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Abstract
Two pyridazine derivatives “1-decylpyridazin-1-ium iodide” (DPI) and “1-tetradecylpyridazin-1-ium iodide” (TPI) were 
synthesized and investigated as corrosion inhibitors for carbon steel in HCl (1 M) solution. In order to evaluate the anticor-
rosion activity of these compounds, the electrochemical impedance spectroscopy was performed at different concentrations 
and at various temperatures (303–333 K). The collected results showed that DPI and TPI reached a value of 86.7% and 
88.6% at 10−3 M, respectively (303 K). The decrease of the double-layer capacitance for TPI became more remarkable with 
increase in temperature. The adsorption of both inhibitors on mild steel surface obeyed the Langmuir adsorption isotherm. 
An inhibition efficiency of 97.6% was obtained at the optimum concentration (10−3 M) following an immersion period of 
12 h. The quantum chemical calculations based on DFT method supported the experimentally obtained results.
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1  Introduction

The carbon steel is commonly used in a number of industries 
due to its low cost and good mechanical properties [1–4]. 
On the other hand, the acidic medium especially hydro-
chloric acid is widely used in industrial processes such as 
acid cleaning, acid descaling, and acid pickling. In order 
to reduce the corrosive attack of acid on steel surface, cer-
tain chemical compounds are added to the acid solution. 

This practice of introducing the corrosion inhibitors to the 
aggressive acidic medium is one of the most commonly used 
methods to counter the corrosion of carbon steel. Organic 
corrosion inhibitors act by adsorption, which is facilitated 
by the presence of heteroatoms such as nitrogen, oxygen, 
sulfur, presence of double bonds, and aromatic rings [5–11]. 
Many N-heterocyclic compounds such as the derivatives of 
imidazole [12, 13], pyrazole [14], pyrimidine [15], and imi-
dazolopyridine [16, 17] have been reported as effective cor-
rosion inhibitors for carbon steel in acidic solution.

The use of ionic liquids for a wide range of applications is 
gaining significance particularly in the field of fundamental 
chemistry and chemical engineering [18]. Currently, ionic 
liquids have application in many fields such as solvents or 
catalysts for chemical synthesis [19], media for electrodepo-
sition of metals [20], supercapacitors [21], electrolyte for 
electrochemical devices such as battery [22] and corrosion 
inhibitors [23, 24]. The use of this type of molecules leads 
to a large reduction in reaction times with several advantages 
of the eco-friendly approach and is therefore considered as 
green technology [25, 26]. The fascinating properties of 
ionic liquids such as high polarity, low melting points, low 
vapor pressure, low toxicity, high thermal and chemical sta-
bility, less hazardous influence on environment and living 
beings make them as a promising candidate for replacing 
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the conventionally used highly volatile and toxic corrosion 
inhibitors [18].

In the light of above, in the present work, two newly syn-
thesized pyridazine derivatives “1-decylpyridazin-1-ium 
iodide” (DPI) and “1-tetradecylpyridazin-1-ium iodide” 
(TPI) were examined as corrosion inhibitors of carbon steel 
in 1.0 M HCl. These compounds have not been reported 
previously as corrosion inhibitors. In addition, the synthe-
sis procedure only requires a single-step reaction. Further-
more, the derivatives afford excellent solubility in hydro-
chloric acid solution and the presence of pyridazine ring 
along with the hydrocarbon tail is expected to facilitate their 
adsorption and corrosion inhibition behavior. We have cho-
sen the ionic liquids having different carbon chain lengths 
to see their comparative influence on the inhibition perfor-
mance. The inhibition activity of these organic compounds 
was evaluated by electrochemical impedance spectroscopy 
(EIS). The different thermodynamic and kinetic adsorption 
parameters for corrosion inhibition process are evaluated. 
Furthermore, the adsorption of pyridazinium derivatives on 
the metal/electrolyte interface of the metal was studied at 
longer immersion times in order to understand the interac-
tions between pyridazinium derivatives and steel surface. 
Quantum chemical calculations using the Density functional 
theory (DFT) method was also used to study the mechanism 
of steel corrosion inhibition of the synthesized ionic liquids 
in acidic medium.

