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Abstract
Purpose of Review  During the past decade, weather and climate extremes, enhanced by climate change trends, have received 
tremendous attention because of their significant impacts on socio-economy, public health, and ecosystems. At the same 
time, many parts of the world still suffer from severe air pollution issues. However, whether and how air pollutants play a 
role in weather and climate systems through complex interactions and feedbacks with meteorology and ecosystems remains 
an open question. So far, only a relatively small number of studies have been conducted to understand and quantify air pol-
lution interactions with weather and climate extremes. As a result, there is limited process-level knowledge of this topic and 
associated mechanisms. This review paper provides a concise synthesis of recent scientific advances, current knowledge 
gaps, and future directions on air pollution interactions with weather and climate extremes, such as extreme precipitation, 
floods, droughts, wildfires, and heat waves.
Recent Findings  There is evidence (albeit limited) that air pollution can contribute to or interact with each of the aforemen-
tioned extremes, and several possible mechanisms (e.g., physical, thermodynamical, dynamical, chemical, and ecological 
processes) have been identified and proposed to explain their relationships. However, there are still substantial knowledge 
gaps that need to be addressed in future studies, which will benefit from enhanced observational and modeling capabilities 
as well as interdisciplinary collaborations.
Summary  Overall, the air pollution interactions with weather and climate extremes are currently under-studied and less 
understood. More future research is needed for process-level investigations to improve the mechanistic understanding 
on this topic.

Keywords  Air pollution · Climate and weather · Extremes · Interaction · Mechanism

Introduction

Air pollutants (including aerosols and trace gases) play 
a critical role in weather and climate systems through 
complex interactions and feedbacks with meteorology 
and ecosystems. In general, aerosols can affect atmos-
pheric thermal structures and key meteorological fields 
(e.g., temperature profiles, radiation, clouds, precipita-
tion, and snow albedo) through direct and indirect radia-
tive effects [1, 2] as well as snow albedo radiative effects 
[3–5]. In turn, changes in meteorology modulate the life 
cycle (e.g., formation/emission, transport, and deposition) 
of aerosols [6–9]. Gaseous air pollutants (e.g., ozone and 
volatile organic compounds (VOCs)) can interact with 
vegetation and soil ecosystems through deposition [10, 
11] and biogenic emissions [12], while weather and cli-
mate also exert important impacts on the lifecycle (e.g., 
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emission, chemical reaction, transport, and deposition) 
of trace gases [13, 14]. Moreover, some gaseous pollut-
ants can be converted to particulate pollutants through 
chemical and thermodynamic processes (e.g., formation 
of secondary organic aerosol (SOA)) and further interact 
with weather and climate [15], which adds complexity to 
the climate-chemistry system.

In the past decade, multiple review articles have summa-
rized the knowledge of air pollution from different aspects, 
including air pollution effects on the mean features of cli-
mate/weather [16–18], climate/weather impacts on air pol-
lution [6, 7, 13], health impacts of air pollution [19–21], and 
air pollution-ecosystem interactions [11, 22, 23]. However, 
to the best of our knowledge, no review study specifically 
focused on two-way interactions between air pollution and 
weather/climate extremes at regional to global scales.

During recent years, weather and climate extremes (e.g., 
extreme precipitation, floods, droughts, wildfires, and heat  
waves) have received increasing attention due to their signifi-
cant impacts on socio-economy, public health, and ecosys-
tems [24–27]. For instance, storms in the North Atlantic in 
2017 alone led to devastating flooding, which caused more 
than $170 billion in damages [28]. Droughts and floods over 
Asia substantially affect agriculture and food security, lead-
ing to ~ $49 billion loss in the economy during 2008–2018 
[29]. Heat waves caused about 70,000 deaths in 2003 in 
Europe [26] and are projected to increase global mortality 
under future climate change [27]. The increasing wildfires 
in the U.S. alone lead to thousands of deaths due to smoke  

pollution and degradation in ecosystem functioning, which 
requires billions of dollars for suppression expenditures [30].

Majority of attribution studies on weather and climate 
extremes have focused on the role of long-term climate change 
mainly due to greenhouse gas build-up, year-to-year natural 
variability (e.g., ENSO), and to less extent the role of land use 
and land cover change. However, only rather limited studies 
have been done to understand and quantify the role of air pol-
lution in influencing and feeding back on weather and climate 
extremes [31, 32, 33•]. As a result, there is very limited under-
standing of air pollution interactions with weather and climate 
extremes and associated process-level mechanisms, suggesting 
an imperative need for a synthesis of current knowledge gaps 
and potential future directions on this topic.

