
Vol.:(0123456789)1 3

Current Pollution Reports (2023) 9:1–21 
https://doi.org/10.1007/s40726-023-00248-9

LAND POLLUTION (GM HETTIARACHCHI AND A JUHASZ, SECTION EDITORS)

Trace Element Occurrence in Vegetable and Cereal Crops from Parts 
of Asia: A Meta‑data Analysis of Crop‑Wise Differences

Anjali Kerketta1 · Hemant Kumar1 · Mike A. Powell2 · Prafulla Kumar Sahoo1,3 · Harmanpreet Singh Kapoor4 · 
Sunil Mittal1

Accepted: 28 November 2022 / Published online: 13 February 2023 
© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023

Abstract
In the present study, a systematic review along with a meta-analysis was conducted based on relevant studies from 11 Asian 
countries (1999–2022, Scopus, PubMed, MEDLINE, ScienceDirect, and Google Scholar) to evaluate the crop-wise differ-
ences in the accumulation of trace element (TE) in the edible part of different crops (vegetables: leafy (LV), root (RV), fruit 
(FV); cereal crops: rice (RIC), wheat (WHE), maize (MAZ)). Based on the median concentration of the compiled data, the TE 
accumulation in different vegetable crops was ranked in the decreasing order of Fe > Zn > Mn > Cu > Ni > Cr > Pb > Co > Se > 
Cd > As, and in cereal crops, this is followed as Fe > Zn > Cu > Ni > Cr > Co > Pb > As > Se > Cd > Hg. A clear difference was 
found between vegetable categories, with a higher accumulation of most of the elements in LV, especially spinach, coriander, 
radish leaves, mustard, amaranthus, and pakchoi than other vegetable types. Root vegetables displayed higher bioconcentration 
factors (BCF) than the other two vegetable types. For cereal crops, higher metal contents were found in WHE followed by RIC 
and MAZ, but RIC had relatively higher BCF for certain metals (As, Cd, Cu, Cr, Ni) and WHE dominated for the remaining 
metals. When compared with the prescribed safe limits of the non-essential metals (As, Cd, and Pb), this study revealed that 
the majority of the vegetable and cereal crop contaminations were from Bangladesh, China, India, Iran, and Pakistan.
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Introduction

Vegetables, grains, and legumes are essential foodstuffs in 
Asian countries as they are rich in nutrients and are a signifi-
cant source of proteins, carbohydrates, minerals, and antioxi-
dants, which help to reduce various kinds of chronic diseases 
and improve human body function [1, 2]. Therefore, there is 
a growing demand for the cultivation of these crops in these 
regions. However, vegetable crops grown in contaminated 

areas are one of the greatest threats to food quality and human 
health as they can readily accumulate a wide variety of chemi-
cal pollutants (beyond their recommended limits), commonly 
termed as “trace elements” (TEs), in their edible and inedible 
(fodder) parts and enter into the food chain [3–5]. These TEs 
are now considered a significant health concern worldwide, 
especially in developing and underdeveloped countries [6, 7]. 
Some of the TEs, specifically Fe, Mn, Cr, Cu, Zn, and Se, 
are essential for human health at specific concentrations, but 
they may become toxic at higher doses. In contrast, elements 
like As, Cd, Pb, and Hg are non-essential elements that are 
included in the top 20 list of dangerous substances by the 
United States Environmental Protection Agency (USEPA) 
and the Agency for Toxic Substances and Disease Registry 
(ATSDR) [8]. These elements can be very harmful even in 
trace quantities in any food item when ingested over a longer 
duration [8–13] and can cause various health diseases like 
anemia, bone diseases, gastrointestinal cancer, kidney failure, 
decrease in immunological defenses, tissue damage, osteo-
porosis, skin lesions, cardiovascular diseases, diabetes, and 
blood and lung cancers, etc. [14–16]. These TEs also decline 
crop yield by inhibiting metabolic processes [17]. Many 
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studies have been carried out on the origin and distribution 
of TE within plants for over a century. This work presents an 
inventory of TEs in major crops from some Asian countries.

The accumulation of TE in agricultural soil may be the 
consequence of both geogenic and anthropogenic factors 
(Fig. 1). The latter is more pronounced in developing coun-
tries due to the continued growing population, resulting 
from the need for food security, rapid urbanization, indus-
trialization, hazardous waste dumping, coal combustion in 
power plants, vehicular traffic, automobile exhausts, land-use 
change, and excessive/unsystematic application of pesticides, 
fertilizers, sewage, and irrigation with wastewater or polluted 
groundwater [18–22]. Urban wastewater, some with indus-
trial effluents, is used for crop production in many densely 
populated Asian countries like China, India, Pakistan, and 
Bangladesh as a compromise measure for lack of freshwater 
and water scarcity [23]. Irrigation with contaminated ground-
water or surface water receiving agrichemical runoff is 
another major factor in metal-crop composition, especially in 
Southeast Asian countries, where groundwater bodies can be 
severely contaminated with toxic metals [18, 24–26]. Long-
term use of contaminated irrigation water and soil amend-
ments leads to a high accumulation of TE in soils, which can 
be subsequently transferred to the edible and fodder parts 
of crops via various uptake and translocation mechanisms 

(Fig. 1), see Supplementary Note 1, and ultimately end up 
in the food chain [26–33]. Thus, poor irrigation water qual-
ity and soil amendments threaten sustainable agriculture and 
human health in developing countries like India, China, and 
Bangladesh [24, 26]. Crops requiring higher irrigation fre-
quency accumulate greater metal concentrations than crops 
with fewer water requirements [34]. Moreover, the accumu-
lation of TE in food crops is affected by soil types and soil 
physicochemical properties (e.g., temperature, moisture, pH, 
redox potential, clay mineral content, organic matter, Fe/Al 
oxides, cation exchange capacity, and speciation) which in 
turn control solubility and bioavailability of metals in the 
soil-rhizosphere [35–39]. This is significantly varied between 
elements. For example, the bioaccumulation of As increases 
significantly under reducing conditions, whereas that of Cd 
decreases [40–42] due to changes in solubility when soil 
redox potential drops [41, 42]. Also, metal accumulation in 
crops significantly varies depending on the plant varieties/
species, their ability to take up metals, and soil–plant uptake 
factors [43]. Thus, the occurrence of TE in plants depends 
on their soil bioavailability and the composition of irriga-
tion water and on the plant’s ability to uptake and sequester 
TE. Therefore, it is crucial to determine the TE accumula-
tion potential of different crop/plant species. Understanding 
these differences will be helpful when describing the TE 

Fig. 1   Schematic diagram shows various natural and anthropogenic sources of trace element contamination in agricultural soils and the major 
processes involved in the uptake, translocation, and sequestration of metals in crops (see Supplementary Note 1) 
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contamination status of food crops, which can help predict 
health risks and dietary planning.

There have been numerous studies from Asian countries 
on the relative importance of irrigation water types and 
soil amendments concerning their impact on crop-metal 
concentrations in edible and non-edible parts of plants. 
Some recent reviews also concentrate on this topic which 
have mostly focused on a specific crop type, either only 
vegetables [44, 45], or wheat (Triticum aestivum) [46], or 
rice (Oryza sativa) [47, 48], or maize (Zea mays) [49]. 
However, to the best of our knowledge, recent system-
atic reviews are scarce on the TE accumulation on a wide 
variety of crops (vegetables and cereal crops) in the Asian 
context; this study strives to fill this gap. Both descrip-
tive and meta-analyses are important for synthesizing the 
information extracted from original studies and determin-
ing comprehensive conclusions on this topic [47]. In view 
of the above-mentioned point, we compiled an extensive 
database focusing on the Asian context (mostly major pop-
ulated developing countries) from 1999 to 2022 and used 
basic statistics and meta-analysis to address the current 
status of TE contamination in edible parts of vegetables 
and grains and their corresponding soils and irrigation 
water and to examine the crop species differences in TE 
accumulation in them. The discussion is limited for irri-
gation water and soils due to the paucity of information 
provided in the referenced works. We further summarize 
the various factors responsible for this contamination and 
highlight the key variables. This work divides crops into 
leafy, root, and fruit vegetables and grains such as rice (O. 
sativa), wheat (T. aestivum), and maize (Z. mays), which 
include many of the essential food staples. The informa-
tion provided in this paper will be helpful for policymak-
ers to make sustainable agricultural irrigation policies and 
develop approaches to limit TE accumulation in crops to 
ensure future food security.

