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Abstract
In three experiments, we explore human and simulated participants’ potential for deriving and merging analogous forms of stimulus
relations. In the first experiment, five human participants were exposed to compound stimuli (stimulus pairs) by way of an
automated yes–no protocol. Participants received discrimination training focusing on four three-member stimulus classes, where
only two of the four classes were correctly related algebraic expressions. Training was intended to establish generalized identifica-
tion of novel correct stimulus pairs and generalized identification of novel incorrect stimulus pairs. In Experiment 2, we employed a
three-layer connectionist model (CM) of a yes–no protocol aimed at training and testing an analogous set of stimulus relations. Our
procedures were aimed at assessing a neural network’s ability to simulate derived stimulus relations consistent with the human
performances observed in Experiment 1. In Experiment 3, we employed a four-layer CM to compute the number of training epochs
required to attain mastery. As with our human participants, our neural network required specific training procedures to become
proficient in identifying stimuli as being members or nonmembers of specific classes. Outcomes from Experiment 3 suggest that the
number of training epochs required to attain mastery for our simulated participants corresponded closely with the number of training
trials required of our human participants during Experiment 1. Moreover, generalization tests revealed that human and simulated
participants exhibited analogous response patterns.We discuss the evolving potential for CMs to emulate and predict human training
requirements for deriving and merging complex stimulus relations during generalization tests.
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Generalization tests

In the behavior analytic literature, it is not unusual for applied
and basic researchers to describe derived relational responding
as a behavioral phenomenon confined to humans with some
minimal level of verbal capability (e.g., Iversen, 1993, 1997;
Iversen, Sidman, & Carrigan, 1986; Hayes et al., 2001); how-
ever, there are several studies suggesting that non-verbal or-
ganisms may be capable of deriving stimulus relations in a

manner that is analogous to outcomes seen in human perfor-
mances (e.g., Frank & Wasserman, 2005; Urcuioli, Lionello-
DeNolf, Michalek, & Vasconcelos, 2006; Urcuioli & Swisher,
2015). Investigations in this area frequently employmatching-
to-sample (MTS) protocols, exposing participants to an array
of conditional discriminations using arbitrary sample and
comparison stimuli (e.g., nonsense syllables or abstract
shapes). In more didactic, academically oriented applied stud-
ies, training, and test stimuli are selected on the basis of the
participants being unfamiliar with particular academic sym-
bols or concepts. Irrespective of the type of stimuli employed
within a given experimental preparation, participants trained
by way of conventional MTS protocols select a correct com-
parison, B1 in the presence of A1. In a similar way, C1 is
trained as the correct comparison response in the presence of
A1. Following sufficient training, symmetric relations are
confirmed when participants exhibit an increased likelihood
of selecting A1 when B1 and C1 are presented. Transitivity is
established when B1 is selected given C1, and equivalence is
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confirmed when C1 is selected given B1 (Sidman & Cresson,
1973; Sidman & Tailby, 1982). Although it is often the case
that MTS protocols include training and subsequent testing of
symmetric relations before assessing transitive or equivalence
relations, it has been demonstrated that establishing symmetry
may not be essential to the emergence of equivalence (e.g.,
Arntzen & Holth, 1997).

Unlike the MTS protocol, the yes–no training method dis-
plays stimulus pairs (often referred to as compound stimuli or
stimulus–stimulus relations). During each trial, participants
are exposed to two adjacent stimuli and attempt to select com-
pound stimuli that are members of the same class. For exam-
ple (given that A1B1 and A1C1 are members of the same
class), during randomized presentations of onscreen com-
pound stimuli, participants click one of two buttons labeled
YES and NO. Within the training condition, A1B1 are
displayed adjacent to one another on the computer screen as
compound stimuli, and clicking the “yes” button produces
onscreen reinforcement. Likewise, A1C1 are displayed side-
by-side onscreen as compound stimuli, and clicking the “yes”
button produces onscreen reinforcement. Subsequent to train-
ing, during the assessment of derived relations, untrained
stimulus pairs (B1C1) are displayed, and in the absence of
programmed reinforcement, the participant identifies these
stimuli as belonging (or not belonging) to the same class (cf.
Fields, Reeve, Varelas, Rosen, & Belanich, 1997).

Independent of training format, innovative explorations of
derived stimulus relations have been a growing source of lab-
oratory and field investigation throughout behavior analysis.
Most of the current studies have employed humans as exper-
imental participants. However, several researchers have ex-
plored derived stimulus relations using artificial neural net-
work (NN) models, often referred to as connectionist models
(CMs), to simulate and forecast task performances observed
among human participants. Briefly stated, CMs are data-
driven algorithms that detect patterns in complex datasets
and provide a computational representation of evasive linear
and nonlinear relationships among variables of interest
(Hagan, Demuth, Beale, & De Jesús, 2002). This feature often
allows them to reproduce or predict many of the performance
patterns observed among human participants (see Barnes &
Hampson 1993; Lyddy & Barnes-Holmes, 2007; Ninness,
Ninness, Rumph, & Lawson, 2018; Tovar & Torres-Chavez,
2012; Tovar & Westermann, 2017).

From some behavioral perspectives, neural network research
is not congenial with the physiological components of human
learning. As mentioned by Burgos (2007), “. . . the models are
not informed by neuroscientific knowledge about the biological
structure and functioning of brains” (p. 218). However, several
investigations, such as those conducted by Tovar and
Westerman (2017), suggest that network learning corresponds
closely with synaptic adjustments that occur during the biolog-
ical acquisition of equivalence relations. Subsequent to

developing a training model based on Hebbian learning princi-
ples, Tovar andWestermann conducted neural network simula-
tions of three classic equivalence experiments based on out-
comes from the existing literature (Sidman & Tailby 1982;
Devany et al., 1985; Spencer & Chase, 1996). In all three sim-
ulations, the models’ connection weights were analyzed by
comparing them to the published records of human partici-
pants’ speed and accuracy during training and testing (cf. Lew
& Zanutto, 2011). This approach is particularly robust in the
sense that, when having access to published investigations that
contain sufficient records of training and test outcomes, this
model provides a strategy for predicting human performances
in the acquisition of equivalence relations. Independent of the-
oretical orientation, the current growth of neural network appli-
cations throughout academia makes it likely that this technolo-
gy will play a critically important role in the experimental anal-
ysis of human behavior (see Greene, Morgan & Foxall, 2017,
for a general discussion).

As will be described in greater detail within Experiment 2
and Experiment 3, for a CM to learn the relations among
stimuli, it must undergo a process of supervised learning. As
an overview, the neurons (nodes) within each layer of the CM
must be fully connected such that they are able to continually
update values as they pass back and forth across all layers of
the CM network. The connections among neurons within each
of the layers in the CM are weighted, and these weights are
continually modified as they are passed forward (feedforward)
and backward (backpropagation) through the layers of the
network until the best set of weights can be computed. In
supervised learning, the connections between layers are mod-
ified in an “attempt” to decrease discrepancies between the
known (target) values and the CM’s calculated values. If train-
ing is successful, the CM should be able to analyze new input
values in the absence of supervision. That is to say, a well-
trained CM should be able to model similarly structured but
previously unseen input values and generate accurate
outcomes—provided that these new values are representative
of the data employed during training.

While simulating human behavior by way of computer al-
gorithms might have been viewed as fodder for an interesting
science fiction script fewer than two decades ago (e.g.,
Spielberg, 2001), the culture is now awash in neural network
applications aimed at modeling a wide range of human behav-
iors. To mention only a few from a continually expanding num-
ber and variety of examples, neural networks have been applied
successfully to predicting congressional voting patterns
(Ninness et al., 2012) and consumer behaviors (Greene,
Morgan, & Foxall, 2017). Recently (DNN) algorithms have
gone beyond forecasting human performances to generating
reliable explanations for specific behaviors in the area of health
social networks (Phan, Dou, Piniewski, & Kil, 2016).

With the rapid evolution of artificial intelligence and
computational modeling systems throughout the academic
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and scientific communities, it is inevitable that neural network
technology will play a pivotal role in the experimental
analysis of complex stimulus relations. Indeed, there have
been several profound behavior analytic investigations using
neural network procedures, and several of these studies have
focused on identifying the extent to which CMs are able to
derive complex stimulus relations consistent with those seen
in human performances. Barnes and Hampson (1993a, b)
were among the first behavior analytic researchers to explore
and demonstrate a CM’s potential for simulating derived stim-
ulus relations seen during investigations of human participants
as originally conducted by Steele and Hayes (1991) and
Wulfert and Hayes (1988). These findings were followed by
those of Cullinan, Barnes, Hampson, and Lyddy (1994), who
developed a CM capable of simulating the emergence of
equivalence in combination with a transfer of sequence func-
tion consistent with the performances demonstrated by eight
college students. Later, Lyddy, Barnes-Holmes, and Hampson
(2001) designed a CM capable of simulating unique and syn-
tactically correct response sequences consistent with active
and passive voice. Later, in an attempt to contrast linear versus
one-to-many MTS training procedures, Lyddy and Barnes-
Holmes (2007) confirmed that the one-to-many method re-
quired approximately half the training time as the linear meth-
od; these findings were commensurate with human response
patterns observed under similar training conditions (e.g.,
Arntzen & Holth, 1997).