2 � Experimental

2.1 � Specimens and Solution Preparation

The steel sample used in this study is a carbon steel (CS) 
having chemical composition (in wt%) of 99.21% Fe, 0.38% 
Si, 0.21% C, 0.05% Mn, 0.05% S, 0.09% P, and 0.01% Al. 
The aggressive solution of 1.0 M HCl was prepared by 
dilution of analytical grade 37% HCl with distilled water. 
The concentration range of the studied compounds was 
10−6–10−3 M.

2.2 � General Procedure for Synthesis of Inhibitors 
DPI and TPI

DPI: Pyridazine (1eq) and 1-iododecane (1eq) were placed 
in a Pyrex glass beaker and exposed to irradiation for 5 h 
at room temperature using an ultrasonic bath. Completion 
of the reaction was marked by the precipitation of a solid 
from the initially obtained clear and homogenous mixture 
in toluene. The pyridazinium salt was isolated by filtration 
and washed three times with ethyl acetate to remove any 
unreacted starting materials and solvent. Finally, the salt DPI 

was dried at reduced pressure to remove all volatile organic 
compounds (Figs. 1, 2).

DPI: Yellow crystals, MP 83–84 °C, 1H NMR (DMSO, 
400 MHz,): δ = 0.85 (t, 3H, CH3), 1.24–1.30 (m, 14H, CH2), 
1.99 (quint, 2H, CH2), 4.82 (t, 2H, NCH2), 8.63 (t, 1H, CH), 
8.76 (t, 1H, CH), 9.65 (d, 1H, CH), 9.97 (d, 1H, CH); 13C 
NMR (DMSO, 100 MHz,): δ = 14.4 (CH3), 22.7 (CH2), 28.8 
(CH2), 29.2 (CH2), 29.3 (CH2), 29.4 (CH2), 29.5 (CH2), 29.9 
(CH2), 31.7 (CH2), 65.0 (CH2), 136.5 (CH), 137.0 (CH), 
150.3 (CH), 154.9 (CH); IR (νmax cm−1) 3129 (C–H, sp2), 
1559–1469 (C=C), 1163 (C–N), 1080 (C–O); LCMS (M–I) 
221.2 found for C14H25N2

+.
TPI: Pyridazine (1eq) and 1-iodotetradecane (1eq) were 

placed in a glass beaker and exposed to ultrasonic irradiation 
for 5 h at room temperature as mentioned above for DPI. 
Completion of the reaction was marked by the precipitation 
of a solid from the initially obtained clear and homogenous 
mixture in toluene. The pyridazinium salt was isolated by fil-
tration and washed three times with ethyl acetate to remove 
any unreacted starting materials and solvent. Finally, the salt 
TPI was dried at a reduced pressure to remove all volatile 
organic compounds (Figs. 3, 4).

TPI: white crystals, MP 117–119 °C, 1H NMR (DMSO, 
400 MHz,): δ = 0.84 (t, 3H, CH3), 1.21–1.33 (m, 18H, CH2), 
1.37 (m, 4H, CH2), 2.10 (quint, 2H, CH2), 5.05 (t, 2H, CH2), 
8.80 (t, 1H, CH), 9.00 (t, 1H, CH), 9.52 (d, 1H, CH), 10.95 
(d, 1H, CH); 13C NMR (DMSO, 100 MHz,): δ = 19.2 (CH3), 
27.3 (CH2), 30.6 (CH2), 33.6 (CH2), 33.8 (CH2), 33.9 (CH2), 
34.6 (CH2), 36.4 (CH2), 69.8 (CH2), 141.2 (CH), 141.8 
(CH), 155.1 (CH), 159.8 (CH); IR (νmax cm−1) 3132 (C–H, 
sp2), 1561–1472 (C=C), 1165 (C–N), 1083(C–O); LCMS 
(M–I) 277.2 found for C18H33N2

+. Scheme 1 represent the 
structures of ionic liquids (DPI) and (TPI).