Methodology

Data Collection and Processing

A literature search was conducted using several electronic 
databases, i.e., Scopus, PubMed, MEDLINE, ScienceDirect, 
and Google Scholar. Relevant articles were then searched 
using the phrases “heavy metal accumulation in vegetable 
crops,” “metal accumulation in food crops,” “potentially 
toxic elements in food crops,” and “metal accumulation in 
grains/rice/wheat.” Search results were screened based on 
field and market-based studies in the Asian context, cov-
ering Bangladesh, China, India, Iran, Malaysia, Pakistan, 
Saudi Arabia, South Korea, Taiwan, Thailand, and Vietnam. 
The vegetable data were divided into three major categories 

based on agronomic classification: leafy vegetables (LV), 
root vegetables (RV), and fruit vegetables (FV). Similarly, 
grains were categorized as wheat (WHE), rice (RIC), and 
maize (MAZ). Detailed information for vegetable crops and 
grains from all primary studies is listed in Supplementary 
Tables S1 and S2, respectively. The number of studies and 
from which countries are given in the sections below. Only 
a few of the included studies contained usable information 
on TEs in irrigation water or soils, or both together (Sup-
plementary Tables S1 and S2).

Bioconcentration factor (BCF) was calculated by com-
puting the ratio of the concentration of each metal in the 
edible part of vegetables/grains and the corresponding soil 
concentration to determine the accumulation potential for 
different TEs (Eq. 1). This was calculated only for those 
specific crop records which had soil data. If an author used 
the soil data in a study for multiple crop types, the same data 
was counted for each crop.

Statistical and Meta‑data Analysis

The crop data were subjected to basic and multivariate statis-
tical analysis utilizing Microsoft Excel, SPSS, and R Studio. 
The normality of the data was checked by using the Kol-
mogorov–Smirnov test. Since most variables do not follow a 
normal distribution, Spearman’s rank correlation coefficients 
were calculated to investigate the association between the 
target metals in soils and crops. Kruskal–Wallis (K–W) test, a 
non-parametric version of the ANOVA, was performed using 
SPSS for all the metals to evaluate the differences among 
vegetable and cereal species. Meta-analysis was applied on 
the concentrations of TE in different vegetable crops. This 
was done by the MedCalc statistical software. The statistical 
meta-analysis was utilized for the total heterogeneity effect 
using the I2 and Q tests. Under I2 > 50% and p < 0.05 condi-
tions, we looked for a significant heterogeneity [50].

Basic Summary of the Compiled Data

The whole crop dataset (mostly average TE concentrations 
in crop wise from each study) was compiled from over 300 
studies comprising over 1300 records of elements such as, 
As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Se, and Zn (very limited 
Hg) (Supplementary Tables S1 and S2). Due to significant 
variations in consumption of these types of crops across/
within Asian countries, the 40 vegetable crops were grouped 
into 3 categories: fruit vegetables (FV), leaf vegetables (LV), 
and root vegetables (RV); no attempt was made to compare 
individual crop types due to the large disparity in numbers of 

(1)BCF =
Concentration of element in vegetables∕crops

Concentration of element in soils



4	 Current Pollution Reports (2023) 9:1–21

1 3

analyses or lack of data from one study/country to another. 
The highest number of records was for FV (52%), followed 
by LV (37%) and RV (11%). The vegetable data was com-
piled from 122 studies containing 838 records and 7713 
separate analyses (individual analyses of either a crop, water, 
or soil). Certain crops belonging to the same family were 
grouped, resulting in 28 vegetable crops. Crops belonging to 
the same family like “green cabbage (B. oleracea var. capi-
tata),” “Chinese cabbage (Brassica rapa),” and “cabbage” 
(B. oleracea var. capitata) were grouped into “cabbage,” and 
“Indian spinach (Amaranthus sp)”, “amaranth (Amaranthus 
sp),” and “red amaranthus (Amaranthus sp)” were clubbed 
as “amaranth”; “long beans (Vigna unguiculata, sub. Ses-
quipedalis)”, “flat beans” (Phaseolus coccineus), “Indian 
beans (Lablab purpureus),” “beans (Phaseolus vulgaris),” 
and “common beans (Phaseolus vulgaris)” were grouped 
together as “beans”; “chilly (Capsicum annuum)” and “cap-
sicum (Capsicum annuum)” were grouped into “chilly”; 
“lettuce,” “long leaf lettuce,” “iceberg lettuce,” “leaf let-
tuce,” and “Romaine lettuce” were all grouped as “lettuce” 
(Lactuca sativa). Using this scheme resulted in a total of 28 
vegetable crop classifications (see Supplementary Table S1 
for descriptions of the 3-letter crop abbreviations used in this 
paper: AMR, ARM, BIG, BNS, BOG, BRN, CBB, CRR, 
CBR, CLF, CLL, CRN, GRL, KAL, LTT, LEK, MNT, MST, 
OKR, ONN, PRS, PKC, PTT, RDH, RDL, SPN, TMT, and 
TNP). These vegetables were collected from 8 countries 
(number of studies): Bangladesh (21), China (20), India (36), 
Iran (14), Pakistan (19), Saudi Arabia (5), South Korea (6), 
and Vietnam (1; not included in the discussion). The top 4 
countries represent 79% of the total studies compiled. More 
than 80% of the studies on vegetables were field-based, and 
the remaining were from a market-based survey. In grains, 
the major groups are rice (O. sativa), wheat (T. aestivum), 
and maize (Zea mays). The grain data were collected from 
201 studies containing 526 records and 2887 separate analy-
ses, of which 68% of data were from field studies and the 
other 32% were from market-based trials. Studies on rice 
account for 71% of the total, 20% for wheat, and 9% for 
maize, indicating the importance of rice in the Asian diet 
relative to wheat or maize, although all these are important 
to the Asian diet. In addition to the countries that reported 
the TE concentration in vegetables, published works from 
Malaysia, Taiwan, and Thailand (11 countries in total) were 
also included for grains. The number of studies from differ-
ent countries included China (67), Bangladesh (29), India 
(25), Iran (23), Malaysia (5), Pakistan (19), Saudi Arabia 
(4), South Korea (18), Taiwan (5), Thailand (2), and Viet-
nam (8).

The data for associated soil and irrigation water were 
reported only in some records (Supplementary Tables S1 
and S2). Of all the studies, 52% were done on crops, 37% 
on soil, and 11% on irrigation water. Irrigation water was 

separated into 6 types (% of each in all sources): “PPT,” 
precipitation (2%); “SUR,” surface water from canals and 
rivers or when uncontaminated groundwater or tube well 
water is mixed with them (15%); “UGW,” uncontaminated 
groundwater (7%); “SWW,” sewage, wastewater, including 
urban/domestic sources (38%); “IWW,” industrial wastewa-
ter including mining, processing, etc. (25%); and “UNK,” 
when no information is provided (12%) (Supplementary 
information: Fig. S1); market studies only reported data for 
3, and of those, approximately 80% were unknown sources; 
any study with an “unknown” source of water was not con-
sidered in this work. Also, the entire data from each study, 
including the “outliers,” have been considered for analysis 
as these data were gleaned from peer-reviewed published 
articles, and hence, the extremely low or high values are 
real. These outliers give weight to possible problems which 
require action for specific areas that need new policies on 
crop and dietary intake relevant to potentially toxic elements.