This paper therefore seeks to provide a concise review 
of recent scientific advances in understanding the two-
way interactions and the associated feedback mechanisms 
between air pollution and weather/climate extremes that are 
socio-economically important, including extreme precipita-
tion, floods, droughts, wildfires, and heat waves. Figure 1 
summarizes a general framework to address this interdisci-
plinary problem. We specifically try to answer the following 
questions: (1) Is there strong evidence that air pollution is 
contributing to and/or interacting with weather and climate 
extremes? (2) If the answer to question (1) is yes, then what 
is the current understanding of the associated mechanisms 
and where are the knowledge gaps? (3) What future research 
directions and innovative approaches should we follow to 
reduce the knowledge gaps and enhance societal resilience 

Fig. 1   Framework for address-
ing air pollution interactions 
with climate and weather 
extremes. Note that some of the 
mechanisms involved in the pro-
posed interaction and feedback 
loops between air pollution and 
climate/weather extremes in 
this framework have not been 
understood yet, with the lack of 
direct evidence in literature
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to both climate/weather extremes and air pollution in the 
future decades?

This short review is constructed to cover each type of 
weather and climate extremes in the following sections with 
a synthesis at the end. Note that we include those types of 
extremes due to relatively abundant literature covering at 
least one-way influence and a viable pathway to explore 
more explicitly the two-way interactions. The list of weather 
and climate extremes focused by this review should not be 
considered exhaustive.

Air Pollution and Extreme Precipitation

Extreme precipitation has received an increasing amount 
of attention in the past decade, because it can pose signifi-
cant risks to ecosystems and human socio-economy, par-
ticularly over urban, coastal, and monsoon regions [7, 34, 
35]. Extreme precipitation events are typically defined as 
instances with the amount of rain/snow during a certain 
period (e.g., hourly or daily) substantially exceeding the 
climatological values. Previous studies used different met-
rics (e.g., top 1% or 5% of precipitation probability distribu-
tion) to define extreme precipitation according to different 
scientific goals. Both observational and modeling evidence 
have suggested that in addition to global warming caused 
by greenhouse gases, air pollutants like aerosols also play a 
key role in altering and interacting with extreme precipita-
tion [36–41].

Mechanisms of Interactions

Aerosols have long been studied and found to affect precipita-
tion in several major ways. In terms of microphysical effects, 
aerosols can act as cloud condensation nuclei (CCN) through 
aerosol-cloud interactions, which facilitates the formation of 
cloud droplets, delays cloud-to-precipitation transformation, 
invigorates convection, and hence increase precipitation inten-
sity at a later time [7, 34, 35, 42]. In terms of radiative effects, 
aerosols can scatter and absorb incoming solar radiation and 
hence alter atmospheric stability and the development of con-
vective clouds and precipitation [7, 34, 42]. Additionally, some 
aerosols can directly interfere with the precipitation process 
by acting as ice nuclei [43, 44], leading to the formation of ice 
crystals and potentially changing the type, amount, and inten-
sity of precipitation. Moreover, aerosols also impact precipita-
tion via interacting with topography (e.g., mountain-valley), 
local thermodynamic conditions (e.g., urban heat island), and 
large-scale circulations (e.g., monsoon systems) [7, 45, 46, 
47•], which adds complexity to understanding the full pic-
ture of the problem. In general, aerosol effects on precipita-
tion can vary depending on aerosol properties, such as size, 
composition, and concentration, as well as on the background 

meteorological conditions at which aerosols operate on and 
interact with.

The aforementioned mechanisms of general aerosol 
effects on precipitation provide a basis for understanding and 
quantifying aerosol impacts on extreme precipitation. On 
local to regional scales, some studies found that aerosols can 
enhance extreme precipitation due to aerosol-induced invig-
oration via microphysical and/or thermodynamical effects 
[34, 40, 46, 48, 49], especially when interacting with topog-
raphy [35] and even with ultrafine particles [50]. In con-
trast, many other studies pointed out that local aerosols can 
inhibit or weaken the convection and precipitation intensity 
via radiative effects (surface dimming and atmospheric heat-
ing) and/or thermodynamic effects (changing atmospheric 
thermal structures and the atmospheric stability) [7, 34, 51].

