% =
i
◦

corr
− i

i
corr

i◦
corr

× 100,

(6)S1 =
1 − I1+2

1 − I
�
1+2

,
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C–O in SB-1 and SB-2 are expected to strongly adhere to 
aluminium surface and protect its corrosion against aggres-
sive acidic media.

3.2 � UV Spectroscopy Analysis

The typical UV–Vis spectra of the Schiff bases of SB-1 
and SB-2 are shown in Fig. 3a, b, respectively. Both the 
ligands show almost similar peaks with one sharp and one 
broad band observed in the regions of 223–247 nm and 
333–342 nm, respectively. The presence of HC=N– group 
in the inhibitors exhibits sharp peaks on the higher energy 
range of 223–247 nm, which is due to the excitation of the 

π–π* transitions in the aromatic system. The spectral band 
at 333–342 nm is appeared due to N–H group n → π* transi-
tion [55, 56].

3.3 � 1H‑NMR Spectral Analysis

The structure and purity of the synthesized ligands of SB-1 
and SB-2 were confirmed by 1H-NMR Spectra. Figure 4a, 
b shows 1H-NMR spectra of inhibitors of SB-1 and SB-2, 
respectively. From both the spectra, the multiplets obtained 
at 7.1–7.6 and 6.3–6.5 ppm are attributed to the aromatic 
protons. Moreover, peak at 8.1 ppm in SB-2 shows the pres-
ence of heterocyclic NH proton and a singlet obtained at 
9.6 ppm indicates the formation of imine (–HC=N). In the 
1H-NMR Spectra of the SB-2, a peak obtained at 3.3 ppm is 
due to the presence of methyl protons [57].

3.4 � Weight Loss Studies

3.4.1 � Effect of SBs on Corrosion Rate

The corrosion rate (Cr) of aluminium in 1 M H2SO4 solu-
tion in the absence and presence of newly synthesized SB 
concentration at different temperatures was estimated using 
a conventional weight loss method [3, 4]. Figure 5a, b illus-
trates the corrosion rate of aluminium as the function of 
inhibitors concentration of SB-1 and SB-2, respectively, 
at temperature range of 303–333 K. From the results, it 
is clearly seen that corrosion rate rapidly increases with 
temperature and it substantially decreases with addition of 
SB concentrations. In the absence of inhibitors, the corro-
sion rate of aluminium in 1 M H2SO4 is estimated to be 
2.59 mg cm−2 h−1 at 303 K which further increases with 
temperature and reaches 3.77 mg cm−2 h−1 at 333 K as 
increase in temperature induces the corrosion reaction of 
aggressive H2SO4 solution and surface of aluminium metal.
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Fig. 2   FT-IR spectra of as-synthesized Schiff bases, SB-1 and SB-2

Fig. 3   UV–Vis spectra of as-
synthesized Schiff bases, SB-1 
and SB-2
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In the presence of 500 ppm inhibitor, the corrosion rate 
of aluminium is drastically reduced to 1.21 mg cm−2 h−1 
and 1.04 mg cm−1 h−1 for the as-synthesized Schiff bases 
of SB-1 and SB-2, respectively. Further, the reduction 
in Cr upon addition of SBs concentration is due to the 
increase in adsorption coverage that in fact protects alu-
minium metal from the aggressive acidic medium by form-
ing the protective or inhibition layer on top of aluminium 
surface. At any given inhibitor concentration, the corro-
sion rate (Cr) of aluminium is decreased by the addition of 
SB-1 than SB-2 (see Fig. 5a, b), which indicates that SB-1 
exhibits better inhibitive performance than that of SB-2 
which is often decided by the molecules or functional 
groups those present in the inhibitors and get adsorbed at 
active sites of aluminium metal. Table 1 summarizes the 
effects of solution temperature and inhibitor concentration 
of SB-1 and SB-2 on corrosion rate (Cr).