Results and Discussion

Statistical Analyses of the Occurrence of Trace 
Elements in Vegetable Crops

The statistical summary of the TE in the three vegetable 
categories is listed in Table 1. Overall, the concentration of 
TE varies widely in the studied vegetable species. The mean 
values for several elements are significantly different, which 
also have a higher relative standard deviation (RSD), indi-
cating these elements are asymmetrically distributed. Con-
sidering this, median values are a statistically more robust 
measure of central tendency than means; thus, former values 
were used for further comparison purposes. A notable differ-
ence in the median concentrations of TE between and within 
the three vegetable categories was observed (Table 1). In 
LV, the median concentration of As, Cd, Co, Cr, Cu, Fe, 
Mn, Ni, Pb, Se, and Zn was 0.45 mg kg−1, 0.48 mg kg−1, 
0.42 mg kg−1, 4.08 mg kg−1, 6.31 mg kg−1, 157.84 mg kg−1, 
34.29 mg kg−1, 4.00 mg kg−1, 2.24 mg kg−1, 0.64 mg kg−1, 
and 27.93 mg kg−1, respectively. Based on these values, 
the TE in LV followed the order of Fe > Mn > Zn > Cu > Cr 
> Ni > Pb > Se > Cd > As > Co. Similarly, the median con-
centration in RV for As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, 
Se, and Zn was as follows: 0.29 mg kg−1, 0.29 mg kg−1, 
1.00 mg kg−1, 1.97 mg kg−1, 4.92 mg kg−1, 68.94 mg kg−1, 
15.34 mg kg−1, 2.58 mg kg−1, 1.08 mg kg−1, 0.76 mg kg−1, 
and 21.90 mg kg−1, respectively. The order of these metals 
in RV was Fe > Zn > Mn > Cu > Ni > Cr > Pb > Co > Se > C
d > As. Likewise, the median concentrations for As, Cd, Co, 
Cr, Cu, Fe, Mn, Ni, Pb, and Zn in FV were 0.50 mg kg−1, 
0.41 mg kg−1, 0.84 mg kg−1, 1.80 mg kg−1, 6.43 mg kg−1, 
131.07  mg  kg−1, 14.93  mg  kg−1, 2.50  mg  kg−1, 
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Ta​ble​ 1​  ​​ Des​criptive statistics of the aver​age​ tr​ace​ element concentrations from all studies​ in​ cr​ops (all ​typ​es)​ according to crop categories (for 
detailed information with individual study, see Supplementary Tables S1, S2)

LV (n = 422) As Cd Co Cr Cu Fe Mn Ni Pb Se Zn

  Nbr. of obs 105 335 36 195 312 84 113 179 370 9 278
  Min (mg kg−1) 0.01 0.001 0.01 0.04 0.01 4.31 0.99 0.001 0.001 0.45 0.03
  Max (mg kg−1) 16.0 70.0 57.6 322.0 100.0 2669.1 368.1 350.0 780.0 59.0 950.0
  Q1 (mg kg−1) 0.16 0.16 0.09 1.17 1.34 74.75 16.58 0.96 0.32 0.55 8.33
  Median (mg kg−1) 0.45 0.48 0.42 4.08 6.31 157.84 34.29 4.00 2.24 0.64 27.93
  Q3 (mg kg−1) 2.08 1.63 5.06 9.90 14.51 497.68 73.10 14.35 8.81 0.67 58.95
  Mean (mg kg−1) 1.79 2.35 8.20 19.15 10.63 400.93 58.97 21.14 15.90 7.10 53.18
  SD 3.06 5.87 17.18 44.76 13.54 527.44 67.03 50.74 65.08 18.35 101.44
  RSD (%) 171 249 209 234 127 132 114 240 409 258 191

RV (n = 186) As Cd Co Cr Cu Fe Mn Ni Pb Se Zn
  Nbr. of obs 61 126 18 68 118 54 73 74 146 4 117
  Min (mg kg−1) 0.01 0.001 0.13 0.07 0.001 0.97 0.08 0.06 0.001 0.56 0.001
  Max (mg kg−1) 8.20 30.00 53.20 78.02 35.00 1666.0 277.0 62.7 59.0 0.83 139.05
  Q1 (mg kg−1) 0.14 0.09 0.46 0.84 1.23 32.58 5.65 0.62 0.34 0.68 7.20
  Median (mg kg−1) 0.29 0.29 1.00 1.97 4.92 68.94 15.34 2.58 1.08 0.76 21.90
  Q3 (mg kg−1) 0.81 0.99 4.97 5.99 11.17 148.73 29.45 6.78 4.42 0.81 39.58
  Mean (mg kg−1) 0.97 1.34 10.09 7.37 7.28 147.85 33.26 7.31 4.37 0.73 29.00
  SD 1.48 3.84 19.06 14.79 7.74 268.60 51.87 13.10 9.52 0.10 29.37
  RSD (%) 153 286 189 201 106 182 156 179 218 14 101

FV (n = 235) As Cd Co Cr Cu Fe Mn Ni Pb Se Zn
  Nbr. of obs 82 187 15 124 174 50 63 115 196 139
  Min (mg kg−1) 0.01 0.01 0.01 0.03 0.03 0.10 0.06 0.03 0.001 0.05
  Max (mg kg−1) 12.00 13.00 9.00 548.0 201.7 1660.0 144.0 50.0 78.20 701.40
  Q1 (mg kg−1) 0.21 0.09 0.50 0.59 1.18 15.62 3.81 0.83 0.43 3.57
  Median (mg kg−1) 0.50 0.41 0.84 1.80 6.43 131.07 14.93 2.50 1.49 20.60
  Q3 (mg kg−1) 1.79 1.47 4.33 8.71 12.49 349.00 32.81 10.09 6.00 34.45
  Mean (mg kg−1) 1.36 1.39 2.61 15.86 10.43 217.82 28.36 7.35 6.63 37.64
  SD 2.26 2.63 3.16 65.23 18.06 280.79 36.92 10.35 14.16 83.67
  RSD (%) 165 189 121 411 173 129 130 141 214 222

ALL VG (n = 838) As Cd Co Cr Cu Fe Mn Ni Pb Se Zn
  Min (mg kg−1) 0.01 0.001 0.01 0.03 0.001 0.10 0.06 0.001 0.001 0.45 0.001
  Max (mg kg−1) 16.0 70.0 58.0 548.0 202.0 2669.0 368.0 350.0 780.0 58.0 950.0
  Mean (mg kg−1) 1.44 1.88 7.48 16.03 9.92 279.54 43.69 14.05 10.98 5.14 43.84
  Median (mg kg−1) 0.40 0.41 0.76 3.00 6.09 125.62 21.93 3.10 1.66 0.64 22.84

Rice (n = 371) As Cd Co Cr Cu Hg Fe Ni Pb Se Zn
  Nbr. of obs 251 199 32 109 117 11 27 76 170 8 106
  Min (mg kg−1) 0.001 0.001 0.001 0.01 0.001 0.001 3.44 0.01 0.001 0.03 0.01
  Max (mg kg−1) 3.27 17.00 49.89 19.98 123.56 0.77 536.10 46.34 45.75 1.82 121.76
  Q1 (mg kg−1) 0.10 0.03 0.01 0.18 1.90 0.01 11.90 0.21 0.11 0.06 11.70
  Median (mg kg−1) 0.17 0.08 0.03 0.65 3.74 0.01 17.20 0.62 0.25 0.17 20.50
  Q3 (mg kg−1) 0.26 0.29 0.48 1.96 6.74 0.02 74.20 2.26 0.98 1.52 32.00
  Mean (mg kg−1) 0.25 0.36 3.02 2.16 7.27 0.08 89.01 2.70 1.50 0.69 22.92
  SD 0.34 1.42 8.95 3.94 14.19 0.22 147.74 6.11 4.86 0.77 19.82
  RSD (%) 133 397 297 183 195 274 166 226 324 112 86

