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Abstract
This study is focused on an anticorrosive formulation as a coating an aluminum alloy AA2024-T3 to withstand marine 
environment. The anticorrosive formulation was based on an epoxy resin bisphenol-A diglycidyl ether that is cured with 
polyamine polyaminoamide. The anticorrosive formulation was applied onto samples of AA 2024-T3 surface with zinc 
phosphate (ER-ZP) and without zinc phosphate (standard). Zinc phosphate was added to the formulation in about 5 wt%. The 
coated AA2024-T3 substrates were evaluated by exposing them to a salt spray test chamber for various periods of time. The 
anticorrosive performances of the two epoxy coatings, the standard (ER) and the one containing ZP (ER-ZP), were evaluated 
by electrochemical impedance spectroscopy (EIS). The surface morphology of the two coatings was characterized by a scan-
ning electron microscopy and optical microscopy. The two coated AA2024 T3 samples were tested in a harsh environment 
of electrolyte solution to simulate the marine environment (3 wt% NaCl solution). The value of the impedance (|Z|0.01 Hz) 
obtained by the EIS method for the standard epoxy coating (ER) and epoxy coating containing ZP (ER-ZP) were 0.88 MΩ 
cm2 and 6.92 MΩ cm2 during the 2 h of immersion in 3 wt% NaCl, respectively. After exposure for a long period of time 
in salt spray test chamber (4392 h) and 2 h of immersion in 3 wt% NaCl the values were dropped to 0.27 MΩ cm2 and 0.83 
MΩ cm2, respectively. Under these conditions, a very high impedance value was obtained for AA2024-T3 samples coated 
with an epoxy coating containing ZP (ER-ZP). The results showed that, the ER-ZP coating surface applied on AA2024-T3 
samples exposed for 4392 h showed that, the coating is homogeneous and well adhered to aluminum alloy 2024-T3 surface. 
The results indicated that, ZP played a dual role, it enhanced the adhesion properties of the ER coating and the coating 
performance as an effective barrier.
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1  Introduction

Aluminum alloys are widely utilized in many applica-
tions in various industries such as aeronautic, aerospace, 
and others, especially AA2024-T3 due to its outstanding 
mechanical and physical properties. However, aluminum 
alloys is easily oxidized and corroded in the corrosive 
environments [1–4]. Unfortunately, the adhesive strength 
between thin natural oxide layer on aluminum surface and 
subsequent organic coating is relatively poor, resulting 
in the insufficient protection from long-term exposure to 
marine environment [5].

Traditionally, the anti-corrosion properties are achieved 
by anodizing in chromic acid followed by organic coating 
[6]. Chromic anodizing (hexavalent chromium compounds) 
has mainly been utilized as an excellent corrosion protection 
[7]. However, health issues and the environmental impact 
caused be chromium compounds have limited its use have 
necessitated the development of anodizing electrolytes with 
reduced environmental impact [8, 9]. As a replacement for 
the chromic compounds, other acid electrolyte baths have 
been developed and applied such as sulfo-tartaric acid. Weak 
tartaric acid is added to strong sulfuric acid, this combina-
tion (sulfo-tartaric baths), limiting the oxide dissolution and 
offers an excellent corrosion resistance to aerospace alloys 
[10, 11]. Organic coatings have been widely applied as a 
barrier layer on the metal substrates, to protect them against 
corrosion [12]. Organic based coatings are widely used as 
anticorrosive for aluminum alloys structures in many indus-
tries such as aeronautics, automobiles, architecture, ships, 
and oil tanks [13–15]. Organic coatings received more atten-
tion due to their high chemical resistance and strong adhe-
sion to the aluminum surface [16, 17]. The organic coatings 
act as a physical barrier between corrosive electrolyte and 
aluminum substrate [18]. Despite all the advantages of the 
organic coatings, some improvement are still needed such as 
for instance the life time the coating, since it is limited, after 
a long-term they tends to deteriorate and its performance as 
barrier declines. However, penetration of aggressive corro-
sive species into the standard epoxy coating from the defects 
and micro-pores and diffuses of these corrosive agents to the 
metal/coating system interface result in initiate the corrosion 
process and deteriorates the coating matrix. Using inhibitive 
pigments are added to the epoxy coatings such as chromate 
based pigments are the most well utilized pigments to anti-
corrosive protection formulations. However, because of the 
environmental rules, the use of this invaluable pigment in 
these anticorrosive formulations has been limited [19–22]. 
In this regard, zinc phosphate pigments have been added as 
less toxic alternative corrosion inhibitive pigment was one 
of the pigments that were used as a replacement for zinc 
chromate [23–25].