On continental to global scale, aerosols can affect extreme 
precipitation via interactions with background (global) 
warming and/or large-scale circulation. For example, aero-
sols have been found to enhance precipitation intensity and 
contribute to extreme rainfall in Asia through interaction 
with the Asian monsoon, Asian Westerly jet streams, or the 
Tibetan Plateau topography [41, 45], which however may 
also depend on aerosol types with enhanced intensity due 
to black carbon and reduced intensity due to sulfate [7, 52, 
53]. Over West Africa, anthropogenic aerosols have been 
found to reduce extreme precipitation during the West Afri-
can Monsoon by weakening westerlies, monsoon circula-
tion, and moisture fluxes [54]. The cooling radiative effect  
of aerosols can also offset the effect of global warming, which  
tends to suppress extreme precipitation [38, 55], but to a 
less extent than the suppression of mean precipitation [56]. 
Similarly, future projections suggested that aerosol reduc-
tions due to air pollution regulation in future climate will 
magnify the global warming effect [57] and hence enhance 
extreme precipitation [58–61].

Extreme precipitation can also affect air pollutants 
through altered wet deposition and hence their concentra-
tions. For example, the wet removal efficiency of aerosols 
can be weakened by the shift toward more frequent extreme 
precipitation in the future compared to that in the present cli-
mate, which could lead to increased aerosol concentrations 
in the future [62]. Extreme precipitation may also indirectly 
affect air pollutants’ emissions by changing the transporta-
tion and traffic patterns, which however are seldom studied.

Gaps and Future Directions

Although the understanding and quantification of the rela-
tionship between air pollution and extreme precipitation have 
improved over the last decade, there are still gaps in the current 
understanding of this complex relationship. For instance, at 
smaller and shorter scale, whether aerosols enhance or weaken 
extreme precipitation relies on a number of microphysical 
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factors, such as aerosol type, size, and concentration, as well 
as the background cloud type and synoptic pattern state. Due 
to the complex interactions among these factors, the involved 
mechanisms can vary case by case and are highly region-
dependent. At the larger and longer scale, the extreme pre-
cipitation responses are more controlled by radiative effects; 
therefore, due to the different responses of extreme precipitation 
to absorbing and scattering aerosols, it is crucial to accurately 
determine aerosol optical properties and assess the associated 
radiative effects conditioned on the background thermodynamic 
state and large-scale circulation.

In addition, the relative importance of anthropogenic aero-
sols in altering extreme precipitation compared to other cli-
mate factors (e.g., greenhouse gas warming, natural variability, 
natural aerosols, and land use change) also remains unclear. 
A few gaps are highlighted here. (1) There is a lack of sus-
tained and collocated monitoring of air pollutants including 
aerosol chemical composition, aerosol optical properties, and 
cloud optical and microphysical properties particularly in the 
developing countries (where pollution loading is high). This 
makes it very difficult to identify trends in this relationship and 
establish cause-effect relationships. (2) There is an inadequate 
representation of aerosol processes in chemistry-climate mod-
els, especially in the operational weather prediction models that 
are running on a daily basis as well as the IPCC-type of global 
climate models for long-term climate projection. This results in 
errors in the simulated aerosol physical, chemical, and optical 
properties, particularly in conjunction with clouds and precipi-
tation. (3) There is a lack of cross-scale mechanistic understand-
ing of the role of air pollutants in perturbing the synoptic-scale 
complex cloud-radiation-precipitation systems, which then is 
coupled with other larger-scale environments (e.g., urban–rural 
contrast, high mountains, monsoon, and jet streams).

Addressing these knowledge gaps will require targeted 
long-term multi-platform (in situ, spaceborne, balloon-
borne, ship-borne, airborne, and spaceborne) monitoring of 
air pollutants and extreme precipitation features (e.g., onset, 
progression, and duration) in different parts of the world. 
Such monitoring efforts may be informed by long-term 
analysis of the current global weather monitoring networks 
from which observations are shared under the World Mete-
orological Organization (WMO), and/or the state-of-the-art 
reanalysis dataset in which the monitoring of precipita-
tion and aerosol are assimilated into. Current Earth system 
models (ESMs), especially the ones with more advanced 
aerosol-cloud treatment and higher spatial resolution, need 
to be subjected to comprehensive process-based evalua-
tions through international partnerships between model 
developers and end users to identify regions of the larg-
est discrepancies between models and observations. Such 
regions, especially when leveraging unique opportunities 
such as COVID lockdown or volcanic eruptions, could be 
the focus of future intensive field campaigns, in order to 

improve parameterizations of aerosol-precipitation-relevant 
processes in current models. National meteorological agen-
cies that are responsible for providing actionable information 
to the public about extreme precipitation events also need to 
be engaged in the process of establishing new observational 
sites/networks and improving models.