Wheat (n = 106) As Cd Co Cr Cu Hg Fe Ni Pb Se Zn
  Nbr. of obs 49 74 12 54 70 19 25 43 71 6 59
  Min (mg kg−1) 0.001 0.01 1.04 0.01 0.01 0.001 0.06 0.09 0.01 0.01 0.03
  Max (mg kg−1) 15.1 2.4 28.0 23.0 23.4 0.2 431.0 40.0 23.8 0.4 169.2
  Q1 (mg kg−1) 0.05 0.03 1.06 0.18 2.39 0.00 17.98 0.24 0.12 0.03 13.92
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1.49 mg kg−1, and 20.60 mg kg−1, respectively. The order 
of TEs in FV was Fe > Zn > Mn > Cu > Ni > Cr > Pb > Co 
> As > Cd. Overall, the median concentration of TE varied 
widely ranging from 0.40 mg kg−1 (As) to 125.62 mg kg−1 
(Fe) in the studied vegetable crops with the order of Fe >​ Zn ​
> Mn​ > C​u > ​Ni >​ Cr ​> Pb​ > C​o > ​S​e >​ Cd​ > As.

Meta-analyses (I2, Q-statistic, and Tau2 values) were 
determined for all the metals individually among vegetable 
types as follows: As (I2 = 77.24%, Q = 105.463, Tau2 = 0.30), 
Cd (I2 = 84.44%, Q = 179.90, Tau2 = 0.18), Co (I2 = 66.19%, 
Q = 50.2882, Tau2 = 0.33), Cr (I2 = 57.54%, Q = 61.23, 
Tau2 = 0.48), Cu (I2 = 95.18%, Q = 580.7, Tau2 = − 0.33), Fe 
(I2 = 89.90%, Q = 217.87, Tau2 = − 0.16), Mn (I2 = 94.64%, 
Q = 429.18, Tau2 = 0.46), Ni (I2 = 84.42, Q = 154.0807, 
Tau2 = 0.16), Pb (I2 = 88.94%, Q = 253.16, Tau2 = − 0.014), 
and Zn (I2 = 91.19%, Q = 317.8, Tau2 = 0.34) (Supplemen-
tary Table S3; Fig S2). These results show that a significant 
degree of heterogeneity occurs for Cd, Cu, Fe, Mn, Ni, Pb, 
and Zn, while the remaining metals, As, Co, and Cr, showed 
moderate heterogeneity. A higher relative standard deviation 
(in most cases > 100) also indicates a wide variety of con-
centrations. Kruskal–Wallis test (Supplementary Table S4) 
also indicated that there was a significant variation (p < 0.05) 
of most of these elements between the vegetable categories, 
except Se, which has p > 0.05.

Comparison of Trace Elements in Leafy vs. Root vs. 
Fruit Vegetables

For a better understanding of the TE accumulation in differ-
ent vegetable categories, a comparison using median values 
(Table 1), boxplots (Fig. 2), and the reported concentration 
values was performed (Supplementary Table S5). Clear dif-
ferences in concentrations in the edible parts of the three 
vegetable classes were observed with higher in LV com-
pared to RV and FV (Fig. 2). Among all the studied ele-
ments, As, Cd, and Pb are of particular interest due to their 
highly toxic nature even at low concentrations. As, Cd, and 
Pb occurred in 25 (RV = 7, LV = 10, FV = 8), 28 (RV = 7, 
LV = 13, FV = 8), and 28 (RV = 7, LV = 13, FV = 8) vegeta-
ble crops, respectively.

The overall As concentration ranged from 0.01 to 
16 mg kg−1 with a median value of 0.40 mg kg−1 (Table 1). 
The highest concentration was present in spinach (con-
centration; source country; citation) (16 mg kg−1; India; 
[51]) along with other LV such as pakchoi (9.15 mg kg−1; 
China; [52]), coriander (8.58 mg kg−1; India; [51]), and 
mustard (5.87 mg kg−1; China; [52]). The same LV also 
had the highest median concentration in the order of cori-
ander (2.05 mg kg−1) > pakchoi (1.97 mg kg−1) > mustard 
(1.074 mg kg−1) > spinach (0.90 mg kg−1). Other LV such 

n total number of crop reports, Nbr. of obs number of reports for which each elemental data was reported, Min minimum, Max maximum, Q1 
first quartile, Q3 third quartile, SD standard deviation, RSD relative standard deviation, blank space data not available, LV leafy vegetables, RV 
root vegetables, FV fruit vegetables, RIC rice, MAZ maize, WHE wheat, for all countries: ALL VG all vegetable crops, ALL GN all grains

Ta​ble​ 1​  ​ (continued)

LV (n = 422) As Cd Co Cr Cu Fe Mn Ni Pb Se Zn

  Median (mg kg−1) 0.20 0.11 1.12 0.47 5.08 0.01 41.10 1.18 0.31 0.15 25.50
  Q3 (mg kg−1) 0.57 0.89 4.01 1.11 8.24 0.02 70.28 3.76 1.72 0.25 34.81
  Mean (mg kg−1) 1.59 0.42 4.35 2.46 5.63 0.03 81.56 3.14 1.99 0.16 25.74
  SD 3.78 0.56 7.35 4.57 4.52 0.05 117.39 6.36 4.26 0.13 23.79
  RSD (%) 238 132 169 186 80 183 144 203 214 86 92

Maize (n = 49) As Cd Co Cr Cu Hg Fe Ni Pb Se Zn
  Nbr. of obs 24 35 1 20 16 9 2 27 22 15
  Min (mg kg−1) 0.01 0.001 15.13 0.03 0.19 0.00 37.35 0.08 0.04 0.21
  Max (mg kg−1) 2.0 1.3 15.1 10.2 43.9 0.0 99.8 10.3 18.3 59.0
  Q1 (mg kg−1) 0.03 0.05 0.00 0.13 1.98 0.00 52.96 0.40 0.08 20.10
  Median (mg kg−1) 0.13 0.10 0.00 0.45 2.97 0.01 68.58 1.00 0.20 34.47
  Q3 (mg kg−1) 0.29 0.17 0.00 1.35 6.24 0.01 84.19 1.20 0.59 38.75
  Mean (mg kg−1) 0.26 0.19 15.13 1.35 6.14 0.01 68.58 1.36 1.52 30.08
  SD 0.44 0.28 0.00 2.30 10.02 0.01 31.23 2.02 3.97 15.10
  RSD (%) 165 144 0 170 163 110 46 149 261 50

ALL GN (n = 526) As Cd Co Cr Cu Hg Fe Ni Pb Se Zn
  Min (mg kg−1) 0.001 0.0001 0.005 0.009 0.004 0.002 0.056 0.007 0.003 0.013 0.011
  Max (mg kg−1) 15.10 17.00 49.89 23.00 124.0 0.77 536.0 46.34 45.75 1.82 169.0
  Mean (mg kg−1) 0.46 0.36 3.64 2.16 6.62 0.04 84.80 2.58 1.63 0.46 24.44
  Median (mg kg−1) 0.17 0.09 0.34 0.56 4.10 0.01 25.40 0.86 0.25 0.17 21.78
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as cauliflower, leek, amaranth, lettuce, and cabbage con-
tained relatively lower As concentrations. In FV, tomato 
(12 mg kg−1; India; [51]) and bitter gourd (3.1 mg kg−1; 
Bangladesh; [53]) had the maximum As content, whereas 
the median values were higher in okra (1.88 mg kg−1) and 
bitter gourd (1.775 mg kg−1). Low As accumulators among 
the FV were cucumber, brinjal, and beans. Of the three veg-
etable categories, As accumulation in RVs was the least, 
with the maximum and median concentration found to be 
higher in potato (8.2 mg kg−1, Pakistan, [54]) and turnip 
(3.51 mg kg−1, Pakistan, [55]) and lower in garlic, arum, 
onion, and carrot (Fig. 3; Supplementary Table S5).