In this work, the formulation is a combination of epoxy 
resin diglycidyl ether of bisphenol (ER) cured with a poly-
amine (polyaminoamide) and the pigment zinc phosphate 
was chosen for this purpose. The combination of these three 
materials produced an aluminum (AA2024-T3) coating that 
can endure aggressive marine environment. The anticorro-
sive protection properties of the formulation were monitored 
by the electrochemical impedance spectroscopy (EIS). The 
quantitative and qualitative data obtained from EIS were 
used to assess the coating performance. The coating surface 
was monitored using a SEM.

2 � Experimental

2.1 � Materials and Methods

The epoxy resin and hardener utilized in this work were 
from MAPAERO-Aerospace Coatings. The liquid epoxy is 
whitish in color and consists of diglycidyl ether of bisphe-
nol-A (average molecular weight < 700), triglycidyl ether 
of trimethylolpropane, alkoxysilane, and nitroethane. The 
liquid hardener is green and consists of polyaminoamide 
and butan-2-ol. The pigment anticorrosive additive used in 
this work was zinc phosphate by purchased from Aldrich. 
Table 1 shows name and chemical structures used in the 
preparation of the coating materials and the physical and 
chemical properties of Zinc phosphate (ZP) are given in 
Table 2.

2.2 � Preparation of AA2024‑T3 Substrates

AA 2024-T3 specimens (wt.%: Cr 0.1; Ti 0.15; Zn 0.25; 
Fe 0.5; Si 0.5; Mn 0.3–0.9; Mg 1.2–1.8; Cu 3.8–4.9; others 
0.15; Al balance) were cut into 8.5 cm × 4.4 cm with a thick-
ness of 1.0 mm. The surface of the samples was polished 
mechanically using a disk polisher with a P1200 and P2000 
SiC abrasive papers in order to obtain mirror surface. The 
polishing process was followed by degreasing with methyl 
ethyl ketone (MEK) degreasing to remove surface contami-
nations, washing with distilled water, and air drying.

2.3 � Surface Treatment Process

2.3.1 � Surface Preparation

The applied treatment sequence includes a first 15 min alka-
line degreasing step (basic pH 9) (NaOH/KOH at 35 g/L) 
performed at 58 °C, rinsing (rinsing dead + rinsing recycled 
for 4 min) with distilled water at room temperature, then a 
2 min sodium stripping step (NaOH 37–43 g/L) carried out 
at 32 °C also followed by several rinses with distilled water 
for 3 min at room temperature.
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2.3.2 � Anodizing Parameters

The anodizing process was carried out in an industrial pilot 
plant containing a TSA bath of 36–44 g/L of sulfuric acid 
(H2SO4) and 77–88 g/L of tartaric acid (C4H6O6). The ano-
dizing temperature ranges from 36 to 39 °C. The anodizing 
process was carried out with a potential sweep from 0 to 
14 V at a rate of 2.8 V/min, followed by a plateau at 14 V 
for 25 min.

2.3.3 � Coating Application

Two epoxy formulations were prepared and evaluated, one 
of them has in addition to the DGEBA epoxy resin and poly-
aminoamide curing agent (1:2 ratio by weight) a 5 wt% zinc 
phosphate (ER-ZP). In the second formulation, no zinc phos-
phate was used (standard coating). The two formulations 
were applied to AA 2024-T3 using a pneumatic suction gun. 
The coated samples were left at room temperature for 24 h 

before post-curing at 60 °C for 1 h. The thicknesses of the 
dried films were about 15–25 µm.