Air Pollution and Floods

Flood is one of the most devastating hazards that cause sig-
nificant socio-economic damages, particularly in coastal 
regions and urban areas. Flood events are defined as 
instances with substantial overflow of water onto normally 
dry lands, which are typically caused by excessive rainfall, 
overflowing rivers, coastal storm surges, or the strong melt-
ing of snow/ice [63–65].

Mechanisms of Interactions

One possible mechanism through which air pollution can 
affect floods is by altering precipitation patterns, inten-
sity, and duration via aerosol-cloud-radiation-precipitation  
interactions and feedbacks [1, 34, 35]. As discussed in Sec-
tion “Air Pollution and Extreme Precipitation,” several stud-
ies have been conducted to understand and quantify how air 
pollution affects precipitation (including extreme rainfall), 
but very few studies directly linked air pollution with floods 
quantitatively. For example, one study [35] found that the 
severe air pollution in Sichuan Basin (China) suppresses pre-
cipitation during daytime and hence substantially enhances 
the precipitation intensity during night via the aerosol-
enhanced conditional instability, which contributed to the 
devastating flood in the region in 2013. Aerosols can also 
alter atmospheric thermodynamic states through aerosol 
radiative effects and interact with monsoon systems, which 
impacts precipitation intensity and pattern and potentially 
flood severity [7]. Aerosols have also been suggested to 
modify tropical cyclones [37] and mid-latitude storm tracks 
[36], which may further impact floods in coastal areas. One 
additional complexity during the process of evolving from 
heavy/extreme precipitation to flooding is the urbanization 
and infrastructure which typically have large areas of imper-
vious surfaces and hence could enhance flooding [65].

In addition, light-absorbing aerosols can reduce snow 
albedo after deposition onto snowpack [66, 67] and hence 
substantially accelerate snow melting [3, 68], which may 
contribute to flooding. However, there is no study directly 
connecting aerosol-enhanced snow melting with flooding 
quantitatively, which needs more investigations in the future.

In turn, floods might indirectly impact air pollution 
through several potential mechanisms, which however 
requires more studies. For example, sediments and organic 
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matter carried by floodwater may decompose and release 
gaseous pollutants to the atmosphere [69]. Floods can 
destroy infrastructures (e.g., power plants and industrial 
factories) and change human activities (e.g., transportation 
patterns and relocation of people to shelters), which further 
affects anthropogenic emissions of air pollutants. However, 
these mechanisms have not yet been explored or quantified.

Gaps and Future Directions

Overall, there is currently a lack of direct and effective evidence 
on the interaction between air pollution and floods, and very few 
studies have been conducted to directly quantify their relation-
ships. Current knowledge of the mechanisms is still very limited, 
with many unresolved pieces as discussed above. Even for the 
aerosol-precipitation mechanism that has received relatively 
more attention and could be one major driver for floods, there 
are still large uncertainties as discussed in Section “Air Pollution 
and Extreme Precipitation.” To address these knowledge gaps, 
more observational and modeling studies are needed, which 
should target on quantifying the interactions between air pollu-
tion and floods through process-level analyses to enhance the 
mechanistic understanding. Particularly, many confounding fac-
tors (e.g., unique urban environment, terrain, proximity to coasts, 
and storm formation) may also play a role, which add complex-
ity to the problem. Case studies would be a good starting point, 
while analyses of long-term data record are necessary to obtain 
robust air pollution-flood relationships and the associated vari-
ability. Interdisciplinary collaborations across different groups 
(e.g., atmospheric chemistry, meteorology, land, and hydrology) 
will be very beneficial to achieving effective solutions.

Air Pollution and Droughts

Droughts are defined as periods with drier-than-normal 
conditions, which feature sustained low precipitation and 
high evapotranspiration leading to drop in soil moisture and 
surface water level. Drought is one of the most complex 
and damaging natural disasters, often leading to significant 
concerns and devastating consequences on water and food 
security and socio-economy [70]. Many regions (e.g., west-
ern U.S., Australia, South America, and part of Europe) have 
been experiencing severe droughts in the past decade [71, 
72], and droughts are projected to occur more frequently 
over those areas under future climate change [71].

Mechanisms of Interactions

Observational and modeling studies, albeit limited, 
have shown evidence that droughts can affect air pol-
lution through several complex mechanisms related to 
land–atmosphere interactions as summarized below.