Along similar lines, Tovar and Torres-Chavez (2012) con-
ducted combined human and CM experiments. Using an au-
tomated yes–no procedure, they employed arbitrary stimuli
(diversified shapes) to examine the formation of equivalence
classes by human participants. They then conducted an analog
CM experiment of equivalence class formation by way of six
computer simulations. Five of these simulations exhibited
class formations consistent with human participants within
the same investigation. Vernucio and Debert (2016) conducted
a systematic replication of the Tovar and Torres-Chavez study
using the same input values; however, rather than a yes–no or
MTS protocol, their CM analysis was conducted by way of a
go/no-go preparation. That is, the CM only made “yes” re-
sponses when presented with related stimuli. Similar to the
outcomes obtained by Tovar and Torres-Chavez, their find-
ings confirmed that four of six simulated participants formed
stimulus relations consistent with equivalence.

Advancing this line of research, our rapidly evolving
behavioral and computer sciences invite a comprehensive,
rigorous, and unrestricted experimental analysis of behavior.
Even the early research by Bullinaria (1997) illustrates several
neural network strategies that permit a more intensive and
intrusive experimental analysis than is possible when
employing human participants. For instance, if we disrupt
the CM software connections that are responsible for the abil-
ity to articulate printed material, the CM’s subsequent speech

impediments are consistent with the compromised vocaliza-
tions uttered by humans suffering cerebral insult or dyslexia.
As described by Bullinaria (1997, p. 281), “The obvious
forms of damage we should consider are the removal of ran-
dom connections, the removal of random hidden units, and the
addition of random noise to all the weights.” Obviously, dam-
aging or even interfering with human learners by removing or
adding internal components is not an acceptable experimental
manipulation; however, such strategies are commonly
employed during CM simulations of human behavior.
Additionally, environmental artifacts commonly interfere with
our best efforts to conduct arduous experimental procedures.
Lyddy and Barnes-Holmes (2007, p. 15) suggest that “consid-
ering such restrictions on a full understanding of the develop-
ment of stimulus equivalence, other sources of evidence re-
garding the effect might warrant consideration. One such
source might be afforded by means of computational
modeling.”

Recently, we (Ninness et al., 2018) developed and de-
scribed a working prototype of a CM neural network dubbed
Emergent Virtual Analytics (EVA). This article reviewed the
quickly evolving technology that allows researchers to em-
ploy neural networks to simulate and predict human behav-
iors. Based on our review of the existing CM technology, one
area that appears not to have been sufficiently explored is that
of training and deriving stimulus relations pertaining to aca-
demic material. This is particularly apparent when training
academic stimulus relations that entail rule-following. In other
words, during conventional MTS or yes–no protocols, partic-
ipants often are exposed to a series of training trials in which
arbitrary (nonsense) sample stimuli are presented in conjunc-
tion with comparison stimuli. Here, training usually is con-
ducted in the absence of rule-following procedures. For exam-
ple, during training, participants attempt to select a correct
arbitrary stimulus from a display of comparison stimuli while
obtaining accuracy feedback in the form of putative reinforce-
ment or punishment. Although this is a valuable strategy for
training arbitrary stimulus relations within the realm of basic
research, it is not a functional or realistic strategy for teaching
basic or advanced mathematical or other academic relations.
As noted by Ninness et al. (2005, p. 5),

. . . practically speaking, mathematics instructors (or
designers of computer-assisted mathematics software)
would find it untenable to ask their students or software
users to become skilled at complex mathematical oper-
ations without introducing them to precise rules for solv-
ing the problems in question.

From an instructional perspective, for many human partic-
ipants, there exists a large body of mathematical symbols and
expressions (as well as other abstract academic content) for
which verbally able participants are experimentally naïve. If
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academic material rather than arbitrary stimuli is employed in
the training of stimulus relations, pretesting can be conducted
in such a way as to demonstrate that the participant is not
familiar with the experimental stimuli and has no
preconceived notions regarding their meanings.

When training and testing complex academic material
by way of stimulus relations, class merger is an espe-
cially valuable outcome during tests of generalization
(e.g., Fienup, Covey, & Critchfield, 2010); however, to
date, there have been no published investigations ex-
ploring the common processes required for generating
class merger by human and simulated participants. In
this article, we attempt to identify some of the analo-
gous processes by which human and simulated partici-
pants can form larger and more complex combinations
of derived stimulus relations.

General Method

Overview

In three experiments, we conducted analogous preparations
using compound stimuli within yes–no procedures. All exper-
iments were designed as single-subject studies employing five
human participants in Experiment 1 and five simulated
participants in Experiments 2 and 3. Expanding on studies
conducted by Fienup and Critchfield (2011) and Mackay,
Wilkinson, Farrell, and Serna (2011), our first two experi-
ments explored strategies for generating a class merger among
human and simulated participants. Experiment 3 went beyond
CM replication of human task performances and permitted the
exploration and prediction of one of the central requirements
for emulating human behavior, assessing the number of train-
ing epochs required for simulated participants to attain mas-
tery and comparing these outcomes with the number of trials
required by human participants to attain mastery.

We argue that for many basic and applied research designs,
it is reasonable to employ mathematical or other forms of
academic stimuli that have no prior associations in the partic-
ipants’ learning history. In addition, we discuss how such
research designs can be facilitated with the help of artificial
neural networks. The analysis of human skills in Experiment 1
brings us closer to an understanding of the operations needed
to conduct computer simulations of analogous training and
test procedures. In Experiments 2 and 3, we draw together
various components of Experiment 1 and move toward simu-
lating derived stimulus relations within connectionist models.
Our focus is on exploring the ways in which computer models
are capable of accurately and efficiently emulating, vetting,
and predicting derived stimulus relations as observed among
human participants.

Experiment 1

Following pretesting, five human participants were ex-
posed to a series of mathematical compound stimuli by
way of a computer interactive yes–no procedure. Based
on pretest outcomes, participants who were unfamiliar
with exponential algebraic relations received conditional
discrimination training aimed at differentiating four
three-member stimulus classes where only two of the
four classes were correctly related algebraic exponential
expressions. Two other classes were composed of alge-
braic expressions that were unrelated, and the expres-
sions within these two classes served as incorrectly re-
lated compound stimuli. During generalization tests, par-
ticipants were assessed on 22 novel algebraic relations.
This assessment included deriving 10 accurate algebraic
relations and 12 inaccurate algebraic stimulus relations.

Method

Participants Five hospital staff members, ages 22 to 45 years,
served as participants in this investigation. All participants
signed informed consents indicating that they would be finan-
cially compensated for their service (roughly 1.5 times their
hourly salary) immediately on completion of the study, and
that they were free to terminate the experiment at any time and
receive partial compensation consistent with the amount of
time they had engaged in the study. Participants were in-
formed that they could earn additional monetary reinforce-
ment (up to US$25.00) based on their level of accuracy during
the generalization test of novel relations. They were likewise
informed that they would be debriefed regarding their individ-
ual performances as well as on the underlying theme of the
experiment at its conclusion. As verified by self-report and
hospital administration records, participants met the following
criteria: (a) employed as hospital staff during the time of the
experiment, (b) described themselves as being unfamiliar with
algebraic operations, and (c) having no form of sensory or
physical impairment that might interfere with their abilities
to interact with the automated training system (i.e., keyboard,
mouse, and computer screen). During the pretest, participants
responded to a series of stimulus pairs in the form of expo-
nential expressions. The pretest consisted of 30 computer-
interactive items similar to those employed during training;
however, the pretest items were composed of expressions con-
taining entirely different fractional exponents. A participant
who performed at or above 60% correct was not permitted
to participate in the study. Note that at the time of the study,
participants were unaware that performing well on the pretest
precluded their eligibility for participation in the study. None
of the participants (or pilot participants) performed above 50%
correct on the pretest.
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Setting, apparatus, and experimental stimuli Training was
conducted in a large therapy room within a regional medical
center where the first author had a prior professional affilia-
tion. Participants were positioned so as to allow comfortable
interaction with the 15.6-inch monitor and a mouse connected
to a Lenovo laptop computer (Windows 8.5 operating sys-
tem—2.50 GHz processor). As a matter of contextual detail
only, most participants completed training in approximately
60 min (range: 47–73 min). This training was followed by a
generalization test of novel relations completed by all partic-
ipants in approximately 45 min (range: 39–52 min).

Design and procedure Following informed consent and the
pretest identifying participants’ potential familiarity with al-
gebraic operations and expressions as they pertain to fraction-
al exponents, individuals who demonstrated any acquaintance
with fractional exponents were excused from the experiment.
Figure 1 shows four stimulus classes of algebraic expressions
with fractional exponents. The expressions in Class 1 and
Class 2 are “algebraically equivalent” (Larson & Hostetler,
2001; Sullivan, 2002). That is to say, given a particular nu-
merical value for “a,” all the expressions within Class 1 and
Class 2 have a common solution. Conversely, within Class 3
and Class 4, the B and C expressions are inconsistent as their
solutions are not mathematically equivalent to the A expres-
sion, and these B and C expressions do not produce the same
solutions as those within any of the expressions within Classes
1 and 2.