3.4.2 � Effect of SBs on Inhibition Efficiency

Figure  6 represents inhibition efficiency (I.E%) values 
obtained from the weight loss method for aluminium cor-
rosion in 1 M H2SO4 solution in the presence of various 
concentrations of as-synthesized SB-1 and SB-2 at room 
temperature. From Fig. 6a, b, it is seen that the inhibition 
efficiency increases with increase in the Schiff bases con-
centration. At 500 ppm, the maximum inhibition efficiency 
is 97.62% for SB-1 and 94.02% for SB-2, which illustrates 
that both the Schiff bases act as efficient corrosion inhibi-
tors for aluminium in 1 M H2SO4 and SB-1 shows slightly 
higher inhibition potential than SB-2. The increase in I.E% 
with rise SBs concentration is due to the increase in the 
surface coverage of Schiff bases on aluminium surface that 
protects the further corrosion. The reason behind the huge 
enhancement in the inhibition efficiency is higher inhibitive 
performance of isatin and –C5H5N than amino, azomethine 

Fig. 5   Plot of corrosion rate 
(Cr) of aluminium corrosion 
versus inhibition (Schiff bases) 
concentration in 1 M H2SO4 at 
room temperature
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Table 1   Temperature effect on 
aluminium corrosion rate and 
corrosion inhibition efficiency 
in 1 M H2SO4 with different 
concentrations of SB-1 and 
SB-2

Inhibitor Concentra-
tion (ppm)

Temperature

303 K 313 K 323 K 333 K 303 K 313 K 323 K 333 K

Corrosion rate (mg cm−2 h−1) Inhibition efficiency (I.E%)

SB-1 Blank 2.59 2.9 3.33 3.77 – – – –
100 1.84 2.36 3.1 3.53 86.87 84.4 83.27 78.86
200 1.56 1.98 2.9 3.34 87.34 86.66 83.85 81.77
300 1.28 1.78 2.6 3 90.64 88.32 84.94 83.96
400 1.16 1.48 2.26 2.56 94.98 89.67 88.66 86.08
500 1.04 1.22 1.9 2.1 97.68 90.29 89.65 86.88

SB-2 100 2.25 2.62 2.81 3.19 81.36 80.16 78.94 76.98
200 2 2.24 2.58 2.85 83.35 82.36 81.05 80.32
300 1.8 1.96 2.37 2.62 86.33 85.04 84 83.16
400 1.56 1.73 1.94 2.31 91.03 87.56 86.05 85.49
500 1.21 1.46 1.68 1.98 94.02 89.74 87.94 86.12
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group and furfurylamine. Moreover, SB-1 shows better 
inhibition efficiency than that of SB-2 which is due to the 
strong conjugation between isatin and pyrimidine ring that 
significantly facilitates the adsorption of the furfurylamine 
and acetyl group thereby efficiently covering more surface 
area than the adsorption of amino, azomethine group and 
C–N group of aluminium surface.

3.4.3 � Adsorption Isotherm Studies

The adsorption isotherm is an essential tool in understand-
ing the mechanism of interaction between metal surface and 
the inhibitor [58]. Our experimental results were fitted with 
several adsorption isotherms such as Langmuir Temkin, and 
Freundlich isotherms [3, 4, 58], among which Langmuir 
isotherm has shown the best fit with regression coefficient 
(R2) values close to unity. Figure 7 shows the Langmuir iso-
therm plots which provide a linear response (straight line) 
between log (θ/1 − θ) and C(inh). To understand the inter-
action between synthesized inhibitor and metal surface of 
aluminium, the constant value for adsorption–desorption 

process, Kads was calculated using the standard free energy 
of adsorption ( ΔG0

ads
 ) relation [3, 4] and its vales are given in 

Table 2. The calculated values of ΔG0

ads
 are given in Table 2. 

It is clearly seen that the value of ΔG0

ads
 for as-synthesized 

Schiff bases (SB-1 and SB-2) lies in the range − 29.52 
to − 38.21 kJ mol−1; negative sign of ΔG0

ads
 depicts that pre-

pared Schiff bases automatically get attracted by the active 
regions of aluminium that leads to protective layer formation 
[3]. Moreover, the estimated values of ΔG0

ads
 are in between 

the threshold values of physical and chemical adsorption, 
stating that as-synthesized molecules of Schiff bases (SB-1 
and SB-2) possess both physisorption and chemisorption at 
aluminium surface in the presence of 1 M H2SO4 solution 
[30, 59].