For Cd, the overall concentration ranged from 0.001 to 
70 mg kg−1 with a median value of 0.41 mg kg−1. Higher 
levels of Cd were also observed in LV, followed by RV 
and FV. Elevated Cd levels were found to be in spin-
ach (70 mg  kg−1, India, [56]), amaranthus and mustard 
(28 mg kg−1 and 20 mg kg−1, respectively, India, [57]), and 
leaves of radish (19.18 mg kg−1, India, [58]). However, on 
the basis of median values, radish leaves had the highest Cd 
level of 8.2 mg kg−1, followed by parsley (0.98 mg kg−1), 
coriander (0.71 mg kg−1), and amaranthus (0.63 mg kg−1). 
Low Cd concentration LV include kale, mint, and pakchoi. 
Similar to As, top accumulating RV included potato and 
radish (30 mg kg−1 and 18.92 mg kg−1, respectively, India, 

[59] and [60], respectively) and carrot (2.91 mg kg−1, Iran, 
[61]) and turnip (1.34 mg kg−1, Saudi Arabia, [62]), whereas 
low concentrations were recorded in garlic, arum, and onion. 
Contrary to the reported levels, arum (0.51 mg kg−1) and 
onion (0.48 mg kg−1) had the highest median concentrations. 
Among FV, tomato (13 mg kg−1, India, [63]), okra, brinjal, 
and chilly (13 mg kg−1, 12.6 mg kg−1, and 11.8 mg kg−1, 
respectively, India, [64]) showed the maximum levels, 
whereas bottle gourd, cucumber, beans, and bitter gourd 
exhibited the least. In terms of median, okra (1.135 mg kg−1) 
and cucumber (1.13 mg kg−1) were the top accumulators of 
Cd in this category (Fig. 3; Supplementary Table S5).

Pb was recorded at a range of 0.001 to 780 mg kg−1 with 
a median concentration of 1.66 mg kg−1. Similar to As and 
Cd, Pb was found to be high in LV such as spinach and cau-
liflower (780 mg kg−1 and 280 mg kg−1, respectively, [56]) 
and coriander and cabbage (96.1 mg kg−1 and 94.1 mg kg−1, 
respectively, [65]), all reported from India and the lowest 
concentration in kale (0.23 mg kg−1). However, based on 
median values, LV such as radish leaves and pakchoi showed 
the maximum and minimum concentrations. FV followed 
LV in Pb concentration with significantly higher concentra-
tions in chilly (78.2 mg kg−1, China, [66]) and brinjal and 
okra (76.4 mg kg−1 and 73.3 mg kg−1, respectively, India, 
[64]) and minimum concentration in bitter gourd which on 

Fig. 2   Box plots showing the differences in trace element accumulation between three vegetable categories (LV, RV, and FV)
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the other hand had the highest median concentration among 
the FV. RV had the lowest Pb content among the three veg-
etable categories, with maximum concentration in radish and 
potato (59 mg kg−1 and 43 mg kg−1, respectively, India, [67] 
and [59], respectively) and carrot (30 mg kg−1, Pakistan, 
[68]) and the lowest concentration in arum (0.36 mg kg−1). 
However, based on the median concentration, garlic and tur-
nip had the highest concentration with the lowest in carrot 
(Fig. 3; Supplementary Table S5).

The overall range and median concentrations for the 
remaining elements (Co, Cr, Cu, Fe, Mn, Ni, Se, and Zn) 
are mentioned in Table 1 from which it is evident that LV 
had the maximum concentration of all the elements except 
Cr and Cu, which were higher in FV (Fig. 2). However, 
based on the median values, Co and Zn in RV and Fe in 
FV were found to be the highest, while the remaining ele-
ments were in LV. Wide variation of metal accumulation 
between different vegetable species and even within the 
same group of crops was observed. This could be due to 
plant physiology differences that influence the absorption 
and accumulation capabilities and/or geochemical forms 
of metals in soil and different climatic conditions [69]. 
Leaves are a significant site for photosynthesis with a 
rapid development rate and higher transpiration potential 
resulting in higher accumulation in LV than in other veg-
etable categories [70–73]. In addition, leaves are the first 
recipient of contaminants from the atmosphere, while the 
roots act as a protective barrier for the movement (trans-
location) of metals into other parts [74]. Furthermore, the 
large surface area of the edible parts of LV is more suscep-
tible to metal accumulation from the soil, rainwater, and 
atmosphere particles, particularly in urban and industrial 
areas [75–77]. LV such as spinach, mustard, coriander, 
and radish leaves; RV such as potato, turnip, radish, carrot, 
and onion; and FV like tomato, chilly, okra, brinjal, and 
bitter gourd were found to accumulate higher amounts of 
the TE, particularly the toxic ones, and hence can be con-
sidered to be unfit for consumption. RV are the first to be 
exposed to TE from soil and irrigation water, and hence, 
they can be expected to contain higher levels of metals. 
Similarly, higher translocation of fluid in FV can lead to 
metal accumulation. Also, the crops with greater accu-
mulation of the three toxic elements were mostly reported 
from India and China, along with Pakistan, Bangladesh, 

and Iran (Fig. 4). Such elevated levels in the crops of these 
countries might be due to higher elemental availability 
due to local geological/mineralogical (geogenic: erosion 
of rapidly uplifted mafic basement rocks and subsequent 
increases in exposure and erosion) settings and certainly 
to anthropogenic contributions.

Statistical Analyses of the Occurrence of Trace 
Elements in Grains

The descriptive statistics of the TE in the major grain crops, 
RIC, WHE, and MAZ, are listed in Table 1. Overall, the TE 
concentration in all three types of grain varied widely, rang-
ing from 0.0001 mg kg−1 (Cd) to 536 mg kg−1 (Fe). For RIC, 
the concentrations of As, Cd, Pb, and Hg vary from 0.001 to 
3.27 mg kg−1, 0.001 to 17 mg kg−1, 0.001 to 45.75 mg kg−1, 
and 0.001 to 0.77 mg kg−1, respectively. The median con-
centrations for these elements were 0.17 mg  kg−1 (As), 
0.08 mg kg−1 (Cd), 0.25 mg kg−1 (Pb), and 0.01 mg kg−1 
(Hg). Similarly, the overall range (median value) for other 
elements, i.e., Co, Cr, Cu, Fe, Ni, Se, and Zn, was as fol-
lows: 0.001 to 49.89  mg  kg−1 (0.03  mg  kg−1), 0.01 to 
19.98 mg kg−1 (0.65 mg kg−1), 0.001 to 123.56 mg kg−1 
(3.74 mg kg−1), 3.44 to 536.10 mg kg−1 (17.20 mg kg−1), 
0.01 to 46.34 mg kg−1 (0.62 mg kg−1), 0.03 to 1.82 mg kg−1 
(0.17 mg kg−1), and 0.01 to 121.76 mg kg−1 (20.50 mg kg−1), 
respectively. Based on the median concentrations, the overall 
decreasing order of the TEs for RIC was Zn > Fe > Cu > Cr 
> Ni > Pb > As > Se > Cd > Co > Hg.