Automated training and test protocol Training and test soft-
ware developed by the first author in the C# programming
language allowed participants to interact with visually
displayed algebraic compound stimuli while the program re-
corded all participant responses. Our automated training pro-
cedures were somewhat similar to those used by Tovar and
Torres-Chavez (2012) as well as those of Lyddy and Barnes-
Holmes (2007); however, instead of employing arbitrary sym-
bols as training and test stimuli, we employed algebraic

expressions. Also, as previously described, rather than sepa-
rating training into a series of separate stages and phases,
all training and testing procedures were conducted within
one hour and forty-five minutes.

Incorporating the Fisher-Yates shuffle algorithm within our
automated training protocol, we exposed participants to a se-
ries of randomized algebraic compound stimuli. Note that the
Fisher-Yates Shuffle (Fisher & Yates, 1948) resequences all
items within an array (see Durstenfeld, 1964). Using this al-
gorithm, trained relations were presented in a completely ran-
dom sequence at the beginning of training and each time a
participant was reexposed to training. In the center of the
screen, a cumulative point counter increased by one following
a participant’s correct response. Participants were informed
that these points were not directly exchangeable for any type
of financial compensation; rather, the onscreen points served
as an indicator of the participants’ cumulative progress during
the training condition. Figure 2 illustrates five stimulus–
stimulus relations (solid lines) corresponding to the trained
correct responses. As noted by Debert et al. (2009) and
forwarded by Tovar and Torres-Chavez (2012), compound
stimuli within a yes–no training protocol are not the same as
traditional MTS conditional discriminations. Notwithstanding,
the experimental contingencies are analogous to MTS response
requirements since the onscreen presentation of compound
stimuli can be regarded as a sample stimulus while the two
response options can be regarded as comparison stimuli. The
acquisition of these five trained relations created the potential
for the emergence of 10 additional untrained stimulus relations
(illustrated with dashed lines in Fig. 2). Figure 3 illustrates four
incorrect algebraic relations (hashed lines). That is, whereas B3
and C3 produce common solutions, the expression A3 is incon-
sistent with B3 and C3. Likewise, whereas B4 and C4 provide
common solutions, the expression A4 is inconsistent with B4
and C4.

Training Following a brief (2 min) pretraining PowerPoint
presentation illustrating the onscreen locations of the yes–no

Fig. 1. Four classes of algebraic
expressions employed during the
training of accurate and
inaccurate stimulus relations
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buttons, compound stimuli, and direction of the participants’
attention to the locations of the terms power, exponent,
numerator, and denominator as shown on Fig. 4, computer-
interactive training was initiated. At the beginning of the train-
ing session, the computer screen displayed brief instructions.
Participants were asked to read the instructions aloud in the
presence of a researcher. In addition to the instructions below,
each individual participant was shown how to direct the
mouse in order to select “yes” or “no” on the computer screen.

Given that the participant was amenable to continuingwith the
experiment, the mouse–screen demonstration was followed
by an opportunity to take the pretest.

Instructions to participants Participation in the entire study
requires approximately one hour and thirty minutes, and the
results are strictly anonymous. No form of deception is in-
volved in any part of this investigation, and the study entails
no level of risk. The study is not an intelligence test and will
not evaluate any aspect of your intellectual abilities. At the end
of the study, you will receive a complete explanation of your
results. No one else will have access to your particular out-
comes. A researcher will remain inside the room in order to
help you in the event that a technical problem arises, but he (or
she) will not provide you with assistance to answer items on
the test.

After a brief demonstration, the entire study will be con-
ducted by way of interacting with a computer screen and
mouse. At the center of the screen, two math expressions will
be displayed side by side. Your task will be to choose “yes” by
clicking the YES button when you believe that the two ex-
pressions have the same meaning, and you will click the NO
button when you believe that the two expressions do not have
the same meaning. All results will be treated as confidential,
and in no case will responses from individual participants be
identified. For publication purposes, participant results will be
presented in the form of arbitrary/non-sequential numbers.

We anticipate that participation in this study will be some-
what interesting, and no adverse reactions are expected from
this experience. It is important for you to remember, however,
that you are free to terminate your participation at any time
during the course of this experiment, and if you choose to do
so, you will be compensated in accordance with the amount of
time you have invested in the study.

On completion of these instructions, the researcher in-
quired as to whether participants had any questions regarding

Fig. 2. Algebraic stimuli within
Class 1 and Class 2 where the
solid lines designate five trained
relations and the dashed lines
indicate the potential emergence
of ten additional derived relations

Fig. 3. Illustration of incorrect algebraic relations among stimuli (severed
lines) where A3 is inconsistent with B3 and C3. Likewise, A4 is
inconsistent with B4 and C4, and all four of these expressions (B3, C3,
B4, and C4) are inconsistent with all of the expressions in Fig. 2
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the computer-interactive requirements of the experiment. In
addition, participants were reminded that they were free to
terminate at any point during the experiment, and if they did
so, theywould be compensated in accordancewith the amount
of time they had invested in the study.

Participants began training by clicking a start button and
were exposed to a 20 s display of two rules regarding frac-
tional exponents as shown in Fig. 4. Note that the numerical
values employed in this illustration of rules governing frac-
tional exponents did not use the same numerical values as
those employed during the actual training or generalization
test. The rules displayed in Fig. 4 address the relations among
A1B1, A1C1, A2B2, and A2C2; however, these rules do not
address the relation of sameness pertaining to A1A2. These
two rules were shown for 20 s each time a participant was
returned to the beginning of training (see Ninness et al.,
2009, for a discussion of rules and training stimulus relations).

Following the 20-s display of the two rules pertaining to
fractional exponents, the automated program presented a ran-
domized series of compound stimuli in the form of two expo-
nential expressions in conjunction with “yes” and “no” buttons
located at the bottom of each screen. Within the context of
training algebraic expressions by way of a yes–no protocol, it
was deemed appropriate to convey the concept of sameness by
placing an equal sign between the onscreen stimulus pairs. Each
correct response in the form of a button click resulted in a new
presentation of a stimulus pair together with a display of the
current number of correct responses up to that point in training.

With each new display of compound stimuli, participants
clicked the “yes” or “no” button, indicating whether the two

stimuli did or did not yield the same algebraic solution.
Clicking the “yes” button in the presence of compound stimuli
that were members of the same class or clicking the no button
in the presence of compound stimuli that were not members of
the same class produced putative reinforcers in the form of a
brief (1 s) oscillating display of the words “Well Done!!,”
increasing the number of correct responses displayed in the
center of the screen as the program advanced to the next trial.
Conversely, clicking the “yes” button in the presence of com-
pound stimuli that were not members of the same class or
clicking the “no” button in the presence of compound stimuli
that were members of the same class produced mild punish-
ment in the form of a brief (1 s) oscillating display of the
words “Try Again,” returning the displayed accuracy count
to 0 and returning the participant to the start of training.
Figure 5 illustrates an example of correct and incorrect expo-
nential relations. In the upper panel, a correct response pro-
duced points contingent on the participant clicking “yes” in
the presence of a display of accurate compound stimuli. In the
lower panel, an incorrect response generated the words “Try
Again!!”when the participant clicked “yes” in the presence of
inaccurate compound stimuli. Each new start of the automated
training procedure generated the display of the algebraic rules
shown in Fig. 4 (cf. Ninness et al., 2009, 2006), and a newly
randomized presentation of all training compound stimuli be-
gan. To eliminate redundancy in Table 1, the training stimuli
are illustrated in alphanumeric order; however, during the
training condition, the displays of compound stimuli were
presented randomly. Likewise, the onscreen left–right posi-
tions of stimuli alternated randomly.

The denominator of a fractional exponent is the 
same as the index of the radical.

Index              Denominator         Index

The power rule states that to raise a power to a power,
multiply the exponents.

Fig. 4. Algebraic rules displayed
during training
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In the unlikely event that no errors were emitted by a given
participant, the training session ended when that participant
responded correctly to four randomized exposures to the nine
trained relations shown in Table 1. However, all participants
produced incorrect responses during training, and each error
resulted in the participant being returned to the beginning of a
newly randomized training sequence (see Table 2). Here, the
participant was again exposed to the same two rules governing
fractional exponential expressions displayed in Fig. 4; the num-
ber of correct responses was reset to 0, and the participant was
reexposed to a newly randomized series of training stimuli.

Mastery criteria and correction procedures Mastery entailed
correct identification of all accurate (A1B1, A1C1, A2B2,
A2C2, A1A2) and inaccurate (A1B3, A1C3, A2B4, A2C4)
stimulus–stimulus relations. Examination of these mathematical
expressions illustrates the subtle relations among all stimuli in the
experiment. As shown in Figs. 2 and 3, only the values in the
numerator and denominator of the fractional exponents or the
index of the radicalswith integer exponents governed classmem-
berships. Thus, acquisition of these algebraic relations required
multiple exposures to the training stimuli. As mentioned earlier,
when a stimulus pair was incorrectly identified as belonging to or

not belonging to a particular algebraic class, the participant was
returned to the beginning of training whereupon the program
randomized all items prior to initiating retraining.

