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Abstract

Biochar is a stable carbonaceous material obtained on pyrolysing biomass. Although it possesses crucial properties of high
surface area, porosity, surface functionality, and sorption capacity, there is immense scope to augment these properties for
effective contaminant sorption. Physical and chemical modifications enhance surface area, porosity, and contents of oxygen-
containing functional groups. While acidic modifications augment surface functional groups and cation exchange capacity,
alkaline modifications increase aromaticity, hydrophobicity, and n-n interactions. Impregnation with metals amplifies mag-
netic properties, availability of active sites, chemisorption, electrostatic attraction, and complexation. These modifications
assist in sorption of cationic and anionic contaminants. Accordingly, the present study reviews modified biochars which
promote eco-friendly contaminant removal. Moreover, various biomass and modification methods utilised for modified
biochar production have been elaborated along with the changes in physico-chemical properties. Importantly, mechanistic
insights into the functional role of modified biochars for removal of contaminants have been provided. Further, the impact
of ageing on modified biochars and their contaminant adsorption performance have been discussed. Lastly, the feasibility
and limitations of various biochar modification methods in addition to different research gaps have been presented to create
a road map for future investigations. Waste management and contaminant remediation are the need of the hour for planet
survivability, which could be achieved by precise biochar modification.

Keywords Biochar - Physical modification - Chemical modification - Metal impregnation - Removal mechanisms

Introduction

This article is part of the Topical Collection on Water and Sediment
Pollution In the purview of increasing pollution levels, resulting from
anthropogenic activities, and the consequent need to remove
organic and inorganic contaminants, sorption has gained
enormous attention primarily because of low operational
costs, unsophisticated treatment, minimal chemical use,
and safe handling of waste [1]. Previously, metal oxides,
biomasses, and activated carbons have been used as sorb-
ents with activated carbon being the most widely utilised
sorbent in industries because of its high porosity, large sur-

face area (SA), and abundant oxygen (O)-containing sur-
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face functional groups [2]. However, activated carbons are
expensive while metal oxides could be toxic to the ecosys-
tem which triggers the need for identifying potential alter-
natives. Lately, biochar has been reported to possess vital
physicochemical properties such as high porosity, enhanced
SA, alkaline pH, and O-containing functional groups, which
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enable sorption of contaminants [3-6]. Biochar is a stable
carbon-rich material obtained on subjecting biomass to
thermal energy in oxygen-deprived conditions [7-9]. It is
used for applications ranging from agricultural amendment
to industrial manufacturing and from energy production
to waste management enabled by its vital properties such
as alkaline pH, high SA, surplus porosity, enhanced water
holding capacity, commendable sorption capacity (Qe), and
abundant nutrients, which are dependent on biomass varia-
tion and preparatory conditions [7, 10—12].

Although biochar possesses crucial properties, there
is huge scope to augment its properties for effective con-
taminant sorption to reduce pollution [2]. Biochar could be
treated with steam for physical modification, while it could
be treated with acid/alkali for chemical modification [13,
14]. Alternatively, biochar could be impinged with different
materials such as metals, metal oxides, nanomaterials, or
other waste materials to fabricate modified biochars [2, 10,
11, 15]. These modifications could be performed before or
after thermal treatment of biomass to improve the surface
morphology, physico-chemical property, and contaminant
removal efficiency (RE) of modified biochar [2, 14]. Previ-
ously, reviews have been published for modified biochars
mostly focussing on their removal efficiencies for anionic
contaminants [2, 16—19], but holistic studies on contaminant
removal potential are limited. Therefore, the present review
focuses on (i) describing the various types of modification
of biochars which remove organic and inorganic contami-
nants; (ii) elaborating different methods used for fabrication
of modified biochars prepared using various biomass materi-
als; (iii) providing a framework to understand the improve-
ment in physico-chemical properties of modified biochars
prepared via different modification techniques; (iv) facili-
tating insights into the mechanistic aspects of contaminant
removal by modified biochars; and (v) presenting different
limitations, challenges, and research gaps to provide a direc-
tion to future research investigations.

Physical Modification

Physical modifications are performed after biochar produc-
tion by ball milling it or treating it with steam or heat or
purged gas (Fig. 1; Table 1). Although physical modifica-
tions increase SA and porosity, they are not regarded to be
highly effective in augmenting contaminant removal (espe-
cially anionic contaminants like As, F, nitrate, and phos-
phate), when compared to chemical modifications [20].

Steam-Modified Biochar

For steam treatment, superheated steam is passed (at
2.2-5 mL/min) through porous biochar at temperature range