3.4.4 � Effect of Temperature

To evaluate the effect of temperature on the inhibition effi-
ciency, the weight loss experiments were performed in the 
temperature range of 303–333 K. The variation of corro-
sion rate (Cr) with temperature is represented in Table 1. 

Fig. 6   Inhibition efficiency of 
aluminium corrosion versus 
concentration of as-synthesized 
Schiff bases of SB-1 and SB-2 
in 1 M H2SO4 at room tem-
perature
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Fig. 7   Langmuir isotherm 
adsorption plots for aluminium 
corrosion in 1 M H2SO4 con-
taining different concentrations 
of as-synthesized Schiff bases, 
a SB-1 and b SB-2 at room 
temperature
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From the results, it can be observed that I.E% decreases with 
increasing temperature associated with the desorption of the 
adsorbed Schiff bases (SB-1 and SB-2) molecules from alu-
minium surface and leading to reduction in I.E%. The effect 
of temperature on corrosion rate can be effectively estimated 
by Arrhenius equation.

Arrhenius plots of log Cr versus 1/T of aluminium in 
1 M H2SO4 solution are shown in Fig. 8, which shows a 
linear response. The values of activation energy, Ea were 
calculated from the slope and the corresponding values are 
listed in Table 3. The tabulated data revealed that values 
of Ea for inhibited solution are greater than that of unin-
hibited solution. These enhancements in Ea in the presence 

of Schiff bases (SB-1 and SB-2) confirm the formation of 
higher energy barrier for corrosion process to happen, sug-
gesting that adsorbed SBs form a passive film on aluminium 
surface and prevents the charge/mass transfer reaction that 
usually occurs on the surface [60]. Moreover, the increased 
value of Ea also suggests that rate of aluminium dissolution 
significantly suppressed with addition of SBs ligands due to 
the formation of metal-inhibitor complex at the surface of 
aluminium [61]. From the activation energy, thermodynamic 
parameters ( ΔH◦

ads
 and ΔS◦

ads
 ) were calculated and listed in 

Fig. 9 and Table 3. The positive values of ΔH◦

ads
 both in 

the absence and presence of SBs reflect the endothermic 
nature of aluminium dissolution process [62, 63]. The nega-
tive values of entropy of activation both in the absence and 
presence of inhibitor imply that the activated complex in the 
rate determining step represents an association rather than 
a dissociation step, meaning that a decrease in disordering 
takes place on going from reactants to the activated complex 
[64–66].  

3.4.5 � Polarization Study

The Tafel polarization curves obtained for aluminium in 1 M 
H2SO4 absence and presence of as-synthesized Schiff bases 
(SB-1 and SB-2) at various concentrations are shown in 
Fig. 10. Further, Table 4 represents the derived polarization 

Table 2   Adsorption parameters derived from Langmuir adsorption 
isotherms for aluminium corrosion in 1  M H2SO4 at different tem-
peratures

Temperature
(K)

Kads
(kJ mol−1)

ΔGo

ads
 (kJ mol−1)

SB-1 SBs-2 SB-1 SB-2

303 8.70 17.24 – 29.52 – 36.96
313 7.32 10.21 – 30.92 – 37.16
323 5.39 7.39 – 31.22 – 38.22
333 4.78 5.50 – 32.32 – 38.21

Fig. 8   Arrhenius plots for 
aluminium corrosion in 1 M 
H2SO4 in the absence and pres-
ence of different concentrations 
of as-synthesized Schiff bases 
(SB-1 and SB-2)
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Table 3   Activation parameters 
for aluminium corrosion in 
1 M H2SO4 in the absence 
and presence of different 
concentrations of SB

Concentration
(ppm)

Ea
(kJ mol−1)

ΔH◦

ads
 (kJ mol−1) ΔS◦

ads
 (J mol−1K−1)