Generalization test Upon completing training, participants
were assessed over 22 novel stimulus–stimulus relations. We

Fig. 5. Sample screen illustration
of compound algebraic stimuli
employed during training

Table 1 Listing of the nine trained stimulus-stimulus relations. Under
the heading Key, automated tests of accurate stimulus relations are
identified as “Yes.” Tests of inaccurate stimulus relations are identified
as “No”

Item Randomized Stimuli Key

1 Training A1B1 Yes

2 Training A1C1 Yes

3 Training A2B2 Yes

4 Training A2C2 Yes

5 Training A1A2 Yes

6 Training A1B3 No

7 Training A1C3 No

8 Training A2B4 No

9 Training A2C4 No
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refer to this condition as a generalization test because the
assessments go beyond testing participants for class forma-
tion. As shown in Table 3, participants were tested for the
identification of 22 accurate and inaccurate stimulus relations.
This included the identification of 10 accurate stimulus pairs
and the identification of 12 inaccurate stimulus pairs. In order
to preclude presentation order as an artifact relating to partic-
ipant accuracy, the test items were displayed on the partici-
pants’ computer screens in a series of 22 randomized presen-
tations. Each stimulus pair was presented over the course of 20
randomized trials for a total of 440 tests of novel stimulus–
stimulus relations for each participant.

For each participant, the proportion of correct responses for
each stimulus–stimulus relation was obtained by dividing the

total number of accurate responses by the total number of
presentations. As discussed earlier, no feedback was given
during the generalization test of novel stimulus relations; how-
ever, participants were informed prior to training that during
this generalization test condition, the program would monitor
correct and incorrect responses and that they would be com-
pensated in accordance with how well they performed during
both the training and test conditions.

Results

All five participants required several reexposures to the train-
ing protocol before attaining mastery. Table 2 displays negli-
gible scatter of inaccurately selected stimulus–stimulus rela-
tions. Participants 102 and 103 required the fewest
reexposures to training whereas participants 104, 105, and
101 required more training, respectively.

Test of novel relationsNote that a perfect score for a participant
who correctly identified all compound stimuli that are members
of the same class would be 1.0, and a perfect score for identifying
compound stimuli that are not members of the same class would
be 0. Before initiating the experimental conditions, two pilot
participants demonstrated an ability to perform within a 0.15
accuracy level subsequent to training. For these pilot participants,
the computer-interactive protocol and all other aspects of training
and testing were identical to those employed with the actual
participants during Experiment 1. Thus, the lower 0.15 and upper
0.85 thresholds were based on pilot participants’ task perfor-
mance levels when attempting to identify accurate and inaccurate
stimulus relations.

As a matter of experimental precedents, the 0.15 and 0.85
mastery levels were employed by Tovar and Torres-Chavez
(2012) when comparing six individual human performances
to those generated by six runs of a connectionist model.
Likewise, Vernucio and Debert (2016) conducted a replication
of Tovar and Torres-Chavez (2012) using a 0.15 and 0.85
mastery threshold by way of a go/no-go CM preparation.
However, because the Tovar and Torres-Chavez study
employed arbitrary sample and comparison stimuli (rather
than mathematical expressions) and their participants were
not given access to rules as part of their training protocol,
we could not be certain that the 0.15 and 0.85 thresholds were
appropriate for the participants in our study.

Table 3 Listing of all 22 tests of stimulus-stimulus relations employed
during generalization tests. Under the heading Key, Tests of accurate
stimulus relations are identified as “Yes.” Tests of inaccurate stimulus
relations are identified as “No.”

Item Randomized Stimuli Key

1 Test B1C1 Yes

2 Test B2C2 Yes

3 Test A1B2 Yes

4 Test A1C2 Yes

5 Test B1C2 Yes

6 Test B2C1 Yes

7 Test B1B2 Yes

8 Test C1C2 Yes

9 Test A2B1 Yes

10 Test A2C1 Yes

11 Test B2C3 No

12 Test B2B3 No

13 Test B2B4 No

14 Test B2C4 No

15 Test B1C3 No

16 Test B1B3 No

17 Test B1B4 No

18 Test B1C4 No

19 Test C1C4 No

20 Test B3C1 No

21 Test A1B4 No

22 Test A1C4 No

Table 2 Errors that occurred
during the training of nine
compound stimuli and the
number of exposures needed to
attain mastery

Participant A1B1 A1C1 A2B2 A2C2 A1A2 A1B3 A1C3 A2B4 A2C4 Exposures

101 1 0 3 0 3 0 0 1 0 74

102 0 1 0 0 2 0 1 0 0 41

103 1 1 0 0 1 1 0 1 0 51

104 0 1 0 1 0 1 0 0 3 57

105 0 0 2 0 1 2 1 0 1 63
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Figure 6 shows the distribution of errors and accuracy
thresholds that were employed during the generalization test.
When test items displayed stimulus pairs consistent with class
membership, the correct response required clicking the “yes”
button, and a perfect series of responses to the 10 stimulus
pairs would be 1.0 correct class formation. As previously not-
ed, during the generalization test, particular stimulus pairs
were not members of the same class, and the correct response
required clicking the no button. Thus, a perfect series of re-
sponses to the 12 tests of unrelated stimuli would be 0.0 class
formation. The dashed lines in Fig. 6 demarcate the two
thresholds for accurate “yes” and “no” responses. The upper
line demarcates the 0.85 threshold for participants correctly
identifying stimuli as being Related (i.e., members of the same
class). The lower line demarcates the 0.15 threshold for selec-
tion of “no” responses when participants were presented with
novel compound stimuli that were Unrelated (i.e., not mem-
bers of the same class). While Fig. 6 reveals variations across
participants, all five participants performed as well or better
than our hypothesized accuracy threshold.

Discussion

As previously noted, the relations among the algebraic expres-
sions employed as stimuli in this experiment inevitably appear
ambiguous to individuals who have not been exposed to these
relations, and these expressions are frequently revisited in the
opening chapters of calculus texts (e.g., Larson & Edwards,
2010; Stewart, 2008). If any of our participants knew the
relations among the algebraic stimuli prior to training, it was
not apparent from an inspection of their pretest performances,
nor was it apparent from an examination of their accuracy
levels during training. Debriefing our participants suggested
that their abilities to derive algebraic relations were functions
of their attempts to apply the rules displayed during training
and coming into contact with consequences while attempting
to do so (cf. Santos, Ma, & Miguel, 2015). Indeed, during
debriefing all five participants were able to express the rules
pertaining to the purposes of the numerator and the denomi-
nator within fractional exponents as they relate to the same
purposes of the index of the radicals and integer exponents.
Here, our participants’ ability to verbalize rules as they affect
particular mathematical concepts was consistent with our pre-
vious research in training mathematical stimulus relations
(e.g., Ninness et al., 2006, 2009). Although the outcomes from

this experiment did not include tests for symmetry or reflex-
ivity (Sidman & Tailby, 1982), it seems reasonable to assume
that the patterns of accurately identified stimulus relations
during the generalization test represent the emergence of a
similar type of derived relational responding.

Experiment 2

In the second experiment, our procedures were aimed at
assessing a CM neural network’s ability to simulate derived
stimulus relations consistent with the human performances
observed in Experiment 1. As in Experiment 1, our generali-
zation tests did not include the assessment of reflexive or
symmetric relations. And, as in the acquisition of derived re-
lations by human participants, our CM required specific train-
ing procedures in order to become proficient in identifying
stimuli as being members or non-members of a given class.
As noted by Ninness et al. (2013, p. 52), “. . . neural networks
must undergo a series of training sessions with training values
in conjunction with expected output patterns before they are
capable of providing solutions to problems.”

As described earlier, during a series of training trials re-
ferred to as epochs, the feedforward backpropagation algo-
rithm (Rumelhart, Hinton, & Williams, 1986) learns to derive
the relations among stimuli by training neurons to process the
correct weights and bias values that correspond with known
target values (McCaffrey, 2014). With some oscillation, dur-
ing each epoch, the CM computes progressively accurate es-
timates of the known target values. Hence, throughout the
training process, the CM is gradually acquiring the relation-
ships among the training values and the known target values.