2.4 � Curing of Diglycidyl Ether of Bisphenol‑A

During the curing process the epoxy resin and the curing 
agent polyaminoamide react to form a 3D thermoset poly-
mer [26]. A representative scheme of the possible reaction 
mechanism occurs during the curing process is presented 
in Fig. 1. The presence of zinc ion (Zn2+) during the curing 
stage could be an advantage, since it behaves as a Lewis 
acid, that coordinate to the oxygen atom of the oxirane ring, 
thus making the oxirane ring more susceptible for nucleo-
philic addition reaction with amine to undergo ring opening 
[27].

2.5 � Evaluation of Coated Aluminum Alloy Samples

2.5.1 � EIS Measurements

Electrochemical impedance spectroscopy measurements 
(EIS) were carried out using Potentiostat PS 200. The meas-
urements were carried out in 3 wt% NaCl solution at room 
temperature. A three-electrode system was used, with the 
intact coating samples as the working electrode AA2024 
(1 cm2), a saturated calomel electrode (SCE) as the reference 
electrode and platinum as the counter electrode (CE). The 
EIS analysis was performed at the OCP imposed with sinu-
soidal amplitude of 10 mV at frequency range from 100 kHz 
to 10 mHz. The EIS results were fitted by EC-Lab V10.32 
software. Prior to EIS measurement, the coated painted 

Table 1   Names and chemical 
structures used in the 
preparation of the coating 
materials

Table 2   Physical and chemical properties of Zinc phosphate (ZP)

Commercial name Zinc phosphate ZP

Density 3.04 g/cm3

Average particle size 4.5 µm
Oil absorption 27 cm3/100 g
pH 7
Solubility Insoluble in water 

(water: 0.03 g/L)
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samples were immersed in the testing solution for until the 
OCP was stable (about 2 h).

Finally, the anti-corrosion performance of the coated 
panels was evaluated in accelerated environment using a 
salt spray test system. The corrosive nature of the chamber 
specified to ASTM B117 is a continuous spraying of a 5 wt% 
saline solution at 35 ± 2 °C.

2.5.2 � Surface Characterization

The surface morphologies of two epoxy coatings (ER and 
ER-ZP) before and after 4392 h of exposure to salt in the 
spray test were analyzed by scanning electron microscopy 
(SEM, S3000H, Hitachi) at 20  kV. The cross-sections 
micrographs of coatings were evaluated by ZEISS Scope.
A1 microscopy.

3 � Results and Discussion

3.1 � Electrochemical Impedance Spectroscopy 
Analysis

The EIS data analysis on coated AA2024-T3 substrates for 
various periods of time 1464, 2928, and 4392 h exposure and 
immersed for 2 h in a 3 wt% NaCl is given both as a Nyquist 
and as a Bode plot in Figs. 2 and 3.

In order to quantitative analysis the protective properties 
of the epoxy coatings ER and ER-ZP for AA2024-T3, the 
EIS curves were fitted with the equivalent electric circuit.

The EIS data were fitted by the equivalent circuit 
Rs(Qcoat(Rcoat(QdlRct))) shown in Fig. 4.

In these circuits, Rs is the solution resistance, Qcoat is 
the constant phase element (CPE) of a coating, Rcoat is the 
resistance of the electrolyte in the coating pores, Qdl is the 
CPE of the electrical double layer, and Rct is the charge 
transfer resistance.

The CPE was substituted for pure capacitance, due to 
surface heterogeneities, deviation from capacitive behav-
ior, and dispersion effects [28].The impedance of CPE can 
be written as:

where Q is the CPE constant, j =
√

−1 , � is the angular 
frequency (rad/s), and � is a CPE exponent associated with 
the surface heterogeneity or roughness.

The electrical element parameters obtained from fitting 
the measured EIS data in Figs. 2 and 3 are shown Table 3.