2.3 � Electrochemical Measurements

Electrochemical experiments were performed using a Radi-
ometer analytical (VoltaLab-PGZ 100), coupled to a com-
puter equipped with a software Voltamaster 4. The experi-
ments were performed in a three-electrode cell where the 
working electrode was a carbon steel with a surface area of 
1 cm2. Before each experiment, the electrode was polished 
with emery paper until 1500 grade and cleaned with distilled 
water. The counter electrode used was a platinum plate and a 
saturated calomel electrode (SCE) was used as the reference 
electrode. The measurements of electrochemical impedance 
spectroscopy (EIS) were performed using AC signals of 
amplitude 10 mV peak to peak at different conditions in the 
frequency range of 100 kHz–10 mHz.

The charge transfer resistance Rct was obtained from the 
diameter of the semicircle in the Nyquist representation. 
Thus, the inhibition efficiency was calculated using the fol-
lowing equation:
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where Rct and Rct(inh) are the charge transfer resistances in the 
absence and in presence of inhibitor, respectively.

2.4 � Quantum Study

Quantum chemical computations were carried out by den-
sity function theory (DFT) using 6-31G (d, p) basis set for 
all atoms. All the calculations were carried out with Gaussian 
09W package. The following quantum chemical parameters 
were acquired: EHOMO, ELUMO, the energy gap (∆E), electron-
egativity (χ), global hardness (η), global softness (σ), fraction 
of electrons transferred (∆N), and the dipole moment (µ).

The absolute electronegativity (χ) is a measure of the power 
of an atom or a group of atoms to attract electrons to itself and 
can be approximated as follows:

E% =
Rct − Rct(inh)

Rct

× 100,

The hardness (η) and softness (σ) are global chemical 
descriptors measuring the molecular stability and reactivity 
and are given in the following equations:

The dipole moment (µ) is another index that is often used 
for the prediction of a corrosion inhibition process. It is a 
measure of polarity in a certain bond and it is related to the 
distribution of electrons in a certain molecule [27]. The frac-
tion of electrons transferred from the molecule to the surface 
of metal (ΔN) was estimated according to Pearson theory [28] 
by using the following equation:

� =
1

2
(EHOMO + ELUMO).

� =
1

2
(EHOMO − ELUMO); � = 1∕�.

ΔN =
�Fe − �inh

2(�Fe + �inh)
,

Fig. 1   1H NMR spectrum of 1-decylpyridazin-1-ium iodide (DPI)
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Fig. 2   13C NMR spectrum of 1-decylpyridazin-1-ium iodide (DPI)

Fig. 3   1H NMR spectrum of 1-tetradecylpyridazin-1-ium iodide (TPI)
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where a theoretical value for the electronegativity of bulk 
iron was used, χFe = 7 eV, and a global hardness of ηFe = 0 
was used.

3 � Results and Discussion

3.1 � Effect of Inhibitor Concentration

Figure 5 illustrates the representative Nyquist plots of car-
bon steel in 1.0 M HCl solution in the absence and presence 
of various concentrations of DPI and TPI after immersion 
for 30 min at 303 K.

As shown in Fig. 5, it can be observed that the diameter of 
the capacitive loop in the presence of the inhibitors is greater 
than in the uninhibited solution and increases with increase 
in the concentration of inhibitors. It is obvious that these 
capacitive loops are not perfect semicircles which can be 
attributed to the frequency dispersion effect as a result of the 
roughness and inhomogeneity of the steel surface [29–31].

The equivalent circuit models used to fit the experimen-
tally obtained Nyquist data are shown in Fig. 6. Generally 
the frequency dispersion is frequently modeled by using con-
stant phase element ( Q ), the circuit used for compound DPI 
(a) has a CPE constant Qr which is in parallel with charge 
transfer resistance Rct and together they are in series with the 
solution resistance Rs . The circuit obtained for TPI (b) has Scheme 1   Schematic representation of the structures of ionic liquids 

(DPI) and (TPI)

Fig. 4   13C NMR spectrum of 41-tetradecylpyridazin-1-ium iodide (TPI)
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an additional resistance component ( Rf ) and a second CPE 
(Qdl) which are not observed for circuit (a).