Stopping rules During each training epoch, the mean square
error (MSE) is calculated as a function of updating the mean
of the squared deviations between the calculated and the target
values (McCaffrey, 2015). The CM algorithm continues to
shrink the MSE until the training error becomes so small that
continued training is unnecessary and training is automatically
stopped. As an alternative, a CM may be designed so that
training ends when a specific number of epochs are complet-
ed. Indeed, many researchers employ “stopping rules” that
incorporate both strategies concurrently; that is, the CM stops
when the MSE shrinks to a small preset value or when a
specific number of epochs have been completed. Irrespective
of how a particular CM determines that sufficient training has
been conducted, a well-trained CM should be prepared to
make new conditional discriminations independently. That
is, upon completing the training procedure, the CM should
have acquired sufficient experience with a representative set
of conditional discriminations to allow it to accurately respond
to new stimulus–stimulus relations for which it has had no
previous exposure. See Ninness et al. (2018) for a list of terms

�Fig. 6. The dashed lines illustrate the hypothesized 0.15 and 0.85
accuracy thresholds for the 22 generalization tests of novel relations.
Human participant 101 through 105 are shown in conjunction with the
number of trials needed before being exposed to these generalization
tests. From left to right, B2C3 through A1C4 represent human
participants’ performance levels for between-class (Unrelated)
compound stimuli, and B1C1 through A2C1 represent performance
levels for within-class (Related) compound stimuli
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and meanings commonly used when describing CM algo-
rithms. During supervised training, the objective is to reduce
the differences between the CM’s calculated values and the
target output values. As will be described in more detail, the
delta rule accomplishes this by updating weight and bias
values as the data moves forward and backward across the
layers of the network, updating the connection weights with
each forward and backward pass (Donahoe & Palmer, 1989).
Because the discrepancies are passed backward to the connec-
tion weights between each layer, the delta rule is characterized
as “backpropagating” the discrepancies between the CM’s
calculated and target output values (Rumelhart et al., 1986).

Although the MSE oscillates throughout training, the net-
work weights are continually updated in an “attempt” to better
approximate the target values. One stopping rule for ending
training is to exit when the MSE descends to some preset level
(e.g., 0.05). An alternative strategy identifies the number of
epochs required to allow the network to perform reasonably
well with pilot data, and this is the tactic we have adopted in
the current experiment. Asmentioned above, prior to initiating
the actual experimental conditions, two pilot participants dem-
onstrated a capability of performing within a 0.15 accuracy
level with respect to identifying class membership and non-
membership. Thus, the 0.15 and the 0.85 thresholds are based
on two pilot participants performing within this level. Given
our pilot participant outcomes, we set our neural network at
500 epochs where pilot testing of our CM appeared to closely
approximate the performances demonstrated by our two hu-
man pilot participants.

CM Network Design and Procedures

Expanding on an architecture employed during an earlier inves-
tigation (Ninness et al., 2018), we developed an enhanced CM
analog of the yes–no protocol aimed at training and testing a
wider range of stimulus relations. The feedforward
backpropagation algorithm that operates within the current ver-
sion of the CM network was developed and described original-
ly byMcCaffrey (2017; refer also to Haykin, 2008, for a related
discussion). Previous investigations (e.g., Lyddy & Barnes-
Holmes, 2007) have demonstrated that, given analogous input
values, CMs are capable of mirroring (and predicting) intricate
response patterns consistent with human performances. For ex-
ample, a row of input values (record) might be arranged as a
distinctively sequenced set of 12 digits, all but two of which are
set to 0 (inactive) whereas two of these digits are uniquely
positioned and set to 1 (active). Each of the 1s within a given
row represents a particular stimulus (mirroring the training se-
quence of human counterparts) whereas the 0s are simply place
holders, allowing each row to be sequenced as a distinctive
pattern, a salient pattern unlike any of the other rows of stimuli
employed in training the neural network.

Abstract symbols (arbitrary shapes or mathematical expres-
sions) employed in the training of human participants clearly
share no physical semblance to diversified patterns of 1s and
0s but for the purpose of training a CM neural network; the
actual appearance of the training stimuli is irrelevant. As de-
scribed by Ninness et al. (2018, p. 8),

. . . For neural network training purposes, it is enough
that a precisely sequenced row of binary units func-
tion in place of a specific abstract stimulus. For every
abstract symbol that might be used in training human
participants, there is a pattern of binary units that can
represent the symbol for a simulated human
participant.

Three-Layer CM Architecture

Figure 7 illustrates the basic architecture (network design) of
our CM employed in training and testing stimulus relations in
Experiment 2. As described earlier, neural networks learn by
processing and reprocessing training values forward and back-
ward across layers of neurons within the network. That is,
each layer is composed of a set of neurons that perform math-
ematical operations on the training values as they traverse the
layers during the training process. The connections among
neurons within each of the layers in the network are “weight-
ed,” and these weights are updated each time the training
values are sent forward (feedforward) and backward
(backpropagation) across the layers of the network until the
best set of weights are obtained for a given number of epochs.
Again, the CM uses the delta rule to update the weights within
the network during each epoch. Note that unlike our earlier
version of this CM, the current version of EVA allows inter-
ested researchers to access the weights that were generated
during the training condition. (See Appendix in Ninness
et al., 2018, for related details.)

To summarize with a few technical terms, training values
go through a series of mathematical functions beginning at
their point of initial contact with the network’s input layer.
Here, the values are multiplied by randomized weights.
Next, the weighted values are summed and forwarded to the
hidden layer for additional processing (e.g., using the hyper-
bolic tangent function) and continue the forward pass, arriving
at the output layer. At this point, the values undergo further
processing (e.g., using the Softmax function), and the training
values are compared against the known target values. During
the backward pass, these training values return to the hidden
layer for further processing and then pass back to the input
layer, completing the first of many epochs. Over a series of
training epochs, this process allows the network to become
increasingly proficient at correctly identifying stimulus rela-
tions (see Hagan et al., 2002, for a discussion).
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As noted earlier, the processing of training values stops
when the MSE shrinks to some preset value or when a preset
number of epochs have been completed. Independent of the
“stopping rules” employed by a particular CM, when training
is stopped, a well-trained CM has been exposed to sufficient
training such that it is now able to accurately derive stimulus
relations when exposed to stimuli not previously encountered.
As described by Ninness et al. (2018, p. 10), “CMs learn by
coming into contact with multiple exemplars as do their hu-
man counterparts; a child learns to recognize particular spoken
and written words by interacting with language from a
broader population of verbal exemplars. . .” (p. 10). In
a roughly similar way, a CM learns to identify patterns
of novel stimulus relations by interacting with represen-
tative digital stimuli from a broader population of nu-
merical exemplars.

Training Simulated Participants

As with the training of human participants, each new simulat-
ed participant will follow a slightly different learning path
throughout the course of training. Much the way human par-
ticipants demonstrate diversified levels of speed and accuracy
during the training and testing of stimulus relations, each new
simulated participant is likely to learn the relations among
stimuli at a rate and accuracy level that is unlike any of the
previous or subsequent simulated participants. This is because
each time the simulation number is advanced, all preceding
CMmemory is deleted, and the new simulated participant will
function at a baseline level. Notwithstanding, each new sim-
ulated participant’s pattern of correct and incorrect responses
should approximate those of other simulated participants.
More important, by the end of training, the response patterns
exhibited by simulated participants are likely to closely

approximate those exhibited by their human counterparts.
Thus, the CM becomes a good candidate for modeling and
predicting derived stimulus relations as seen in human learn-
ing (e.g., Lyddy & Barnes-Holmes, 2007).

Input settings In order for the CM to learn the complex rela-
tionships among stimulus pairs that do and do not share class
membership, the network must go through some minimal
number of training epochs. As noted above, in this experi-
ment, Emergent Virtual Analytics (EVA) was configured to
run 500 epochs. The Simulation Number was set to 1, and as
previously mentioned, this number must be advanced each
time a new simulated participant is trained. We set the number
of Total Columns at 14 because there are a total of 14 columns
of input variables; this includes two target variables, 0 and 1.
The number of Training Rows was set to nine because there
are nine rows representing an input pattern for each input
presentation to the network. In this experiment, we set the
number of Input Neurons to 12, indicating the number of
independent variables. Momentum was set to 0.10, and the
Learning Rate is 0.50. The number of Hidden Neurons was
2; the number of Test Rows was set at 22; and the number of
Output Neurons was set at 2. Most of the above input settings
are required because they match the parameters associated
with the input file. Namely, the number of Columns, Rows,
Input Neurons (independent variables), and Output Neurons
(target variables) must be consistent with those in the training
and test values. We provide an illustration of a comparable
Windows form within Experiment 3.

Results

Outcomes revealed that all simulated participants performed
at near perfect accuracy levels during the training of stimulus

Fig. 7. EVA architecture consists
of twelve neurons within the
bottom input layer, two hidden
neurons in the second layer, two
output neurons in the top output
layer, and two bias neurons. EVA
(emergent virtual analytics)
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relations where the MSE ranged between 0.0002339 and
0.0002391 for all five simulations. As mentioned above, our
CM architecture for this included only one hidden layer (see
Fig. 7), and this feature dictated that simulated participants
were exposed to a relatively large number of training epochs
(i.e., 500 epochs for all simulations). Thus, in this experiment,
it was not possible to compare the training requirements for
simulated and human participants (i.e., epochs versus trials);
however, it was possible to compare the test of novel relations
for simulated participants to those of human participants.