(1)	 Droughts favor increased wildfire occurrences, sever-
ity, and extent [30, 73], which leads to elevated fire 
emissions of air pollutants and their precursors [74, 
75•]. For instance, summertime surface PM2.5 con-
centrations have been found to increase by 26% in the 
southern U.S. due to drought-driven wildfire emissions 
of organic carbon [76].

(2)	 Droughts favor more frequent and severe dust storms 
and increase dust and PM concentrations [77–79], 
which would become more impactful in the future [80] 
due to the projected increasing droughts in regions like 
the U.S. Southwest.

(3)	 Droughts can lead to either increased or decreased sur-
face ozone concentrations [77, 81, 82, 83•] and PM2.5 
concentrations [14, 77] by altering biogenic emis-
sions, dry deposition, and atmospheric chemistry. For 
example, biogenic VOC emissions such as isoprene 
have been found to decrease during long-term severe 
drought periods because of drought stress on plants, 
which further reduce ozone production [83•, 84, 85]. 
However, other studies [82, 86] found that the response 
of isoprene emissions to drought depends on the dura-
tion and severity of drought, where isoprene emissions 
may increase during short-term or mild droughts due 
to different plant responses to water stress. The change 
in isoprene emissions further affects ozone and SOA 
production (contributing to PM2.5 changes). In addi-
tion, droughts have been found to change vegetation 
characteristics (e.g., leaf area index and stomatal func-
tioning) and hence affect the stomatal and non-stomatal 
pathways for ozone dry deposition [81, 83•, 87].

(4)	 The meteorological conditions during droughts often 
favor high temperatures (affecting chemical production/
loss) and lack of precipitation (reducing wet scaveng-
ing of pollutants) [88]. The elevated air temperature 
during drought events contributes to the accelerated 
photochemical process and ozone production [78, 83•]. 
In addition, little precipitation, surface high pressure 
system, and low boundary layer height during droughts 
can weaken the dispersion of air pollutants [89].

(5)	 Drought-induced changes in electricity generation 
sources from the use of hydropower to the use of coal 
and natural gas can lead to enhanced power sector 
emissions of air pollutants and their precursors [90]. 

(6)	 Drought impacts on air pollution can be further com-
plicated by regional and long-range transport of air pol-
lutants. For instance, drought-driven wildfire smoke 
has been found to transport to downwind regions and 
exacerbate the air pollution in those regions [91].

Compared to the investigation of drought impacts on air 
pollution, there are much fewer studies on how air pollution 
may affect drought development and intensity. An earlier 
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study [34] proposed a conceptual framework showing aero-
sols can lead to either drought or flood through complex 
aerosol-cloud-radiation-precipitation interactions based on 
specific environmental conditions and pollutant levels. A 
recent study [92] pointed out that the high aerosol levels in 
north China can enhance drought conditions by suppressing 
convective precipitation.

Although there is rather limited evidence directly show-
ing the feedback of air pollution to droughts, a few potential 
mechanisms have been suggested, which require more future 
investigations. First, aerosols can suppress precipitation via 
aerosol-cloud-radiation interactions under typical conditions 
[1, 6, 34, 93], which may further exacerbate drought con-
ditions. For instance, aerosols can suppress convection by 
reducing solar radiation reaching the surface and increasing 
lower atmosphere stability as well as by serving as CCN 
thus delaying the cloud-to-precipitation conversion, which 
all favor a reduction of precipitation [34]. Second, aerosols 
can alter temperature gradient and atmospheric circulation 
through direct and indirect radiative effects [7], which can 
further affect moisture supply from adjacent oceans and thus 
precipitation over the dry regions [94]. For example, aero-
sol-induced regional circulation changes have been found to 
modify weather patterns and may impact drought conditions 
[95]. Third, it should be noted that drought is not simply a 
result of precipitation deficit but is also worsened by the 
high potential evapotranspiration. A series of analyses have 
emphasized the aerosol’s role in affecting the latter [96], 
including the subtle competition with greenhouse gas [97] 
and among different aerosol species [98]. Fourth, related to 
the third point, air pollutants (e.g., ozone, but to less extent 
aerosols) may indirectly impact drought conditions by dam-
aging vegetation growth and its physiological processes [99], 
and hence impacting evapotranspiration and soil moisture.