The equation which relates the double-layer capacitance 
(Cdl) to the transfer charge resistance Rct and the CPE constant 
(Q) is described as follows [32]:

where Q is the proportional factor and n is the CPE exponent 
which is related to the surface inhomogeneity. The electro-
chemical parameters such as charge transfer resistance Rct, 
double-layer capacitance Cdl, and corrosion inhibition effi-
ciency (IE) are given in Table 1.

It can be observed from the impedance data (Table 1) that 
the value of Rct increases with increase in the concentration 
of inhibitors which also indicates an increase in the corro-
sion inhibition efficiency which attains a maximum value of 
86.7% for DPI and 88.6% for TPI at a concentration of 10−3 M. 
It can also be observed that the double-layer capacitance Cdl 
decreased with increase in the inhibition efficiency which can 
be explained with the adsorption of the inhibitor onto the car-
bon steel surface after the displacement of water molecules 
and other ions which are already adsorbed onto the steel sur-
face. The decrease in the double-layer capacitance Cdl can be 
explained using Helmholtz model [33]:

where � is the dielectric constant of the medium, �0 is the 
permittivity of the free space, S is the effective surface area 
of the working electrode, and d is the thickness of the elec-
trical double layer formed by the adsorbed inhibitors. Con-
sidering the second inhibitor (TPI), the data also illustrate 
an increase in the diameter of the capacitive loop. These 

Cdl =
(

Q × Rct
1−n

)1∕n
,

Cdl =
��0

d
S,

results suggest that a protective film of inhibitor molecules 
was formed on the electrode surface [34, 35].

As an example, the fitted Bode diagrams for inhibited 
solution at the optimum concentration are presented in Fig. 7 
(DPI) and Fig. 8 (TPI).

From the results it can be observed that the Bode and 
phase angle plots for DPI show a one-time constant process 
while those for TPI show a two-time constant process [36, 
37] The relaxation time of a surface state is the time required 
for the return of the charge distribution to the equilibrium 
point after an electrical disturbance, it can be defined as [38]

The adsorption of an inhibitor molecule requires some 
time to attain equilibrium. If this time is very small, only the 
time constant for double-layer charging would be expressed 
as observed in case of DPI. The appearance of a second time 
constant in case of TPI can be attributed to the requirement of 
more time by the system to reach the adsorption equilibrium. 
In this case, a process having an additional time constant is 
added to the double-layer charging process. It is obvious that 
in such case the description cannot be made using the simple 
model of Fig. 1a and therefore to accurately model the process, 
another circuit is used which is given in Fig. 1b [37].

3.2 � Adsorption Isotherm

In order to understand the interaction between carbon steel 
surface and the inhibitors, the adsorption isotherms are used. 
The adsorption process depends on several parameters such 
as the nature and charge of the corroding metal surface, the 
inhibitor’s chemical structure, and the charge distribution in 
the inhibitor molecules. In the present work, several adsorp-
tion isotherms were tested and the best fit was provided by the 
Langmuir isotherm where a straight line was obtained from the 

� = CdlRct.
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Fig. 5   Nyquist plots and simulation curves of carbon steel in 1.0 M HCl with different concentrations of DPI (R1) and TPI (R2) at 303 K
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plot of Cinh∕� versus Cinh with a slope around unity (Fig. 9). 
The Langmuir isotherm can be expressed as

Cinh

�
=

1

K
+ Cinh,

Kads =
1

55.5
exp

(

−
ΔG0

ads

RT

)

,

where Kads is the adsorption–desorption equilibrium con-
stant and ΔG0

ads
 is the standard free energy of adsorption, 

55.5 is the value of the molar concentration of water in the 
solution [39].