In the case of WHE, the overall concentration of As, Cd, 
Pb, and Hg ranged from 0.001 to 15.1 mg kg−1, 0.01 to 
2.4 mg kg−1, 0.01 to 23.8 mg kg−1, and 0.001 to 0.2 mg kg−1, 
respectively. Based on the median concentration, the order 
of the elements was 0.31 mg kg−1 (Pb), 0.20 mg kg−1 (As), 
0.11  mg  kg−1 (Cd), and 0.01  mg  kg−1 (Hg). Similarly, 
the overall range (median value) in WHE for other ele-
ments, i.e., Co, Cr, Cu, Fe, Ni, Se, and Zn, was as follows: 
1.04 to 28 mg kg−1 (1.12 mg kg−1), 0.01 to 23 mg kg−1 
(0.47  mg  kg−1), 0.01 to 23.4  mg  kg−1 (5.08  mg  kg−1), 
0.06 to 431 mg kg−1 (41.10 mg kg−1), 0.09 to 40 mg kg−1 
(1.18 mg kg−1), 0.01 to 0.4 mg kg−1 (0.15 mg kg−1), and 
0.03 to 169.2 mg kg−1 (25.50 mg kg−1), respectively. Based 
on the median values, the decreasing order of TEs in WHE 
was Fe > Zn > Cu > Ni > Co > Cr > Pb > As > Se > Cd > Hg. 
Similarly, in the case of MAZ, the concentration (median 
value) of As, Cd, and Pb varied from 0.01 to 2 mg kg−1 
(0.13 mg kg−1), 0.001 to 1.3 mg kg−1 (0.10 mg kg−1), and 
0.04 to 18.3 mg kg−1 (0.20 mg kg−1), respectively. The over-
all order of the metals on the basis of the median values 
was Fe > Zn > Cu > Ni > Cr > Pb > As > Cd > Hg > Co. The 
overall order of metals in grains, in decreasing order, is Fe 
> Zn > Cu > Ni > Cr > Co > Pb > As > Se > Cd > Hg.

Fig. 3   Box plots showing the differences in trace element accumula-
tion in individual vegetable category (LV, leafy; RV, root; FV, fruit) 
and individual crop (AMR, amaranth; ARM, arum; BIG, bitter gourd; 
BNS, beans; BTG, bottle gourd; BRN, brinjal; CBB, cabbage; CLF, 
cauliflower; CLL, chillies; CRN, coriander; CRR, carrot; GRL, gar-
lic; KAL, kale; LEK, leek; LTT, lettuce; MNT, mint; MST, mustard; 
OKR, okra; ONN, onion; PKC, pakchoi; PRS, parsley; PTT, potato; 
RDH, radish; RDL, radish leaf; SPN, spinach; TMT, tomato; TNP, 
turnip; WSP, water spinach)

◂
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Fig. 4   Concentrations (mg/kg) 
of trace elements in all crop 
types in different countries
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Trace Element Variability Between Grain Types 
and Place of Origin

A comparison between the three grain types on the basis 
of their reported concentration and calculated medians was 
made to understand the metal-accumulation variability 
between them. The number of individual observations for the 
three toxic elements (As, Cd, Pb) was found to be relatively 
high for all the three crops under study, with the maximum 
number of observations for RIC than the other two. Con-
sidering the overall statistics for the three crops, As was the 
highest in WHE at 15.1 mg kg−1, while Cd and Pb were in 
RIC with concentrations of 17 mg kg−1 and 45.75 mg kg−1, 
respectively (Table  1; Fig.  5). However, based on the 
median values, all these three elements were found to be 
maximum in WHE (As: 0.2 mg kg−1, Cd: 0.11 mg kg−1, Pb: 
0.33 mg kg−1). The details of other elements, including their 
concentration range and median values for the three grain 
crops discussed, are mentioned in Table 1.

To determine the origin nation and the underlying vari-
ables causing the accumulation, individual grain crops 
were also examined based on the reported concentrations. 
RIC was mostly studied for As contamination in all of the 
selected countries, with predominance in Bangladesh. The 
overall range of As in RIC was 0.001–3.27 mg kg−1 with 
the maximum concentration reported from Bangladesh 
[78] and a median value of 0.17 mg kg−1. Other studies 
from Bangladesh have also recorded similar As levels in 
RIC [74, 79–83]. The presence of As in RIC samples (as 
well as other crops) in Bangladesh could be due to the 
hydrogeological conditions causing extensive release and 
mobilization of this toxic metal in the groundwater that is 
very commonly used for irrigation purposes [80]. Other 
countries such as Iran [84], China [85–88], and India [89] 
reported rice-As concentration above the permissible limit 
of 0.2 mg kg−1 [90]. Cd ranged from 0.001 to 17 mg kg−1 
in RIC with the highest concentration in Iran [91], and the 
median concentration was 0.08 mg kg−1. Elevated levels 
in Iranian rice grains were also reported by other works 
[92–95]. Likewise, other nations such as Bangladesh [74, 
78, 96–98], China [85, 99–101], India [102, 103], and 
Pakistan [104, 105] also recorded Cd levels above the 
safe limit of 0.2 mg kg−1. For Pb, the concentration var-
ied from 0.001 to 45.75 mg kg−1 with the highest con-
centration reported from Pakistan [105] and a median of 
0.25 mg kg−1. Mahfooz et al. [106] also quantified Pb at 
2.33 mg kg−1 in Pakistan. Bangladesh [79, 81, 96], China 
[52, 70, 85], India [102, 103, 107], Iran [84, 92, 93], and 
Malaysia [31] were a few countries that reported Pb above 
the prescribed limit of 0.4 mg kg−1. Also, the median con-
centrations of As, Cd, and Pb were well within the permis-
sible limit, while the third quartile (Q3) values exceeded 
the limit for Cd and Pb.

In the case of WHE, As ranged from 0.001 to 15.1 mg kg−1, 
whereas the median value was 0.2 mg kg−1. The maximum 
concentration was reported in Uttar Pradesh, India [51]. Only 
one other study from India recorded As above 0.5 mg kg−1, 
which is the recommended limit by WHO/FAO [90]. Very 
few countries, such as China [108], Pakistan [109, 110], and 
Bangladesh [78] reported As above the safe limit. Cd levels 
varied from 0.01 to 2.4 mg kg−1 with the highest concentra-
tion reported in WHE of Pakistan [104] and the median value 
of 0.11 mg kg−1. Various studies from Pakistan indicated sim-
ilar Cd levels [111, 112]. Likewise, Saudi Arabia [62], India 
[102, 113], Bangladesh [78], China [108, 114], and Iran [115] 
also had Cd levels above the permissible limit of 0.2 mg kg−1. 
For Pb, the concentration ranged from 0.01 to 23.8 mg kg−1 
with the maximum value quantified in India [102] and a 
median concentration of 0.31 mg kg−1. Chandra et al. [113] 
and Kumar et al. [51] also found similar Pb concentrations in 
WHE. Other countries that reported levels above the permis-
sible limit of 0.4 mg kg−1 were Bangladesh [78], China [108, 
114, 116–119], Pakistan [106, 111, 112], and Saudi Arabia 
[62]. The median of As, Cd, and Pb in wheat was within the 
recommended limit by WHO/FAO [90], while the Q3 values 
for all three elements were higher than the permissible limit.