Gaps and Future Directions

Overall, due to the limited number of studies on the interac-
tion between air pollution and droughts, there are still key 
knowledge gaps in this topic. (1) Although many studies 
have indicated that droughts can increase wildfire risks, the 
associated mechanisms via the complex land–atmosphere 
interactions are still not fully understood and quantified. 
This introduces additional uncertainties in the prediction 
of drought-induced wildfire emissions of air pollutants 
and associated precursors, where wildfire emission itself 
is already associated with large uncertainties (see Section 
“Air Pollution and Wildfires”). (2) Although there is some 
evidence that droughts can enhance dust storms, there is still 
a lack of sufficient quantitative knowledge of the relation-
ship between droughts and dust emissions as well as dust 
transport under prolonged drought conditions, particularly 
under future climate change. (3) It is not fully understood 

how soil conditions, vegetation characteristics, and physi-
ological functioning respond to droughts, which further 
introduces uncertainty to drought-induced changes in bio-
genic emissions, dry deposition, and chemical processes of 
air pollutants. (4) The impacts of meteorological conditions 
during droughts (potentially in conjunction with heat waves; 
see Section “Air Pollution and Heat Waves”) on chemical 
production/loss, dispersion, and deposition of air pollutants 
have been under-studied. (5) It is also less well known how 
drought-induced local air pollution changes are coupled with 
regional and long-range transport and may impact down-
stream regions. (6) The effects and interactions of air pol-
lution on droughts are very much under-studied, especially 
with natural sources of aerosols from wildfires and dust 
storms in the feedback loop. There is little knowledge on 
both the associated quantitative impacts and mechanisms, 
which may involve complicated chemistry-vegetation and 
aerosol-cloud-radiation interactions as well as some uniden-
tified processes.

To address these knowledge gaps, we provide the follow-
ing recommendations. (1) More process-level studies and 
observational data focusing on major drought events are 
needed. A synthesis of existing in situ and remote sensing 
observations of droughts, meteorology, and air pollution will 
provide a good starting point. More analyses of long-term 
regional air pollution data together with monitored droughts 
and relevant meteorological data are required to improve the 
quantification of impacts and interactions between air pol-
lution and droughts. (2) Global/regional climate-chemistry 
modeling studies, such as process-level sensitivity tests, will 
be useful to explore and identify the key mechanisms of 
air pollution-drought interactions. Particularly, the chem-
istry-vegetation-hydrology interactions are key modeling 
processes to be enhanced in order to capture the two-way 
coupling of air pollution and droughts. (3) Collaborations 
among observational and modeling groups as well as scien-
tists in atmospheric chemistry, meteorology, hydrology, and 
ecology are needed to facilitate the progress on this interdis-
ciplinary but under-studied topic.

Air Pollution and Wildfires

Wildfires are a key component in our Earth system and have 
significant social impacts, including directly posing risks to 
public health and property as well as indirectly impacting the 
human and earth systems by affecting weather, climate, air 
quality, ecosystem health, and agriculture [100]. We include 
wildfire as one type of weather extremes in this study, since 
it is an unusual, severe weather event that often occurs under 
extremely dry and/or hot conditions together with droughts 
and/or heat waves. Previous studies suggest that global wild-
fire risk will likely increase in the future [101, 102].
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Mechanisms of Interactions

Wildfires have long been recognized as one of the major 
sources of air pollution [74, 75•, 103]. During the combus-
tion process, wildfires directly emit significant amounts of 
primary air pollutants and precursors of secondary air pol-
lutants [104, 105]. Emissions of a chemical species from a 
wildfire event can be calculated as a product of fire burned 
area, fuel load, the fraction of fuel that is burned, and emis-
sion factor of the chemical species which varies with vegeta-
tion type. Several widely used global fire emission inven-
tories use this approach [103, 105]. Uncertainties exist in 
all four variables mentioned above, while the uncertainty 
in fuel load is a major driver of uncertainty in fire emission  
estimates [105]. Emission factors vary with combustion effi-
ciency, but quantifying combustion efficiency remains chal-
lenging. Fires in the wildland-urban interfaces (WUI) also 
need particular attention as WUI fires can involve structure 
burning leading to different emissions than wildfires. When 
trace gases and aerosols are emitted from fires to the atmos-
phere, they undergo transport and chemical processing. 
Therefore, understanding transport (e.g., fire plume rise) and 
atmospheric chemistry (e.g., ozone and SOA formation) are  
also critical to understanding wildfire impacts on air pollution.