Test of novel relations Figure 8 displays five simulated partic-
ipants’ response patterns in the assessment of class member-
ship. As in the generalization test of novel relations by human
participants in Experiment 1, when stimulus pairs were con-
sistent with class membership, the correct CM response re-
quired identifying these stimuli as members of the same class,
and a perfect set of CM responses to the 10 stimulus pairs
would be 1.0 correct class formation. And, as in the general-
ization test of novel relations by human participants, specific
stimulus pairs were not members of the same class, and the
correct CM response required identifying these stimuli as un-
related. Here, a perfect series of responses to the 12 tests of
incorrect stimulus relations would be 0.0 class formation.

As previously noted, Fig. 8 illustrates the simulated partic-
ipants’ outcomes in the formation of derived stimulus rela-
tions when the simulated participants were exposed to novel
compound stimuli (in binary format). As in the illustration of
human performances in Experiment 1, the dashed lines desig-
nate the demarcation between accurate “yes” and “no” re-
sponses. Consistent with the five illustrations of human per-
formances, beginning at B2C3, our goal for correctly identi-
fying unrelated stimuli are displayed at or below the dashed
lines within each of the five bar graphs shown in Fig. 8. That
is, the lower dashed line (where all bars are at or below 0.15)
demarcates the thresholds for identification of unrelated stim-
uli (cf. Vernucio & Debert, 2016). Beginning at B1C1, the
upper dashed line (at or above 0.85) demarcates the threshold
for the simulated participants’ correct identification of analo-
gous stimuli as members of the same class (i.e., related).

Discussion

In this experiment, we employed a CM yes–no protocol with
the ambition of training and testing stimulus relations analo-
gous to those used during Experiment 1. Subsequent to train-
ing, generalization tests revealed that simulated participants
exhibited response patterns nearly identical to those exhibited
by our human participants during the first experiment. Here,
the simulated participants' performances suggest the forma-
tion of equivalence classes among untrained stimulus rela-
tions. An even more provocative finding is that the simulated
and human participants merged stimulus relations between

Class 1 and Class 2, suggesting that the training procedures
in both experiments allowed human and simulated partici-
pants to correctly identify and merge new presentations of
compound stimuli between equivalence classes.

Experiment 3

During Experiment 2, the number of epochs was set at a constant
500 for all simulated participants. This particular number of train-
ing epochs was employed because it allowed our simulated par-
ticipants to perform within a 0.15 error threshold commensurate
with the task performance levels demonstrated by our human
pilot participants. During Experiment 2, we did not attempt to
determine if particular simulated participants might have been
able to perform well on the generalization tests with fewer than
500 training epochs. In Experiment 3, we restructured and
employed a four-layer CM to identify the number of training
epochs required to attain mastery during training (see
McCaffrey, 2017).

Stopping rules A CM may be constructed as in Experiment 2
so that training stops when a specified number of epochs are
completed. Alternatively, a CM algorithm may be developed
such that training is terminated when theMSE shrinks to some
preset value. Asmentioned earlier, during each training epoch,
the MSE is calculated by updating the mean of the squared
deviations between the calculated and the target values.
During training, the algorithm “attempts” to reduce the MSE
until it becomes so small that continued training is unneces-
sary. As a practical matter, many researchers employ “stop-
ping rules” that incorporate both strategies concurrently; that
is, the CM stops when the MSE shrinks to a small preset value
or when a specific number of epochs has been completed. This
is the approach we employed during Experiment 3.
Specifically, if training exceeded 100 epochs, training was
terminated. At the same time, if during training the MSE fell
below 0.0006, training ended. The stopping threshold of
0.0006 was selected because when employing a four-layer
CM, it provided sufficient training to allow simulated partic-
ipants to attain a mastery level that closely approximated the
mastery level required of our human participants; however, as
with our human participants, attaining mastery during training
offered no guarantee that simulated participants would per-
form well during generalization tests.

CM Design and Procedures

Expanding on the foundation of the three-layer architecture
used during Experiment 2, we employed a four-layer CM
analog of the yes–no protocol aimed at training and testing
stimulus relations (see McCaffrey, 2017, on developing deep
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Fig. 8. The dashed lines illustrate
the hypothesized 0.15 and 0.85
accuracy thresholds for the 22
generalization tests of novel
relations. From left to right, B2C3
through A1C4 represent
simulated participants’
performance levels for between-
class (Unrelated) compound
stimuli, and B2C1 through A2C1
represent performance levels for
within-class (Related) compound
stimuli

Psychol Rec (2019) 69:333–356 347



neural network algorithms). This CM is formatted so that the
number of training epochs required to attain mastery is con-
sistent with the range of training trials required by our human
participants during Experiment 1. As with the CM employed
during Experiment 2, our four-layer algorithm receives a tar-
get set of input values that have known accurate outputs. The
algorithm (EVA 2.50) calculates optimal weights and bias
values such that the difference between calculated outputs
and known outputs are sufficiently close to allow the CM to
generalize to new input values—inputs that are representative
of a type of problem to be solved by the model.

Architecture Figure 9 illustrates the basic architecture of our
four-layer CM employed in training stimulus relations during
Experiment 3. As with our three-layer CM employed during
Experiment 2, each layer is composed of a set of neurons that
perform mathematical operations on the training values as
they traverse the layers during the training process; however,
the CM developed for this experiment has two hidden layers
rather than one. Thus, this architecture is fully connected and
composed of an input layer, two hidden layers, and an output
layer. Each hidden layer contains four neurons. As with our
three-layer CM, the connections among neurons within all
layers of the network are weighted, and these weights are
recalculated each time the training data are sent forward and
backward across the layers of the CM network. This process
continues until the MSE reduces error to 0.0006.

Training a four-layer CM As with the training of human par-
ticipants during Experiment 1 and simulated participants

during Experiment 2, each simulated participant exhibits a
different learning rate (i.e., number of epochs to attain mas-
tery). When employing a four-layer CM, training is likely to
require fewer epochs for each simulation than when
employing a three-layer network (Hagan et al., 2002;
Haykin, 2008). However, as with our three-layer CM, each
new simulated participant learns the relations among stimuli at
a performance level that is unlike any of the previous or sub-
sequent simulated participants. And, as with our three-layer
CM, each time the simulation number is advanced to initiate
the training of a new participant, all CM memory is deleted,
and the new simulated participant will function at a baseline
level. When the MSE falls below 0.0006, the final epoch is
completed, and the total number of training epochs, the train-
ing outcomes, and the MSE are posted to the user.

Input settings In this experiment, we set the number of “Total
Columns” at 14 as there are a total of 14 columns of input
variables, including two target variables, 0 and 1. The number
of Training Rows is set to nine because there are nine rows
representing an input pattern for each input presentation to the
network. As in Experiment 2, our four-layer CM requires
supervised training to derive the complex relations among
stimulus pairs that do and do not share class membership;
however, the number of training epochs required by our
four-layer network (with four nodes in each of the two hidden
layers) is fewer than our three-layer network (Haykin, 2008).
Figure 10 illustrates our four-layer CMWindows form requir-
ing the number of epochs to cumulate until the MSE falls
below 0.0006.

Fig. 9. EVA 2.50 architecture
consists of twelve neurons within
the bottom input layer, two
hidden layers (with four hidden
neurons in both of the hidden
layers), two output neurons in the
top output layer, and three bias
neurons. EVA 2.50 (emergent
virtual analytics)
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With the above architecture, we were able to obtain very
small error values for each of our nine simulated participants
(see Table 4).Wemight havemade theMSE requirement even
smaller and in doing so, further reduced the error proportions
obtained when training stimulus–stimulus relations. However,
employing an exceedingly small MSE as a stopping require-
ment (e.g., an MSE set at 0.0000000001) involves a risk of
“overtraining” the model. Overtraining any type of neural net-
work frequently produces a side effect referred to as
“overfitting,” a condition in which the CM performs at near
perfection during training; however, this extreme level of
training precision increases the likelihood of the network be-
ing unable to generalize during tests of novel relations (see
Haykin, 2008, for a detailed discussion).

As in Experiment 2, the number of Columns, Rows, Input
Neurons, and Output Neurons must match those of the train-
ing and test input values. Also, as in Experiment 2, the number
of Test Rows is 22, and the number of Output Neurons is two.
The number of Input Neurons is set to 12, consistent with the
number of independent variables employed. It is important to

note that determining the most functional Learning Rate,
Momentum, the number of hidden layers, and the number of
neurons within each of the hidden layers can only be deter-
mined by systematically exploring the outcomes obtained at
various settings. For this experiment, Momentum was set at
0.38, and the Learning Rate was increased to 0.90. The num-
ber of Hidden Layers was increased to two, and the number of
neurons within each of these two hidden layers was set to four.
Output from this first simulation (i.e., Sim No 101) reveals
that this particular run required 41 epochs. Training accuracy
is displayed at 100%, indicating that the final epoch for this
run produced an MSE value below 0.0006 (i.e., 0.000558).
Test Accuracy is displayed at 100%, indicating that all output
values for this simulation fell within the 0.15 projected error
threshold (i.e., below 0.15 or above 0.85). The lower center
box in Fig. 10 displays the number of weights and bias values
employed as 82. The specific weights and bias values for any
given run can be obtained by clicking the Save Training
Outcomes as CSV button (see Ninness et al., 2018, for
details on saving and reusing these values).