For MAZ, the overall concentration of As varied from 
0.01 to 2.04 mg  kg−1, and the median concentration was 
0.13 mg kg−1. The maximum concentration of As was reported 
from Bangladesh [78]. Islam et al. [120] and Rahman and Islam 
[83] have also found As above the WHO/FAO [90] limit. Only 
China documented As above the safe limit in MAZ of the 
remaining countries. Cd concentration was also found to be 
maximum in Bangladesh [78] with an overall range of 0.001 
to 1.3 mg kg−1 with a median value of 0.1 mg kg−1. Exceed-
ingly high levels were also recorded in India [103] and China 
[121–123]. Pb concentration in MAZ was the highest in India 
[103] with an overall range of 0.04 to 18.3 mg kg−1, whereas 
the median concentration was 0.2 mg kg−1. Other studies that 
reported Pb above the prescribed limit of 0.4 mg kg−1 were [78] 
and [83] (Bangladesh), [106] (Pakistan), and [124] (China). 
Similar to RIC and WHE, the median concentration of As, Cd, 
and Pb in maize was within the safe limit while only the Q3 
value of Pb exceeded the limit.

Comparison Between Vegetable and Grain Crops

Since vegetable and grain crops make up an important share 
of the Asian diet, an evaluation of the differences in the 
concentration of TEs in these food crops is essential to help 
determine the crop category that is highly prone to contami-
nation. Considering all studies taken together, the median 
concentrations of all the studied TEs were higher in vegeta-
bles than in grains (median vegetable/median grains (in mg 
kg−1)): As (0.40/0.17), Cd (0.41/0.09), Co (0.76/0.34), Cr 
(3/0.56), Cu (6.09/4.10), Fe (125.62/25.4), Ni (3.10/0.86), 
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Fig. 5   Box plots showing the distribution of trace element accumulation in rice (RIC), maize (MAZ), and wheat (WHE) in all countries. The 
box represents the 25th–75th percentiles, and the whiskers represent the 10th–90th percentiles
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Pb (1.66/0.25), Se (0.64/0.17), and Zn (22.84/21.78). The 
data for Mn and Hg were not studied for grains and vegeta-
bles, respectively; therefore, a comparison between the two 
crop categories was not made. Median values for vegetables 
ranged from 250 to 1900% higher compared to grains, except 
Zn and Co. Furthermore, all three vegetable classes and the 
three grain crops were compared on the basis of their Q1, 
median, and Q3 values. All these three values for Cd, Cr, Fe, 
Mn, and Ni were found to be higher in LV than in other crop 
categories. The median for Pb and Q3 value for the remain-
ing TE except Se was also the maximum in LV, whereas 
the median values for As and Cu were higher in FV, Co in 
WHE, Se in RV, and Zn in MAZ which were the highest than 
other crop classes. Overall, this shows that most of the TEs 
have a higher tendency to accumulate in vegetable crops, 
especially LV, relative to grains, which may mean they may 
be more important than grains regarding TEs human uptake. 
However, the data comparing vegetable categories or veg-
etables with grains cannot be taken literally when evaluat-
ing potential TEs in the food chain. Significant variations 
in study types within and between countries or authors and 
laboratories, anthropogenic vs. geogenic settings, urban vs. 
rural locations, and more will definitely impact results, but 
the largest lack of control when considering TEs in the food 
chain comes when considering the social, economic, famil-
iar, religious, and geographic controls on dietary intake and 
differences in foodstuffs. The above comparisons are a start-
ing point, but must be used with caution in any attempt to 
make or alter policy related to food security or its potential 
impact on health.

Bioconcentration Factors (BCF) for Trace Elements 
in Crops

Bioconcentration factor (BCF) is a unitless component used 
to determine the uptake of metals and other elements from 
the soil by crops or to certain parts of a crop [125]. BCF is 
directly and indirectly proportional to the crop and soil concen-
tration, respectively [126]. For the purpose of this work, BCF 
(BCF = crop: soil) was used to describe the transfer or mobility 
of metals from contaminated soils and waters to selected veg-
etables (Fig. 6) and cereal crops (Fig. 7). The pooled average 
BCF for all the vegetables and cereal crops decreased in the 
order of Cr > Mn > Fe > Co > Ni > Zn > Cd > Cu > Pb > Se > 
As and Co > Zn > Cd > Fe > Cu > Cr > Se > As > Ni > Pb > H
g, respectively. The mean BCF values for vegetables ranged 
from 0.16 to 27.08, of which Cd, Co, Cr, Cu, Fe, Zn, Mn, 
and Ni were above 1, indicating soil is the potential source of 
metal uptake and accumulation. As and Se had BCF values 
below 0.5, implying factors other than soil, such as contami-
nated irrigation water, are responsible for their accumulation 
in crops. However, this fact may not be valid for Se due to the 
insufficient data collected. Pb had a BCF of 0.93, indicating 

that soil played a major role in its accumulation. In the case 
of cereal crops, the average BCF values for all the TE ranged 
from 0.065 to 0.69. Only Co and Zn had BCF values greater 
than 0.5, indicating that soil concentrations determine their 
uptake in plants.

Metal-wise boxplots for the three vegetable categories and 
three cereal crops are shown in Figs. 6 and 7. BCF values for 
most vegetables have large interquartile ranges (IQR) and sig-
nificant skewness and a significant number of outliers in some 
cases (e.g., Cd, Cr, Cu, Ni, Pb, Zn), which are likely indica-
tive that anthropogenic soil contamination (atmospherically or 
through irrigation and fertilizer application or effluent associa-
tion with urban/industrial centers) in some specific locations is 
significantly contributing to metal accumulation. Overall, root 
vegetables have higher BCF for As, Co, Cr, Cu, Fe, Pb, and 
Zn than the other two vegetable categories. The most probable 
reason for this could be that root vegetables are the first ones 
to come in contact with soil metals and therefore accumulate 
more metals. Even though the BCF values obtained for some 
leafy vegetables are < 1, the leafy vegetables have accumulated 
metals to a greater extent compared with the other vegetables. 
Considering all the grain crops, essential elements particularly 
Cr, Cu, and Zn exhibited relatively higher BCF than other ele-
ments, whereas among the three non-essential TE, Pb had the 
minimum. This could be due to the presence of husk which 
protects the grains from Pb deposition from the atmosphere. 
For RIC, WHE, and MAZ, the IQR were relatively smaller 
than for any vegetable with very few outliers for certain met-
als. RIC had higher BCF for Cr, Cd, Pb, Zn, Cu, and Ni while 
WHE was higher in the remaining metals except for Fe which 
was maximum in MAZ.

For all TE, Spearman’s correlation coefficients were 
calculated between BCF value and corresponding soil con-
centrations to understand the relationships (Supplementary 
Table S6) better. As mentioned earlier, the soil concentra-
tions and BCF for both grain and vegetable crops had a nega-
tive correlation for all the metals which is possibly due to 
the control of other factors including soil physicochemical 
properties such as pH and Eh, organic matter content, cation 
exchange capacity (CEC), soil texture, plant species, which 
govern their phytoavailability (for details see Supplementary 
Note 2) and/or metal contamination from other sources, as 
discussed below.