SB-1 SB-2 SB-1 SB-2 SB-1 SB-2

Blank 34.14 34.14 67.62 67.62 186.10 186.10
100 41.56 51.24 74.92 70.25 187.18 175.36
200 43.87 54.53 79.11 73.59 187.45 186.60
300 45.81 58.17 80.42 78.44 190.00 195.72
400 48.23 71.29 83.97 84.21 190.90 196.83
500 50.99 74.79 94.22 88.40 194.34 203.90
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parameters, i.e. corrosion potential (Ecorr), cathodic (βc) and 
anodic (βa) Tafel slopes, corrosion current density (Icorr), 
surface coverage (θ) and the inhibition efficiency (%) for 
aluminium corrosion with and without SB ligands inhibitor. 
From Fig. 10 and Table 4, it is clear that addition of Schiff 
bases in 1 M H2SO4 solution shifts the corrosion potential 
(Ecorr) towards positive direction that illustrates that chosen 
Schiff bases (SB-1 and SB-2) are efficient corrosion inhibi-
tors and performed as mixed-type inhibitors [67]. Interest-
ingly, the presence of SB-1 and SB-2 in acidic solution 
additionally causes a significant reduction in the corrosion 
current, (Icorr). In particular, the estimated corrosion current 
(Icorr) for blank is − 419.7 µA cm−2, which is rapidly reduced 
to − 17 and − 24 µA cm−2 by addition of SB-1 and SB-2 for 
the concentration of 500 ppm, respectively.

Moreover, the presence of SBs ligands in 1 M H2SO4 
solution predominantly pushes the cathodic curves towards 
lower current densities. On the other hand, the anodic 
reaction is also slightly affected by the addition of inhibi-
tors, which can be visualized from the reduction in anodic 
Tofel slope (βa). A clear inspection of Fig. 10 reveals that 

both anodic dissolution of aluminium and cathodic hydro-
gen evolution reaction are effectively inhibited with the 
addition of Schiff bases to the acid solution.

Moreover, the inhibition of these reactions is more pro-
nounced with the increasing inhibitors concentration. As 
known, the inhibition efficiency is also associated with a 
shift in both cathodic and anodic branches of the polariza-
tion curves towards lower current densities. From Table 4, 
It is shown that inhibition efficiency (I.E%) significantly 
increases with addition of SBs inhibitors and it reaches 
the maximum inhibition efficiency of 97% for SB-1 and 
94% for SB-2 at the concentration for 500 ppm. Generally, 
the functional groups and structure of the inhibitors play 
predominant role during the adsorption process [68]. The 
presence of functional groups of N–H, C–N, C–O and aro-
matic rings in SB-1 and SB-2 get adsorbed on the active 
sites of aluminium, and effectively controls the anodic 
and cathodic reactions during corrosion process, which 
altogether protect aluminium corrosion against aggressive 
acidic media. The inhibition efficiency values determined 
using potentiodynamic polarization curves are in good 

Fig. 9   Transition state plots for 
aluminium corrosion in 1 M 
H2SO4 in the absence and pres-
ence of different concentrations 
of as-synthesized Schiff bases 
(SB-1 and SB-2)
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Fig. 10   Potentiodynamic polari-
zation curves for aluminium 
corrosion in 1 M H2SO4 con-
taining different concentrations 
of as-synthesized Schiff bases 
(SB-1 and SB-2)
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agreement with EIS measurements, discussed in the later 
section.

3.5 � Electrochemical Impedance Spectroscopic 
Study

Figure 11 represents the Nyquist plots for aluminium corro-
sion in 1 M H2SO4 solution in the absence and presence of 
different concentration of the as-synthesized Schiff bases of 
SB-1 and SB-2. Figure 11 states that all the Nyquist plots 
show same trend for blank and inhibitor added ones, sug-
gesting that chosen Schiff bases strongly inhibit alumin-
ium corrosion without affecting the corrosion mechanism 
[69]. Further, it is clearly seen that Nyquist plots consist of 
a depressed semicircle at high frequency region which is 
indeed typical characteristic features that any solid metal 
electrodes encounter during the corrosion process [3, 69]. 
The formation of semicircle suggests that aluminium cor-
rosion in acidic media is mainly controlled by the charge 
transfer resistance and the presence of protective layer on 
top of aluminium surface [3, 70]. Additionally, the diameter 

of semicircle increases with the increase in inhibitor con-
centration which indicates the inhibitor molecules strongly 
adsorb on the metal surface and protects aluminium from 
further corrosion.