From Figs. 2 and 3 it can be seen that, as the immer-
sion time increases the impedance at low frequency range 
(|Z|0.01 Hz), charge transfer resistance (Rct), coating resist-
ance (Rcoat) and decreased due to the penetration of elec-
trolytes to the aluminum/epoxy coating interface.

At the beginning of exposure, the impedance dia-
grams |Z|0.01 Hz of the epoxy coating ER-ZP were high and 
superior to 6 MΩ cm2 during the 2 h of immersion are 
slightly greater than that of the standard epoxy coating ER 
(0.88 MΩ cm2) in 3 wt% NaCl solution. This indicates that 
the epoxy coating ER-ZP provides an excellent physical 

(1)Z
CPE

=
1

Q(j�)�
�

Fig. 1   Complex formation 
between Zn2+, epoxy resin 
and reaction mechanism of the 
polyaminoamide
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barrier against corrosive agent’s penetration though the 
epoxy coating matrix to AA2024-T3 surface. The imped-
ance modulus value (|Z|0.01 Hz) showed an increase by 
increasing the exposure time from 2 to 1464 h for two 
the epoxy coatings ER and ER-ZP as shown in Fig. 2. 
The impedance modulus after 1464 h of exposure for the 
epoxy coating ER-ZP was greater by 9 MΩ cm2 than that 
of the standard epoxy coating ER (2.63 MΩ cm2). This is 
could be an indication that, the presence of the pigment 
ZP beside the epoxy resin in the coating made it more 
stability and enhanced its anticorrosive performance. The 
decrease in the impedance modulus (|Z|0.01 Hz) values with 
immersion time after 1464–4392 h could be related to the 
diffusion of the electrolyte into the coating, thus the physi-
cal barrier properties of the film is reduced. The epoxy 
coating ER-ZP (0.83 MΩ cm2) is significantly higher than 

the standard epoxy coating ER (0.27 MΩ cm2) in 4392 h 
exposure. These results confirm that the epoxy coating 
ER-ZP shows excellent physical barrier properties and 
restricted the electrolyte penetration of electrolytes to 
the coating/aluminum interface. As the immersion time 
elapsed the impedance modulus (|Z|0.01 Hz) decreased for 
two epoxy coatings ER and ER-ZP. After a long period of 
exposure to electrolyte, the epoxy coating deteriorated, 

Fig. 2   Bode plots obtained for the two epoxy coatings ER and ER-ZP 
applied on AA2024-T3 samples for different time’s exposure and 2 h 
of immersion in 3 wt% NaCl

Fig. 3   Nyquist plots obtained for the two epoxy coatings ER and 
ER-ZP applied on AA2024-T3 samples for different time’s exposure 
and 2 h of immersion in 3 wt% NaCl

Fig. 4   The equivalent electrical circuit used to model the impedance 
spectra



	 Journal of Bio- and Tribo-Corrosion (2019) 5:7

1 3

7  Page 6 of 10

and the penetration of electrolytes to the coating/aluminum 
interface and the adhesion bonds destructed. However, 
introduction of ZP could reduce the electrolyte penetra-
tion into the coating matrix, indicating their effect on the 
epoxy coating physical barrier performance enhancement 
[29–31].

3.1.1 � Evolution of the Epoxy Coatings Protection 
Performance: Rcoat and Rct

The evolutions of the protection performance of two epoxy 
coatings ER and ER-ZP for different time’s exposure can be 
evaluated through the coating resistance values Rcoat. The 
Rcoat indicates the ease with which the penetration of electro-
lytes into the epoxy coating matrix [32]. The penetration of 
electrolytes may filling the micro-pores and defects of epoxy 
coating matrix by corrosion products [33]. The decrease of 
Rcoat values for different time’s exposure to the diffusion of 
the aggressive corrosive ions into the epoxy coating matrix.