From literature, the adsorption of an inhibitor is 
described as chemisorption if the ΔG0

ads
 values are in order 

of (− 40 kJ mol−1) or higher and physisorption if ΔG0
ads

 val-
ues at around − 20 kJ mol−1 [40, 41] or lower. As can be 
observed from Table 2, the calculated ΔG0

ads
 value around 

Fig. 6   Equivalent electrical cir-
cuit model used to fit impedance 
spectra of DPI (a) and TPI (b)

Table 1   Impedance parameters of carbon steel in 1.0 M HCl containing different concentrations of the studied compounds

Medium Concentra-
tion (M)

Rs (Ω cm2) Rct (Ω cm2) Rf (Ω cm2) Qr (µF sn−1) Qdl (µF) n Cdl (µF cm−2) IE%

1.0 M HCl 00 1.123 34.7 *** 419 0.773 121 –
DPI 10−6 1.506 143 *** 153 – 0.716 33.76 75.7

10−5 1.104 147 *** 150 – 0.610 52.83 76.4
10−4 1.412 258 *** 172 – 0.539 12.09 86.5
10−3 2.259 261 *** 148 – 0.709 39.19 86.7

TPI 10−6 3.382 198 52.88 233 2.011 0.630 38.25 82.4
10−5 1.998 225 22.35 251 3.361 0.643 50.89 84.5
10−4 4.722 302 47.73 161 3.642 0.656 32.97 88.5
10−3 3.155 306 39.00 199 2.989 0.689 56.26 88.6
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Fig. 7   Bode diagrams for carbon steel/1.0 M HCl + 10−3 M of DPI
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− 40 kJ mol−1 signifies that the adsorption mechanism of 
both the inhibitors tested on carbon steel surface in 1.0 M 
HCl solution is distinctively a chemisorption [42–44].

3.3 � Effect of Temperature

The temperature is one of the parameters which can change 
the interaction between the carbon steel surface and the 
acidic solution without and with inhibitor. The Nyquist plots 
of carbon steel in 1.0 M HCl with and without different con-
centrations of inhibitors in the temperature range from 303 
to 333 K are shown in Fig. 10.

The Nyquist diagrams obtained for DPI at different tem-
peratures obey to the circuit given in Fig. 1a. On the other 
hand, the Nyquist plots of inhibitor (TPI) at different tem-
peratures follow the second circuit, as it was observed for 
the study of the effect of concentration. The various elec-
trochemical parameters were calculated and are summarized 
in Table 3.

It can be observed from Table 3 that the Rct increased 
with increase in temperature in inhibited solutions. Con-
sequently, the values of inhibition efficiency increased to 
attain 95.7% at 10−3 M concentration at 333 K. This may be 
attributed to the formation of a protective film of TPI on the 
electrode surface [45–47].

On the other hand, the values of surface coverage θ for 
different inhibitor concentrations were tested by fitting to 
various isotherms but the finest one obtained is Langmuir 
isotherm because it had a slope around unity. The param-
eters of adsorption are shown in Table 4.

The values of ΔG0
ads

 for the studied inhibitors is greater 
than − 40 kJ/mol which indicates that TPI molecules may 
get adsorbed with a chemisorption interaction type as 
reported in literature. In other words, this inhibitor may get 
adsorbed onto the metal surface by making strong bonds 
[48–50] (Fig. 11).
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Fig. 9   Langmuir adsorption isotherm of DPI (R1)  and TPI  (R2) in 
1.0 M HCl at 303 K

Table 2   Thermodynamic parameters for the adsorption of DPI and 
TPI in 1.0 M HCl at 303 K

Inhibitors Slope K (M−1) ΔG0

ads
 (KJ mol−1)

DPI 1.15 1.43 × 106 − 45.8
TPI 1.12 3.76 × 106 − 48.2
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Fig. 10   Nyquist plots for carbon steel in 1.0 M HCl without and with optimal concentration of TPI (R2) at different temperatures
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3.4 � Effect of Immersion Time

The electrochemical impedance spectroscopy is a useful 
technique for testing the corrosion inhibition process at 
long immersion time. These experiments were carried out 

in order to follow the evolution of phenomena occurring at 
the metal–solution interface at different immersion times 
from 1/2 to 12 h. Figure 12 shows the evolution of the 
impedance spectra at different immersion times in 1.0 M 
HCl solution containing optimal concentrations of the 
tested inhibitor TPI.