Impedance parameters, such as Rct, Cdl and I.E%, were 
derived from Nyquist plots by employing an equivalent cir-
cuit and their values are listed in Table 5. The results show 
that the addition of SBs causes significant increase in the Rct 
value, suggesting that the presence of SB impedes the charge 
transfer reaction and corrosion that occurr on aluminium 
surface by forming protective film on the surface [71].

From the results, it is also clear that values of Cdl drasti-
cally decrease in the presence of SBs. In particular, the Cdl 
value decreases from 115 to 5.9 µF cm−2 and 6.3 µF cm−2 
for SB-1 and SB-2, respectively, in the concentration of 
500 ppm. This reduction in Cdl is due to the decrease in 
local dielectric constant and/or an increase in the thick-
ness of the electrical double layer, occurring because of 
the adsorption of the molecules of Schiff bases that adhere 
on the surface. From this EIS study, it is noteworthy to say 
that adsorption mechanism is majorly contributing to the 

Table 4   Corrosion parameters 
obtained from potentiodynamic 
polarization curves for 
corrosion of aluminium in 
1 M H2SO4 with different 
concentrations of SB-1 and 
SB-2 at room temperature

Inhibitor Concentration
(ppm)

Ecorr
(mV vs. SCE)

Icorr
(µA/cm−2)

βa
(mV/dec−1)

I.E
(%)

Blank − 769 419.7 96 –
SB-1 100 − 771 106 18.03 74.74

200 − 779 89 19.17 83.79
300 − 783 71 19.17 88.08
400 − 772 28 18.0 92.18
500 − 766 17 16.8 97.02

SB-2 100 − 770 117 17.30 72.12
200 − 772 92 17.94 78.07
300 − 779 75 16.15 82.13
400 − 782 48 15.96 88.56
500 − 780 24 14.02 94.28

Fig. 11   Nyquist plots for alu-
minium corrosion in 1 M H2SO4 
solution in the absence and 
presence of different concentra-
tion of as-synthesized Schiff 
bases (SB-1 and SB-2)
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inhibition of aluminium corrosion upon addition of SBs 
[50]. In addition, Table 5 further illustrates that the inhibi-
tion efficiency remarkably rises with increasing SBs con-
centration and the maximum inhibition efficiencies of 97% 
and − 95% were obtained for SB-1 and SB-2, respectively, 
for the inhibitor concentration of 500 ppm. These results 
further have good agreement with weight loss method and 
potentiodynamic polarization curves.

3.6 � Scanning Electron Microscope

The surface morphologies and microstructures of blank 
and inhibited aluminium samples were studied using scan-
ning electron microscope (SEM). Figure 12a–d illustrates 
the SEM micrographs of aluminium specimens with and 
without the presence of SBs ligands in acidic medium 
of 1 M H2SO4. Figure 12a, b depicts the micrographs of 
aluminium before and after immersion of aluminium in 
1 M H2SO4 solution, respectively. Surface morphology of 
aluminium dipped into aggressive acid in the absence of 
SBs shows notably rough corroded surface with deep and 
denser pits due to aggressive corrosion behaviour of 1 M 
H2SO4. However, the presence of SB ligands in 1 M H2SO4 
solution remarkably reduces the deep pits and corrosion 
of aluminium as seen in the micrographs of Fig. 12c, d. 
A reason behind the huge inhibition of aluminium corro-
sion is addition of SBs ligands in the acidic solution gets 
adsorbed on the active sites of aluminium and forms a thin 
passive layer thereby preventing aluminium from its dis-
solution caused by 1 M H2SO4. From these micrographs 
one could conclude that compounds of SB-1 and SB-2 
have a strong tendency to adhere on top of aluminium and 
protects its corrosion against acidic media.