Not only do wildfires impact air pollution but also air 
pollution can feed back on wildfires, which however is a 
much less understood process. In theory, there are a few pos-
sible pathways through which air pollution may impact wild-
fires. (1) Air pollutants (particularly aerosols) could change 
regional atmospheric states (cloud, precipitation, wind, and 
atmospheric stability) [106], which can affect wildfire occur-
rence, spread, and intensity. For example, a recent study [9] 
found that wildfires can be enhanced by the radiative effects 
of smoke aerosols in different coastal areas through modi-
fying near-surface winds, air dryness, and rainfall patterns, 
which hence triggers positive smoke-weather-wildfire feed-
back. (2) Air pollutants can impact the climate by altering 
atmospheric composition and large-scale radiative balance 
[107, 108], and the changed climate can further impact wild-
fire activities. (3) Air pollution can also impact vegetation 
[99, 109], and vegetation density and distribution largely 
drive wildfire activities. (4) Under some circumstances, air 
pollution can impact human activities which are relevant 
to fire ignition. For example, as more people move to WUI 
due to urban expansion, the chances of fire ignition are also 
enhanced [110].

Gaps and Future Directions

Wildfire impacts on air pollution are an active research field. 
Several gaps need to be addressed. For example, it is crucial 
to (1) reduce uncertainties in fire emission estimates and (2) 

understand wildfire-related physical and chemical processes 
such as plume rise and interaction with meteorology, chemi-
cal processes like SOA formation, ozone chemistry, VOC-
related processes, and aerosol-cloud interaction.

To address the aforementioned gaps and fully understand 
the wildfire emissions, subsequent processes, and impacts, 
it takes joint efforts from lab experiments, field measure-
ments, satellite retrievals, and modeling communities. Lab 
experiments provide valuable data on emission factors and 
chemical processes [111]. Field campaigns focusing on fires 
such as FIREX-AQ (Fire Influence on Regional to Global 
Environments and Air Quality), WE-CAN (Western wildfire 
Experiment for Cloud chemistry, Aerosol absorption and 
Nitrogen), and BBOP (Biomass Burning Observation Pro-
ject) can significantly push our understanding of wildfires 
forward [112–115]. Satellite products such as burned area, 
fire radiative power, atmospheric composition, aerosol opti-
cal depth, and plume height retrievals provide large-scale 
continuous measurements on multiple aspects of wildfires. 
Climate-chemistry models are very useful to assess wildfire 
impacts on air pollution at a regional to global scale [114]. 
It is important to integrate knowledge learned from differ-
ent approaches together to understand wildfire impacts on 
air pollution and continue improving the representation of 
wildfires in climate-chemistry models.

In addition, more studies are needed to understand and 
quantify the impacts of air pollution on wildfires. At this 
point, it is unclear how and to what degree air pollution 
can impact wildfires, which needs to be addressed through 
interdisciplinary collaborations (e.g., atmospheric chemistry, 
meteorology, climate, and ecology).

Air Pollution and Heat Waves

Heat waves are typically defined as a period of consecutive 
days where conditions are excessively hotter than normal 
[116]. Heat waves have negative impacts on human health 
[117] and the environment [118]. Previous studies have 
found that in recent decades, the frequency and intensity of 
heat waves have increased globally [119], and in the future, 
more frequent and severe heat waves are expected to occur 
in many regions due to climate change [120, 121].

Mechanisms of Interactions

Heat waves can contribute to air pollution in multiple ways. 
Heat waves can directly enhance wildfires and hence fire 
emissions of air pollutants [122•]. Heat waves in general 
enhance emissions of biogenic VOCs [123, 124] which are 
the precursors of ozone and SOA. The higher air temperature 
during heat waves can increase chemical reaction rates [125]. 
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As a result, previous studies have found that surface ozone 
and PM pollution are enhanced during heat waves [125–128].

In addition to the direct influences of heat waves, there are 
other indirect ways through which heat waves can affect air  
pollution. The broader definition of heat waves includes metrics 
beyond temperature, but also humidity and radiation. Humid 
conditions can affect PM formation via aqueous chemistry and 
wet growth of particle size. Enhanced solar radiation during 
cloud-free conditions also affects ozone chemistry. For exam-
ple, the meteorological patterns contributing to heat waves 
often feature high pressure, low wind, and stagnation, which 
can impact the horizontal dispersion and vertical ventilation of 
air pollutants. In addition, droughts, often co-occurring with 
heat waves [129, 130], can further enhance wildfires and fire 
emissions as well as affect air pollution in multiple ways as laid 
out in Section “Air Pollution and Droughts.”

Previous studies focused more on how heat waves impact 
air pollution as discussed above. However, air pollution, 
especially aerosols as scattering and absorbing agents of 
solar radiation, may also influence heat waves by altering 
thermodynamic conditions (generally surface cooling and 
atmospheric heating). For example, anthropogenic emissions 
of aerosols can enhance the urban heat island effect locally, 
which further exacerbates the heat stress resulting from heat 
waves [131]. Furthermore, aerosols can perturb the regional 
[7] to global dynamical climate conditions [57, 132, 133•] 
through aerosol-meteorology interaction, which however is 
a process that has not yet been explored much.