Fig. 10. EVA 2.50 windows form permitting interactive training and
testing of simulated participants. Training values are shown under the
“Input Values” heading. Training Accuracy and Error levels are shown
in the center under “Training Outcomes,” and generalization test

outcomes are shown under “Test Outcomes.” Momentum is set at 0.38,
and the Learning Rate is set to 0.90. The number of Hidden Layers is 2,
and the number of neurons within each of these two hidden layers is 4

Table 4 Error Proportions during
the training of nine compound
stimuli and the number of epochs
needed to attain mastery

Simulation A1B1 A1C1 A2B2 A2C2 A1A2 A1B3 A1C3 A2B4 A2C4 Epochs

101 0.03 0.02 0.02 0.02 0.02 0.01 0.02 0.03 0.02 41

102 0.03 0.02 0.02 0.03 0.02 0.01 0.04 0.02 0.02 41

103 0.02 0.02 0.03 0.02 0.01 0.01 0.02 0.03 0.02 49

104 0.02 0.03 0.03 0.02 0.01 0.02 0.02 0.01 0.03 73

105 0.03 00.03 0.01 0.02 0.03 0.02 0.03 0.01 0.02 61
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Results

Examination of our human and simulated participants’ train-
ing outcomes reveal the resemblances between the required
number of human trials and simulated epochs needed to attain
mastery. By necessity, Tables 2 and 4 illustrate two different
forms of errors obtained during the training of stimulus rela-
tions to human and simulated participants. These error values
are the results of two different types of error calculations re-
quired for two different types of participants; however, they
are both practical and analogous strategies for identifying the
amount of error that occurs during the training of stimulus
relations. Table 2 displays the number of errors that occurred
during the training of nine compound stimuli for each human
participant. Here, the total number of trials/exposures needed
to attain mastery ranges between 41 and 74 and is shown in
the far right column. The errors displayed in Table 2 are a
function of the human participants’ failures to correctly iden-
tify compound stimuli belonging to the same class. Likewise,
the decimal error values displayed in Table 4 (and within Fig.
10 under the heading of Training Accuracy and Error) are
measures of the CM’s computational inaccuracies that were
obtained when attempting to identify the nine compound stim-
uli during the training of five simulated participants.

Ideally, human and simulated training errors would be cal-
culated and displayed in the samemetric; however, the respec-
tive error values are a function of different learning processes.
When human participants fail to identify compound stimuli
correctly, errors are calculated and identified as the number of
repeated trials (number of exposures) required for attaining
mastery. When the CM’s simulated participants fail to identify
compound stimuli correctly, errors are computed and identi-
fied as the proportion of error existing between the exact and
computed values of compound stimuli. Thus, the small deci-
mal values within Table 4 represent the differences between
the actual values and the obtained values for each of the five
simulated participants across all nine compound stimuli.

In other words, unlike human participant errors that are a
function of the number of repeated exposures needed to attain
mastery as displayed in Table 2, the simulated participant’s
errors (shown as small decimal values within Table 4) repre-
sent the proportion of differences between known and calcu-
lated values when identifying compound stimuli that are
members or nonmembers of the same class. Irrespective of
the manner in which error values are calculated for human
and simulated participants, the total number of human partic-
ipant exposures and simulated participant epochs needed to
attain mastery in the final columns of Tables 2 and 4 is nearly
identical (i.e., 41 to 74 and 41 to 73, respectively).

Visual inspection of these two tables shows the diversified but
negligible array of errors for both types of participants and both
types of errors. Although the “range” of required exposures and
epochs is similar, there is as much error diversity among human

participants as there is among simulated participants. This is as
expected. As in the training of human participants, in which one
individual’s learning does not reliably forecast another’s skill ac-
quisition even under duplicate training conditions, simulated par-
ticipants usually produce slightly different task performance levels
during consecutive simulations. Such diversity is a function of
memory deletion and reacquisition of learning each time the
CM’s simulation number is changed. Analogous to the diversified
task performance levels demonstrated by separate humans within
the same experimental preparation, advancing the CM’s simula-
tion number will generate some new level of variability for each
simulated participant. As noted byNinness et al. (2018, p. 132), “. .
. from the perspective of a researcher who wants to simulate hu-
man learning, neural networks demonstrate human-like variations
across simulated participants. . . .” The outcomes shown in
Tables 2 and 4 (as well as Figs. 6 and 11) illustrate the human
training trials and the CM training epochs.While there is no point-
to-point correspondence for simulated and human participants’
training errors, visual inspection of the respective tables and figures
in each experiment show a diverse but negligible pattern of errors
for human and simulated participants during training.More impor-
tantly, training outcomes obtained in Experiment 3 speak to the
resemblances in the number of training epochs required of simu-
lated participants and the number of training exposures required of
human participants in Experiment 1.

Test of novel relations Figure 11 shows our five simulated
participants’ outcomes in the formation of derived stimulus
relations when exposed to novel compound stimuli during
the generalization test. As in the generalization test of novel
relations by human participants in Experiment 1 and the sim-
ulated participants in Experiment 2, when compound stimuli
were members of the same class, the correct CM response
required recognizing these stimuli as sharing class member-
ship. As with the human performances in Experiment 1 and
the simulated participants in Experiment 3, the dashed lines
demarcate the accuracy of the “yes” and “no” responses. As
with our human participants during Experiment 1, all simulat-
ed participants performed within our hypothesized error
threshold during the generalization test.

SOM Analysis of Experiments 1 and 3

Looking at the generalization Tests of Novel Relations from
Experiment 1 and Experiment 3, it is possible to conduct

�Fig. 11. The dashed lines illustrate the hypothesized 0.15 and 0.85
accuracy thresholds for the 22 generalization tests of novel relations.
Simulations 101 through 105 are shown in conjunction with the number
of Epochs needed before being exposed to these generalization tests.
From left to right, B2C3 through A1C4 represent simulated
participants’ performance levels for between-class (Unrelated)
compound stimuli, and B1C1 through A2C1 represent performance
levels for within-class (Related) compound stimuli
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several types of data analyses. The Kohonen Self-Organizing
Map (SOM) is widely acknowledged as a precise and robust
unsupervised neural network that is particularly useful in pat-
tern recognition when applied to diversified datasets (Ultsch,
2007). The SOM’s ability to recognize and classify linear and
nonlinear data patterns makes it an especially valuable proce-
dure in the analysis of small-N datasets, and this distinguishes
it from conventional univariate andmultivariate statistical pro-
cedures. As described by Ninness et al. (2012, 2013), rather
than conducting supervised training in which weights are
modified by decreasing the discrepancies between target and
calculated values, the SOM systematically decreases the
Euclidean distance among all input records, recognizing co-
hesive data patterns that would be difficult to isolate and clas-
sify by way of traditional statistical methodologies.
Essentially, the SOM is used to cluster large or small datasets
that have common patterns. Records with similar patterns are
identified with unique labels, and records that do not belong to
the same pattern are identified as belonging to different groups
and labeled as such (see Kohonen, 2001, for a complete
discussion).

In order to provide a more rigorous examination of our find-
ings from Experiments 1 and 3, we conducted a SOM analysis
of the tests of novel relations by combining the generalization
test data from both of these experiments. Note that data from
Experiment 2 were not included in our SOM analysis. Rather,
we assessed the generalization outcomes from Experiment 1
(Fig. 6) combined with Experiment 3 (Fig. 11) using the
SOM to recognize corresponding data patterns across these
two experiments. In other words, we combined the generaliza-
tion outcomes from human and simulated participants into one
dataset in an effort to identify the related patterns for both hu-
man and simulated participants as they pertain to compound
stimuli that did or did not share class membership. Figure 12
shows that the SOM recognized two distinct patterns. Pattern 1
is composed of the combined human and simulated partici-
pants’ task performances identifying compound stimuli that
are “not members of the same class,” and Pattern 2 illustrates
the combined human and simulated participants’ compound
stimuli that “are members of the same class.” Thus, the SOM
did not differentiate between human and simulated participants,
only between task performances identifying compound stimuli
that were, or were not, members of the same class.1 The SOM
neural network (and sample datasets) can be downloaded from
www.chrisninness.com. As an alternative, SPSSModeler 15.00
contains a series of SOM strategies under the general heading
of Kohonen Node (see IBM Knowledge Center, 2017)

Discussion

As previously described, the numbers of CM training epochs
necessary to achieve mastery in Experiment 3 closely approx-
imate the numbers of training trials required of our human
participants in Experiment 1. The training threshold for hu-
man participants entailed correct identification of all accurate
(A1B1, A1C1, A2B2, A2C2, A1A2) and inaccurate (A1B3,
A1C3, A2B4, A2C4) stimulus–stimulus relations, whereas
our simulated participants’mastery required that training con-
tinue until the MSE fell below 0.0006. More importantly, an
examination of the respective generalization tests (i.e., Figs. 6
and 11) show that our simulated participants exhibited accu-
rate performance levels that closely approximated those of our
human participants during Experiment 1. As in Experiment 2,
the simulated and human participants merged stimulus rela-
tions between Classes 1 and 2, demonstrating that our training
procedures allowed human and simulated participants to iden-
tify the novel presentations of compound stimuli within and
between equivalence classes. While training outcomes
displayed by our simulated participants employed different
error metrics than our human participants, the performance
levels of our simulated participants are congenial with those
of our human participants. As a practical matter, outcomes
displayed in Fig. 12 reveal that our four-layer CM allowed
us to obtain comparable performance levels for human and
simulated participants.