The evolution of Rct values for different time’s exposure 
is similar to that of the Rcoat porosities. The decrease of Rct 
values corresponds to an increase in the corrosion rate and a 
development of the corroded surface under the epoxy coat-
ing matrix [33].

3.1.2 � Evolution of the Physical Barrier Properties: Qcoat 
and Qdl

Grace to the analysis of the capacitance of epoxy coating 
matrix, it is possible to evaluate the adsorption of water for 
different time’s exposure and 2 h of immersion in 3 wt% 
NaCl solution because the adsorption of water modifies the 
dielectric constant of the coating matrix, even if it is present 
in very small quantity. The Qcoat for epoxy coating (ER-ZP) 
is lower than standard epoxy coating (ER) during 2 h of 
immersion in 3 wt% NaCl solution; because ZP pigment fills 
the defects and micro-pores in the coating and decreases the 
water uptake into the coating matrix. The Qcoat of standard 

epoxy coating ER decreases to a stable value after differ-
ent time’s exposure and 2 h of immersion in 3 wt% NaCl 
solution due to delamination of coating matrix and filling 
the micro-pores and defects of coating matrix by corrosion 
products [34]. However, the Qcoat for epoxy coating ER-ZP 
increases by increasing immersion time to 1464 h and then, 
a decrease in Qcoat value is observed after 2928 h exposure, 
which can be ascribed to saturation of zinc phosphate pig-
ment structure and the decrease of hydrophilic tendency of 
epoxy coating ER-ZP. These results confirm that the epoxy 
coating ZP-ER effectively fills the micro-pores and defects. 
These mean that the zinc phosphate significantly enhances 
anticorrosive properties and the barrier role of epoxy coating 
matrix at long-term.

However, the Qdl which is related to distribution of ionic 
charge at metal/coating interface [35] is significantly lower 
for epoxy coating ER-ZP for different time’s exposure. 
Besides, the Qdl of epoxy coating ER-ZP is lower than stand-
ard epoxy coating. The Qdl value increases by extending 
immersion time due to expansion of active sites [36].

3.2 � Salt Spray Test

The digital images of prepared two epoxy coatings (ER 
(a) and ER-ZP (b)) after 4392 h exposure were depicted in 
Fig. 5.

The standard epoxy coating ER (c) shows corroded sites 
on the substrate surface. For epoxy coating ER-ZP (d), less 
degradation is observed as compared with ER. Only small 
amount of white rust appears inside the scratches.

3.3 � Surface Morphological of Two Epoxy Coatings

The microstructure of surfaces of two epoxy coatings (ER 
and ER-ZP) were characterized for change in morphology 
before and after 4392 h of exposure by SEM and their micro-
graphs are shown in Fig. 6.

Table 3   The electrochemical data obtained from impedance plots of two epoxy coatings ER and ER-ZP applied on AA2024-T3 samples for dif-
ferent time’s exposure and 2 h of immersion in 3 wt% NaCl

Sample Time (h) |Z|0.01 Hz
(MΩ cm2)

Rs (Ω cm2) CPEcoat Rcoat (kΩ cm2) CPEdl Rct (MΩ cm2) χ2

Qcoat (µF/cm2) �
coat

Qdl (µF/cm2) �
dl

ER 2 0.88 425 145 0.76 0.70 0.14 0.74 1.51 0.32
1464 2.63 28.9 0.33 0.92 0.76 0.15 0.53 4.93 0.19
2928 2.26 56.1 0.28 0.63 0.65 0.61 0.72 1.35 0.06
4392 0.27 19.4 0.21 0.67 0.61 0.87 0.72 0.14 0.07

ER-ZP 2 6.92 0.37 0.21 0.66 0.24 0.04 0.95 4.35 0.27
1464 9.23 49.4 0.56 0.70 15.0 0.12 0.93 19.2 0.21
2928 1.61 5.01 0.84 0.71 0.30 0.26 0.84 2.00 0.17
4392 0.83 52.6 0.83 0.71 0.15 0.28 0.93 0.44 0.32
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Fig. 5   Visual performance of the two epoxy coatings (ER and ER-ZP) applied on AA2024-T3 samples before and after 4392 h exposure