3.7 � Synergism Studies

The synergistic effect of halide ions on the corrosion inhibi-
tion along with inhibitors of SB-1 and SB-2 was extensively 
studied by weight loss studies. Synergistic effect is generally 
represented as an effective method to increase the inhibi-
tive nature of the given inhibitors, to reduce the quantity 
of usage, and to diversify the application of inhibitor in the 
chosen corrosive media. Typically, the synergistic influence 
of halide ions on the inhibitive effect of inhibitor was sig-
nificantly studied by adding potassium halides (KX) to the 
test solutions by which the role of halide ions with inhibitor 
on adsorption process of metal surface could be estimated. 
In this view, the strength of the synergistic effect can be 
evaluated by the synergism parameter (S) using Aramaki 
and Hackman relationship. In this context, the value of S < 1 
implies antagonistic behaviour and occurrence of competi-
tive adsorption, whereas S > 1 indicates a synergistic effect 
[63]. Halides have been reported to increase the inhibition 
efficiency of metal corrosion along with given strong acids. 
In particular, the inhibitive effect of halides increases in the 
order of Cl− < Br− < I−. Table 6 provides the synergistic 
effect of halide ion with SB-1 and SB-2 due to cooperative 
adsorption of halide ion and the inhibitor. In most cases, the 
halide ions are anticipated to chemisorption on the surface 
and utilized inhibitor molecules are ascribed to adsorb on 
adsorbed halide layers. This behaviour of KI and organic 
inhibitors was also reported by other researchers [52, 53, 
72].

The values of S as presented in Table 6 are greater than 
unity which clearly represents that the enhanced inhibition 
efficiency by addition of SB ligands in combination with hal-
ides is mainly due to synergistic effect. This enhancement in 
inhibition efficiency can be explained on the basis that halide 
has a great tendency to get adsorbed on aluminium surface 
by strong chemisorptions and cations of inhibitor molecules 
then attach on layer of halide ions by columbic attraction. 
These adsorbed halide ions with cations of the inhibitor 
create more surface coverage and by which it protects alu-
minium corrosion against aggressive acids. Additionally, the 
greater influence of iodide halide (I−) compared to other 
halide ions of Cl− and Br−over SBs at room temperature may 
be attributed to its large ionic radius, high hydrophobicity 
and low electronegativity.

4 � Conclusion

We have successfully synthesized two novel Schiff bases 
and demonstrated their inhibition ability upon aluminium 
corrosion in 1 M H2SO4 solution using electrochemical and 
non-electrochemical methods. It was shown that addition of 
Schiff bases substantially increased the corrosion inhibition 

Table 5   Impedance parameters for corrosion of aluminium in 1  M 
H2SO4 with different concentrations of SB-1 and SB-2 at room tem-
perature

Inhibitor Concentration
(ppm)

Rct
(Ω cm2)

Cdl
(µF cm−2)

I.E
(%)

Blank 58.5 115 –
SB-1 100 262.7 31.1 77.73

200 492.3 16.7 88.11
300 968.8 8.5 93.96
400 1514 5.9 96.13
500 1600 5.9 97.34

SB-2 100 233.4 30.8 74.93
200 314.7 24.3 81.41
300 426.2 19.2 86.27
400 783.4 12.6 92.53
500 1093.2 6.3 94.64
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efficiency. Further, potentiodynamic polarization curves 
revealed that chosen Schiff bases performed as mixed-type 
inhibitors. Additionally, electrochemical impedance studies 
(EIS) were also shown that the inhibition efficiency, I.E%, 
remarkably increased with increasing SBs concentration 
and thus the maximum inhibition efficiencies of 97% and 
− 95% were obtained for SB-1 and SB-2, respectively, for 
the inhibitor concentration of 500 ppm. Adsorption pro-
cess obeyed Langmuir adsorption isotherm and regarded as 
both physical and chemical adsorption. SEM micrographs 
of inhibited samples showed that compounds of SB-1 and 

SB-2 have extremely high tendency to adhere on active sites 
of aluminium and protect its corrosion against acidic media.
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