General Discussion

Visual inspection of the generalization test findings from our
three experiments (as shown in Figs. 6, 11, and 12) illustrate
the corresponding levels of correct and incorrect performances
in tests of accurate and inaccurate stimulus relations by human
and simulated participants. Importantly, simulated and human
participants demonstrated class merger of derived stimulus
relations for Classes 1 and 2, suggesting that the training pro-
cedures in all three experiments allowed human and simulated
participants to merge novel complex presentations of com-
pound stimuli between equivalence classes. Our human and
CM findings are consistent with early research in the area of
class merger (e.g., Sidman, Kirk, & Willson-Morris, 1985);
however, such outcomes have not been demonstrated by sim-
ulated participants. These findings extend our understanding
of the corresponding conditions for humans and CMs in the
formation of larger and more complex combinations of
derived stimulus relations.

The findings from our three experiments are congenial with
previous research by Fienup and Critchfield (2011) in which
equivalence-based instructional strategies were effective in
establishing complex concepts in the area of inferential statis-
tics within and between equivalence classes (cf. Mackay et al.,

1 Within Figure 12, there are 10 data patterns directly above each label along
the x-axis, and these refer to the outcomes for the test of novel relations for
human and simulated participants from Experiments 1 and 3.
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2011). From a behavior analytic perspective (e.g., Walker,
Rehfeldt, & Ninness, 2010; Fienup et al., 2010), verbally able
humans may acquire complex academic repertoires as a func-
tion of rule following combined with coming into contact with
consequences for acting in accordance with rules.
Analogously, a CM’s simulated participants may acquire the
ability to derive complex relations among stimuli by coming
into contact with consequences for acting in accordance with
the delta rule. We are not suggesting that the delta rule
operates in a manner that coincides with human rule-
governed behavior; we are only noting that the delta rule ef-
fectuates the supervision of simulated participants.

Another way to conceptualize this process is that the CM
algorithm provides a form of supervised training that allows
simulated participants to systematically acquire accurate stim-
ulus relations based on a sample set of training values. Much
like their human counterparts, subsequent to training, simulat-
ed participants are often capable of deriving relationships
among new and complex stimuli to which they have had no
previous exposure. As previously mentioned, a particularly
provocative finding in this study is the extent to which CMs
appear to be able to derive relations between classes. As with
human participants, during training, we see the acquisition of
within-class relations. And, during generalization tests, we see
the emergence of untrained stimulus relations between classes
as well as the identification of incorrect stimulus relations.

With the current exponential advances in computer model-
ing across academic disciplines, the extent to which CM

algorithmsmay be capable of emulating and predicting human
behaviors remains an inevitable and increasingly dynamic ar-
ea of scientific exploration. As mentioned at the beginning of
this article, only a few decades ago, simulating human behav-
ior by way of a computer algorithm might have been viewed
as a potentially interesting theme for a science fiction script,
but now the culture is awash in software engineering ad-
vances, and researchers across academic disciplines are quick-
ly developing computer algorithms with increasingly power-
ful applications aimed at modeling and predicting a variety of
human behaviors (e.g., see Greene et al., 2017, regarding neu-
ral networks and consumer behaviors).

Clearly binary CM input values do not resemble the math-
ematical expressions employed in Experiment 1. As men-
tioned earlier, abstract symbols (arbitrary shapes or mathemat-
ical expressions) employed in the training of human partici-
pants share no physical semblance to the diversified patterns
of 1s and 0s presented to the CM, but for CM neural network
training purposes, the physical appearance of the training
stimuli is irrelevant. As described by Ninness et al. (2018, p.
9), “[f]or neural network training purposes, it is enough that a
precisely sequenced row of binary units functions in place of a
specific abstract stimulus.”Nevertheless, it may be valuable to
develop an experimental demonstration wherein simulated
participants and their human counterparts respond to the exact
same onscreen sample and comparison stimuli (e.g., screen
presentations displaying actual mathematical symbols and
their relations to other mathematical symbols). As of this
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Fig. 12. Illustration of outcomes from the SOM analysis of pattern
recognition. Pattern 1 shows the human and simulated participants’
performances identifying compound stimuli that were not members of

the same class, and Pattern 2 shows the combined human and simulated
participants’ performances that were members of the same class
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writing, such an analysis has not been conducted within the
equivalence literature; however, within other disciplines, nat-
ural object recognition has become an increasingly popular
and inspiring source of new research and applied technology
(e.g., Kay, Naselaris, Prenger, & Gallant, 2008; Huth,
Nishimoto, Vu, & Gallant, 2012).

Another component of CM research that requires more
investigation is the potential advantage of employing more
human and simulated participants in the analysis of derived
stimulus relations. While approximately five participants per
experiment are consistent with many current comparisons of
human and simulated outcomes (e.g., Tovar & Torres-Chavez,
2012; Tovar &Westermann, 2017; Vernucio & Debert, 2016),
increasing the number of participants within experiments will
improve the generalizability of research in this area.
Notwithstanding, behavior analysis is grounded in the system-
atic observation of individual participants across conditions as
the primary tactic for confirming functional control and pro-
viding evidence for an experimental effect.

Determining the potential efficacy of human/computer
learning is predicated on developing increasingly sophisticated
behavior analytic designs together with more robust CM archi-
tectures. As mentioned earlier, Lyddy and Barnes-Holmes
(2007) developed an elegant experimental design and CM ar-
chitecture allowing them to confirm that a one-to-many training
protocol required roughly half the training as a linear training
preparation (see also strategies employed by Tovar &
Westermann, 2017). Expanding the scope of such experimental
preparations will be critical to identifying the ways in which
computer models are capable of reliably emulating, vetting, and
predicting derived stimulus relations as observed among human
participants. For example, the extent to which one-to-many CM
protocols are capable of facilitating the efficient acquisition of
contextual control has not been fully explored within the CM
literature, and deep neural network CM architectures may allow
us to examine contextual control of stimulus relations using a
variety of training procedures.

Employing behavioral designs, we might explore simula-
tions of behaviors involving contextual control using different
types of training procedures where A1 may be encoded as
positive 1 whereas B1 and C1 are both encoded as negative
1. From the perspective of logical relations, as well as loca-
tions on the coordinate axes, the B and C stimuli are both
mutually entailed as opposites of A. While the relations be-
tween B1 and C1 have not been trained, an assessment of their
derived relations should yield a combinatorially entailed
frame of sameness/coordination (cf. Dymond & Barnes,
1996). In common parlance, we should find that human and
simulated participants identify the opposite of the opposite as
being the same, and preliminary research in our laboratory
indicates that human and simulated participants perform ac-
cordingly. Other experimental designs will require refined CM
architectures in order to address complex relational networks

focusing on hierarchical relations, deictic relations, temporal
relations, and other forms of contextual control (see Hayes
et al., 2001). Systematic explorations of these and related
preparations will be critical to identifying the extent to which
CMs are reliably predictive of derived relational responding as
learned by human and simulated participants.

Independent of whether a given computational model em-
ploys yes–no training procedures, go/no-go procedures, or
MTS procedures, one major advantage to conducting CM inves-
tigations is that these algorithms offer powerful, empirical, and
efficient analyses of experimental preparations aimed at identify-
ing the likelihood of class merger during tests of novel stimulus
relations. The findings from Experiment 3 reveal that the re-
quired numbers of CM supervised training epochs closely ap-
proximates the number of trials required in the training of our
human participants in Experiment 1. Our four-layer CM goes
beyond replicating outcomes obtained from human participants
to identifying the human effort necessary to attainmastery before
deriving new and complex stimulus relations. This approachmay
be especially valuable in previously unexplored areas such as
training and testing complex relations similar to those involved
in class merger of mathematical relations among human and
simulated participants. Although it is far too early to make spe-
cific predictions, pilot research in our laboratory suggests that
four-layer CMs have the potential for emulating contextual con-
trol of mathematical relations. Consistent with one of our earlier
MTS studies in the area of human training and deriving trigono-
metric relations (Ninness et al., 2009), it appears that our four-
layer CMwith the settings employed in Experiment 3 is capable
of emulating the training trials required by human participants to
attain mastery as well as predict the extent to which human
participants are able to generalize during tests of novel trigono-
metric relations. Future investigations might explore a much
wider range of CM capabilities for emulating and predicting
human training requirements as well as the extent to which
CMs are able to merge classes during tests of novel stimulus
relations.
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