Gaps and Future Directions

The knowledge of the interactions between air pollution and 
heat waves is very limited currently. To understand how air 
pollution might interact or modulate heat waves, it would 
be beneficial to conduct dedicated model sensitivity studies 
using a coupled climate-chemistry model that is evaluated 
comprehensively with existing multi-platform observations 
of weather and atmospheric chemistry, for specific heat wave 
events in the recent past, especially those close to large pop-
ulation centers and that have led to major health outcomes.

In addition, via the ecological linkage (Fig. 1), a quantitative 
understanding of how heat waves (jointly or after drought condi-
tions) impact wildfire occurrence and intensity and hence fire 
related emissions of air pollutants and precursors will be valu-
able, especially under the changing climate where heat waves 
and wildfire activities are both projected to increase in the future.

Conclusions

Air pollutants need to be considered as a key component 
of weather and climate systems, because they induce com-
plex interactions via meteorological and ecological feedback 

pathways (Fig. 1). Several existing review articles have cov-
ered the state of knowledge of air pollution research from 
different aspects, such as how air pollution affects climate 
and weather, how meteorology affects air pollution, the 
interaction with ecosystems, and impacts on public health. 
However, to the best of our knowledge, no review article 
has jointly assessed the two-way interaction between air 
pollution and climate/weather phenomena, or specifically 
focused on extremes which have substantial social impacts. 
Considering the very limited process-level mechanistic 
understanding at event basis (weather) as well as the general 
under-appreciation of the role of air pollution for long-term 
(climate) characteristics of extremes so far, we therefore pro-
vided this concise review of the current knowledge and gaps 
on the role of air pollution in impacting and feeding back 
on weather and climate extremes. We also proposed some 
potential future directions to address the knowledge gaps.

We focused this review on the relationships between 
air pollution and a few representative types of climate and 
weather extremes, including extreme precipitation, floods, 
droughts, wildfires, and heat waves, because they are socio-
economically important and also there is relatively more abun-
dant literature addressing at least one-way influence. We note 
that there are other extremes (e.g., tornado and hurricane) that 
might interact with air pollution but with very few studies so 
far. We found that existing literature provides evidence (albeit 
limited) that air pollution can contribute to and/or interact 
with each of those extremes focused by this review. Several 
possible mechanisms, especially via complex air pollution-
meteorology and air pollution-ecosystem interactions, have 
been identified and proposed by previous studies to explain 
the connections between air pollution and those extremes. 
Some of these meteorological (e.g., aerosol-cloud interac-
tion) and/or ecological (e.g., ozone-vegetation interaction) 
mechanisms similarly apply to those of interactions between 
air pollution and general (mean, non-extreme) climate, but 
some are unique to extremes (e.g., drought-induced vegeta-
tion change affects ozone deposition; unique meteorological 
conditions during droughts or heat waves affect atmospheric 
chemistry). Currently, there is still a lack of quantitative 
assessment of two-way interactions and mechanistic under-
standing of the feedbacks involved. Moreover, the weather and 
climate extremes are also often compounded spatiotemporally, 
such as extreme precipitation-flood and drought-wildfire-heat 
wave, adding complexity to the problem. Some mechanisms 
through which air pollution interacts with these extremes may 
be similar (e.g., aerosol-cloud interaction impacts extreme 
precipitation and floods; high temperature during droughts 
and heat waves favors wildfires and thus fire emissions of air 
pollutants), but there are interactions that are more unique to a 
specific extreme (e.g., vegetation response to droughts affects 
biogenic emissions; aerosol wet removal efficiency altered by 
increased extreme precipitation).
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To address the knowledge gaps, there is an imperative 
need for (1) more process-level investigations focusing on 
representative weather events and climate conditions to 
improve the mechanistic and quantitative understanding; 
(2) synthesizing, enhancing, and sustaining multi-platform 
multi-scale observations of atmospheric chemistry, meteor-
ology, and ecosystem; (3) multiple modeling analyses for 
climate and weather extremes contributing to or modulated 
by air pollution, especially with fully interactive gas-phase 
and aerosol chemistry as well as ecologically relevant bio-
geochemistry; and (4) facilitating greater interdisciplinary 
collaborations across fields (e.g., air quality, synoptic mete-
orology, climate change, and ecology) and groups (modeling 
and observation).
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