The electrochemical impedance parameters given in 
Table 5 show the variation of the Rct as a function of the 
immersion time. The Rct increases with increase in immer-
sion time to achieve a value of 1077 Ω cm2 after 6 h and 
then decreases slightly afterwards to attain 1030 Ω cm2 
after 12 h of immersion time. This behavior indicates 
that the protective film formed was getting strong until 
6 h. In other words, the protective properties of the film 
formed on the surface of C-steel are reinforced until 6 h 

Table 3   Impedance parameters of carbon steel in 1.0 M HCl at dif-
ferent temperatures without and with different concentrations of TPI

System T (K) C (M) Rct (Ω cm2) Cdl (µF cm−2) IE%

HCl 313 1 27.1 75.65 –
323 1 17.0 74.1 –
333 1 8.7 99.45 –

TPI 313 10−6 37.6 84.63 27.9
10−5 63.6 22.9 57.3
10−4 210.0 1.53 87.1
10−3 268.3 2.22 89.0

323 10−6 28.3 30.63 39.9
10−5 48.0 33.5 64.5
10−4 87.6 8.17 80.5
10−3 196.0 1.99 91.3

333 10−6 21.4 24.68 59.3
10−5 26.7 23.37 67.4
10−4 134.0 3.72 93.5
10−3 204.6 1.29 95.7

Table 4   Thermodynamic parameters for the adsorption of TPI in 
1.0 M HCl at different temperatures

Inhibitor Tempera-
ture (K)

Slope K (M−1) ΔG0

ads
 (kJ mol−1)

TPI 313 1.11 2.58 × 105 − 41.5
323 1.08 1.46 × 05 − 40.1
333 1.04 3.88 × 105 − 42.5
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Fig. 11   Langmuir adsorption isotherm of TPI in 1.0 M HCl at differ-
ent temperatures
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Fig. 12   Impedance spectra obtained after different immersion times 
in 1.0 M HCl solution with optimal concentration of TPI

Table 5   Electrochemical impedance parameters for C-steel in 1.0 M 
HCl solution with and without optimum concentration of inhibitor at 
different immersion times

Medium Time (h) Rs (Ω cm2) Rct (Ω cm2) Cdl (µF/cm2) IE%

1.0 M HCl ½ 0.5 37.7 105 –
1 1.2 28 142 –
2 1.01 23 226 –
4 1.02 20 291 –
6 0.99 19.5 302 –
12 1.3 11.7 345 –

TPI ½ 3.1 598 20.5 93.6
1 3.4 923 18.8 96.9
2 4.2 958 18.2 97.5
4 9.2 1025 16.1 98.0
6 5.2 1077 9.3 98.1
12 5.4 1030 14.9 97.6
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of immersion time. Further, this film is liable to dissolve 
at higher immersion time [51–53].

3.5 � DFT Study

The experimental results provide evidence of the inhibition 
efficiency of the molecules tested in this study, which may 
act through a chemical adsorption mechanism. From the 
experimental results, it was observed that the TPI showed 
a higher corrosion inhibition efficiency compared to DPI. 
Therefore, to obtain a thorough understanding of the elec-
tronic interaction between the inhibitor molecules and the 
metallic surface, several theoretical parameters such as the 
molecular orbital energies (EHOMO, ELUMO) were determined 
and are listed in Table 6.