Fig. 6   SEM surface images of the two epoxy coatings (ER and ER-ZP) applied on AA 2024-T3 samples before and after 4392 h exposure
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As shown in Fig. 6a, the coating defects due the structural 
uniformity and integrality of the coating and may degrade 
for the standard epoxy coating ER. On the other hand, sur-
face the epoxy coating ER-ZP (Fig. 6b) shows a homogene-
ous surface and good dispersion due to the presence of ZP in 
this coating. This provides an excellent physical barrier that 
prevents the diffusion of corrosive agents though the epoxy 
coating matrix to AA2024-T3 surface.

The micro-pores standard epoxy coating ER surface 
become deep and broaden during exposure of accelerated 
corrosion assays as shown in Fig. 6c. The surface micro-
pores in degraded areas significantly decreased when zinc 
phosphate was introduced to the epoxy coating matrix. Nev-
ertheless, micro-pores in epoxy coating matrix were invis-
ible after 4392 h exposure in epoxy coating ER-ZP as shown 
in Fig. 6d.

This provides an excellent barrier that prevents the pen-
etration of corrosive electrolyte though the epoxy coating 
matrix to AA2024-T3 surface.

Figure 7 shows the surface images and a cross-section of 
two epoxy coatings on AA2024-T3 before and after 4392 h 
exposure which were investigated by optical microscope.

The full AA2024-T3 substrate was found to be homoge-
neously and well adhered with epoxy coating containing ZP 
because the AA2024-T3 metal/coating interface does not 
delaminate after 4392 h exposure that the standard epoxy 
coating after 4392 h exposure is severely damaged.

3.4 � Anti‑corrosion Properties of the Epoxy‑ZP 
Matrix

The protection mechanism of the epoxy-ZP matrix is shows 
in Fig. 8.

As shown in Fig. 8, ZP releases the inhibitive ions such as 
Zn2+ and PO4

3− at defect sites in the coating, thus forming 
an insoluble protective film at the anodic and cathodic sites. 

The presence of Zn2+ at the cathodic sites assists in lowering 
the pH value by interacting with the hydroxyl ions, as results 
of that, it stabilizes the coating from undergoing cathodic 
delamination. Also, the formation of zinc and aluminum 
phosphates on the anodic sites could promote the protection 
of the aluminum alloy AA2024-T3 against corrosion. The 
higher solubility of ZP in saline solution could be another 
factor that promotes the formation of a more stable film on 
the metal surface at defect site. In addition, the ZP particle 
could fill the coating porosities and cavities, thus inhibiting 
the diffusion pathway of the electrolyte to the metal surface 
[37, 38].

4 � Conclusions

In this study, two based epoxy coatings (ER) and (ER-ZP) 
were prepared and evaluated as anticorrosive for the alu-
minum alloy AA2024-T3.

A polymer based epoxy cured with polymeric polyam-
ines was chosen for this study. The polymeric based epoxy 
has two functionality makes it unique as anticorrosive coat-
ing for AA2024-T3, it has a hydrophobic backbone and a 
hydrophilic end cap. Short term and long-term exposure 
of AA2024-T3 coated with ER-ZP showed superior per-
formance in protecting AA2024-T3 surface against corro-
sion compared to the standard coating. Surface study of the 
coating by scanning electron microscopy (SEM) showed a 
homogeneous distribution of ZP in epoxy coating. The elec-
trochemical measurements results indicate that ZP present in 
the coating matrix (ER-ZP) is more effective as an anticor-
rosive coating than the standard epoxy coating (ER). The 
Bode and Nyquist plots showed ER-ZP coating has outstand-
ing barrier properties in protecting AA2024-T3 in marine 
environment against corrosion.

Fig. 7   Optical microscope cross-sectional morphology the two epoxy coatings (ER and ER-ZP) applied on AA 2024-T3 samples before and after 
4392 h exposure
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