Probable Sources of Trace Element Contamination 
in Vegetable Crops

The wide range of concentrations of TE in soils, crops, or 
irrigation water (Supplementary Table S7, Fig. S4) along with 
extreme outliers makes average (mean) comparisons difficult, 
and not significant in some cases. The use of median (Q2) 
values was chosen as a better descriptor of relative differ-
ences between populations and elemental concentrations; the 
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skewness and kurtosis of the data show extreme asymmetry. 
These differences are to be expected considering agroclimatic 
settings, crop management systems, and the different geogenic 
and anthropogenic factors. Of all analyses (all studies, all 
elements), soil exhibited significantly highest median values 
than either crops or water (Fig. S4). This trend points to the 
importance of a crop relative to the soil in which it was grown, 
or the quality of the irrigation water, when it comes to inter-
preting health issues and policies pertaining to agricultural 
practices. The source of irrigation water can have a dramatic 
impact on the contamination of agricultural fields and edible 

crops. This is more pronounced in developing nations as water 
scarcity has forced farmers to rely on industrial/sewage waste-
water for agricultural activities. It was impossible for us to 
know the origins or level of pollution in most of the waters, 
other than the sparse analytical results, which were not pro-
vided in the vast majority of the studies. For this reason, water 
concentrations are simply reported based on their average ele-
mental concentrations compared for the category of irrigation 
water focusing on the trace elements such as, Cd, Cr, Cu, Ni, 
and Pb. Considering all the data (Fig. S3), SUR water had the 
highest median values for As, Co, Cr, Fe, Mn, Ni, Pb, and Zn; 
SWW was highest in Cd; Se was the same in SUR, SWW, and 
UGW. When duplicates were removed (unique data points), 
IWW was highest in Cu, Fe, Pb, and Zn; SUR in As, Cd, Mn, 
and Ni; UGW in Co and Cr; Se remained the same as when 
all data were considered (n = 2). Interestingly, SUR had the 
highest median values for both all data and unique data sets. 
This may be related to the fact that SUR water is susceptible 

Fig. 6   Box plots showing the BCF of trace elements in LV, RV, and 
FV (A turnip, B radish, C potato, D onion, E garlic, F carrot, G arum, 
H spinach, I radish leaves, J pakchoi, K parsley, L mustard, M mint, 
N leek, O lettuce, P kale, Q coriander, R cauliflower, S cabbage, T 
amaranth, U tomato, V okra, W cucumber, X chilly, Y brinjal, Z bot-
tle gourd, a bitter gourd, b beans). The box represents the 25th–75th 
percentiles, and the whiskers represent the 10th–90th percentiles

◂

Fig. 7   Box plots showing the BCF of trace elements in rice (RIC), maize (MAZ), and wheat (WHE). The box represents the 25th–75th percen-
tiles, and the whiskers represent the 10th–90th percentiles
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to acquiring pollution loads from point and non-point sources. 
Asian countries dispose of waste materials from rural and 
urban areas into local surface waters, and it is seldom treated 
in any way. Massive populations live adjacent to waterways, 
and this gives rise to significant disposal of virtually all chem-
icals related to human activity and their associated TEs. Sev-
eral studies compiled in this study also reported the contami-
nation of crops with toxic TEs due to irrigation with IWW 
[127–129] and SWW [63, 64, 67, 85, 104, 130, 131]. Other 
than industrial activities, long-term agrochemical application 
has also been documented extensively as a major source of 
TE in soils and crops across the countries under investigation 
for this work [126, 127, 132–135]. Atmospheric deposition 
by coal-fired thermal power plants, burning fossil fuels, brick 
kilns, resuspended road dust, and industrial and automobile 
emissions are also other important sources of TEs in crops 
in some cases [136, 137]. Mining and related activities are 
equally responsible for heavy metal contamination of crops as 
reported by [86, 138–140]. Metal-contaminated groundwater 
is one of the major irrigation sources in Bangladesh, Pakistan, 
and India and has supplied TE to crops [80, 89, 141–143]. 
These findings indicate that the practice of irrigating vegeta-
bles with untreated wastewater/contaminated groundwater by 
local farmers or vegetables grown in the vicinity of industrial/
mining areas can cause a high accumulation of TEs in soils 
and vegetables, thereby posing a health risk to the population.

Limitations

Data collected for this work came from online databases and 
therefore is limited to the data provided in each study. There 
was little consistency in methods from one study to another, 
and soil and water data were only reported in some studies. 
These constraints impacted our ability to thoroughly report 
on some aspects of TEs in crops. However, we could still 
group important spheres of data, which provide an interest-
ing picture of TE uptake into crops from parts of Asia. Also, 
considering the limitation in online data availability and 
search strategy, this study may not give a complete picture 
of country-wise differences in metal accumulation. Some 
studies reported extremely high concentrations (which can 
be an outlier) for certain vegetables that have been reported 
only once in the literature; they are still included in these 
discussions even though they skew the data averages. We 
consider this critical for reporting all values for any given 
metal; there is no statistical evidence that exceptionally high 
or low values are outliers, considering the vast differences 
in irrigation water and soil geochemistry throughout Asia. 
Very few papers were collected for the maize (Z. mays), and 
for rice (O. sativa), the majority of studies were determined 
to be only As. The referenced studies followed different 
methodologies and analytical techniques. The TE concen-
trations in irrigation water were lacking in many studies, 

as were some soil parameters such as pH, EC, CEC, soil 
organic matter, clay content, and bioavailable fractions that 
are important to plant accumulation.

Conclusions

In the present study, a comprehensive database, along with 
a meta-analysis and critical review of TE accumulation in 
different vegetable and cereal crops in the Asian context has 
been presented. The results show considerable variability 
among crop types for metal accumulation. Among the three 
different categories of vegetables and grain crops, LV tend 
to accumulate more metals than other crops. Based on the 
total concentration, spinach was the highest accumulator of 
the three non-essential toxic elements (As, Cd, Pb). In con-
trast, according to the calculated median values, coriander 
(As) and radish leaves (Cd, Pb) were the top accumulators. 
Other LV that reported high concentrations of these three 
elements were mustard, amaranthus, and pakchoi. The top 
accumulators of these elements in FV were tomato, okra, 
brinjal, chilly, bottle gourd, bitter gourd, and cucumber, 
and in RV were turnip, potato, radish, arum, and carrot. 
These crops also reported higher levels of the other essen-
tial elements in their tissues irrespective of their category. 
The concentration of these metals was lower in grain crops 
than in vegetables. Based on the total concentration values, 
wheat reported higher As whereas Cd and Pb in rice were 
the highest among the three grain crops. However, based 
on the median concentrations, wheat has the highest con-
centration of the three non-essential elements than rice and 
maize. Thus, growing these prolific accumulator crops in a 
contaminated environment is a serious concern since veg-
etables, particularly leafy ones, can provide an easy entry 
into the food chain to these dreaded metals. Furthermore, 
the median concentration for As was well within the rec-
ommended limit, which was not the same for Cd and Pb in 
the three vegetable classes; thus, this is a major concern for 
the human consumer in Asian countries, whereas, in the 
case of cereal crops, all three elements had median values 
below the prescribed limit. On further analysis, the crops 
with greater accumulation of the three toxic elements were 
mostly reported from India and China, along with Pakistan, 
Bangladesh, and Iran. Studies of TE accumulation in wheat 
grains are relatively fewer than in rice, with the former 
reportedly having higher levels of the three non-essential 
toxic elements. It appears that metal accumulation in crops 
depends more upon their concentration in irrigation water 
than in soil. This may be a function of the ability of soils to 
complex metals in any of the soil exchangeable fractions, 
which is not the case for water. For irrigation, surface water 
that might be contaminated from various sources, as well 
as industrial wastewater and contaminated groundwater, are 
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preferred in Asian countries. However, long-term use of 
them leads to the accumulation of TE in soils and subse-
quent contamination of food crops, and in some cases, this 
contamination can be higher than the recommended lim-
its. Hence, there is a heightened need for policy related to 
wastewater use in irrigation. Also, there is a need for regular 
monitoring of TE from effluents and sewage before using 
for irrigation to prevent their excessive buildup in the food 
chain and to preserve the health of communities within the 
vicinity of the contaminated area. Therefore, farmers should 
be provided with requisite information regarding toxic ele-
ment content in the soil and the hierarchy of potential metal 
uptake by different crops that can be grown in their respec-
tive zones. Eco-toxicity studies on the consumption of con-
taminated vegetables are focused more on human health 
and rarely on livestock and other animals, which should be 
a higher consideration considering the use of fodder and its 
TE concentrations.
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