The frontier molecular orbital surfaces provide informa-
tion about the highest occupied molecular orbital (HOMO) 
of the inhibitor that may be responsible for donation of 
electrons to the vacant d-orbital of the metal and the low-
est unoccupied molecular orbital (LUMO) of the inhibitor 

that may be liable to accept a pair of electrons from an 
electron-rich metal surface during back-bonding. Thus, 
smaller values of the ∆E correspond to higher inhibition 
efficiencies of the compound [54–57] which explains the 
high stability of the compound in the complex formed with 
the mild steel surface. The HOMO and LUMO density dis-
tributions of the optimized structures are shown in Fig. 13. 
It can be observed that the HOMO of DPI and TPI are 
essentially localized on the carbon chain. In contrast, The 
LUMO surfaces of these inhibitors are mostly distributed 
on the Pyridazinium ring. This may be due to the pres-
ence of highly electronegative nitrogen atoms in the Pyri-
dazinium ring, which can make the ring to be relatively 
electron-deficient and the fact that it is a cationic moiety. 
Therefore, only the cations interact with the metal surface 
by the pyridazine ring which can be explained by the trans-
fer of the electron from d-orbital of Fe to vacant orbital 
of pyridazine ring in purpose to form feedback coordinate 
bond [57]; this can be further confirmed by the negative 
value of ∆N as shown in Table 6.

Table 6   Quantum chemical parameters of the studied inhibitors

Inhibitors Quantum chemical parameters

Dipole moment 
(Debye)

EHOMO (eV) ELUMO (eV) ΔE (eV) Hardness (η) Softness (σ) Electronega-
tivity (χ)

∆N

DPI 21.027 − 9.899 − 7.088 2.811 1.405 0.711 8.494 − 0.531
TPI 32.552 − 9.187 − 7.084 2.102 1.051 0.951 8.135 − 0.540

Fig. 13   Frontier molecule orbitals density distributions of DPI and TPI at B3LYP/6-31G (d, p) level of theory
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The data provided in Table 6 show that TPI has a higher 
value of EHOMO which shows a higher tendency to donate 
electrons to the metal surface and could be the reason behind 
the higher obtained inhibition efficiency of TPI compared 
to DPI. Moreover, the results in Table 6 show that TPI has 
a lower energy gap (ΔE) than DPI. This means higher reac-
tivity with mild steel, which is again in agreement with its 
higher inhibition efficiency obtained experimentally. Further, 
a lower value of global hardness and consequently a higher 
value of global softness suggest better reactivity of TPI 
compared to DPI. The fraction of electrons transferred (∆N) 
describes the inhibition achieved from electron donation. If 
∆N < 3.6, the inhibition efficiency increases with increasing 
electron-donation ability to the metal surface [58–60] which 
explains the higher reactivity of inhibitor TPI than DPI. Also, 
as shown in Table 6, the µ for ATP cation is higher than 
that for DPI which owing to the dipole–dipole interaction 
between inhibitor molecules and metal surface, the higher 
value of µ in case of TPI may lead to stronger inhibition.

4 � Conclusions

The inhibition effects of pyridazine derivatives against cor-
rosion of carbon steel were tested using different concentra-
tions and at various temperatures in 1.0 M HCl by electro-
chemical impedance spectroscopy (EIS). Both ionic liquids 
inhibit corrosion with inhibition efficiency higher than 86% 
at 10−3 M and which increased to 95.7% at 10−3 M at 333 K 
for TPI. The charge transfer resistance showed an increase 
with a decrease in the double-layer capacitance which indi-
cated the adsorption of the inhibitors on the metal/ solu-
tion interface. The adsorption became more remarkable 
with increase in temperature as observed by EIS data. The 
adsorption of inhibitors tested on to the steel surface in the 
studied acidic solution obeyed the Langmuir isotherm and 
the values of ΔG0

ads
 indicate that both the inhibitors undergo 

chemical adsorption over the metal surface leading to the 
formation of a strong protective film. This adsorption is 
more pronounced at longer immersion time because this 
inhibitor achieves good inhibition efficiency although after 
an immersion period of 12 h. Quantum chemical calcula-
tions were used to provide a molecular level understanding 
of the mechanism of the interaction of the inhibitor mol-
ecules with steel surface and the computational data showed 
a good agreement with the experimentally obtained results.
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