@ Springer

of 650-950 °C for 30-180 min [21, 22]. During the treat-
ment, oxygen from steam is added to active sites on surface,
while hydrogen forms complexes. Steam treatment initiates
devolatilisation and removes particles trapped during incom-
plete combustion, which enhances its porosity and SA [19].
Steam reacts with biochar, thereby converting fixed carbon
and volatile matter into CO and CO, resulting in pore for-
mation [23]. Further, it oxidises the surface and increases
O-containing functional groups (e.g. hydroxyl, carboxyl,
carbonyl, phenol, and ether). Although steam is a weak oxi-
dant, it increases hydrophilicity of biochar, which augments
electrostatic repulsion with anionic contaminants and elec-
trostatic attraction with cationic contaminants. Longer acti-
vation times enable larger contaminant removal. However,
steam modification could be associated with limited increase
in surface functional groups and repulsive forces between
anions and surface, which could be disadvantageous [20,
24-26]. Further, steam modification decreases aromaticity,
polarity, and H/C, N/C, and O/C ratio, which makes it less
preferable to other treatments. Steam treatment augmented
the SA of aegle shell (wood apple)-based biochar from 2.3 to
7.1 m%/g, while the biochar removed ibuprofen with 95% effi-
ciency [27]. Rajapaksha et al. [28] treated tea waste biochar
with steam, which decreased its pH at 700 °C (from 11.05 to
10.48), eventually enabling a higher removal of sulfamethaz-
ine. In another study, Rajapaksha et al. [22] modified Sicyos
angulatus-based biochar with steam, where pH at 700 °C
decreased from 12.32 to 11.72, eventually facilitating higher
sulfamethazine removal (increased from 20.56 to 37.73 mg/g
after steam treatment) (Table 2). Lou et al. [25] modified pine
sawdust with steam to remove phosphate from aqueous solu-
tions, where steam treatment decreased pH from 4.92 to 4.82
at 300 °C and from 8.16 to 7.46 at 700 °C, which influences
surface charge and Qe of biochar.

Purged Gas-Modified Biochar

Biochar is modified by purging CO,/NH; gas, primarily to
improve its SA and Qe. While CO, modification enhances
SA and porosity (especially microporosity), NH; modifica-
tion enriches surface with N-containing compounds. CO,
purging also increases the activated sites on biochar surface.
CO, modification increased the SA from 56.9 to 755.3 m%/g
in corncob-based biochar [29]. CO, reacts with C of bio-
char to form CO, resulting in formation of a microporous
structure, which increases its sorption capacity [23]. The
increase in SA, porosity, complexation (between graphitic-N
and surface functional groups), and cation-n bonding ena-
bles contaminant sorption [30, 31]. Soybean straw—derived
biochar was modified with both CO, and NH; to simulta-
neously improve the SA (up to 627.15 m%/g) and nitrogen
functional groups on surface, which eventually augments
sorption capacity [32].
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Fig. 1 Biochar modifications and their effects

Heat-Modified Biochar

During heat treatment, biochar is exposed to high tempera-
tures (800-900 °C) for 1-2 h mainly to furnish basic surface
functional groups to increase hydrocarbon sorption [33, 34].
Removal of hydrophilic groups (such as ether- or carbonyl
groups) during heat treatment enhances surface hydropho-
bicity. Heat-treated biochars could be exposed to gases (such
as hydrogen or argon) to form basic functional groups such
as pyrone-type groups (arising from hydrophilic ether or
carbonyl groups). Moreover, exposure to hydrogen deacti-
vates active sites on surface by forming C—H bonds which
stabilises and enhances basicity of biochar [33, 34].

Ball-Milled Biochar

Ball milling is a common technique to augment surface area
of any substance by utilising the kinetic energy of moving
balls of the instrument to break, grind, mix, and fabricate
a material with physical and chemical modifications and

an improved surface [35, 36]. It avoids the use of chemi-
cals and is less energy intensive than conventional tech-
nologies such as microwave pyrolysis and laser ablation
[37]. Ball milling reduces the particle size, increases the
pore volume, increases the oxygen-containing surface func-
tional groups, and modifies the surface chemical compo-
sition, which eventually augments the adsorption capacity
of biochar [38]. The increase in pore volume exposes the
graphitic structure of biochar, which enhances the cation-n
action [35]. Spheres of dense ceramic materials such as
yttria-stabilised zirconia could be utilised as grinding media,
due to its chemical inertness, low wear and tear rate, and
high reusability [39]. Salt-assisted milling is another ball
milling method that utilises sodium chloride crystals along
with yttria-stabilised zirconia, where salt crystals in con-
junction with biochar is broken down into smaller pieces
during milling; salt is later removed by dispersing the milled
biochar in an aqueous media followed by centrifugation so
that the salt remains in top layer [39]. Bamboo, bagasse,
and hickory chip-based biochars were ball milled and high
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Table 2 Properties of modified biochars
Modification Feedstock; pyrolysis (°C) pH pH C (%) Surface area (m%g) Reference

(unmodified (modified

biochar) biochar)
Steam Mung bean husk; 550 °C NA NA NA 405 [21]
Steam Tea waste; 300 °C 7.9 8.6 715 1.5 [28]
Steam Tea waste; 700 °C 11.1 10.5 82.4 576.1 [28]
Steam Sicyos angulatus; 300 °C 10.9 11.1 68.1 1.2 [22]
Steam Sicyos angulatus; 700 °C 12.3 11.7 50.6 7.1 [22]
Steam Pine sawdust; 300 °C 4.9 4.8 640 <1 [25]
Steam Pine sawdust; 550 °C 8.2 7.5 69.6 397.1 [25]
CO, Cotton stalk; 600 °C NA NA NA 351.5 [30]
NH; Cotton stalk; 600 °C NA NA NA 251.9 [30]
NH; Corn straw; 800 °C NA NA 77.6  418.7 [31]
Heat (800 °C) Bamboo; 550 °C NA NA 70.7 4942 [33]
KOH Rice husk; NA NA NA NA 1818.45 [62]
KOH Cotton stalk; 400 °C NA NA NA 60.3 [66]
NaOH Rice straw; 400 °C NA NA 69.17 141.6 [68]
NaOH Poplar wood; 400 °C NA NA 68.06 41.0 [68]
NaOH Bamboo; 400 °C NA NA 80.32 8.3 [68]
H,;PO, Cotton stalk; 400 °C NA NA NA 473 [66]
HNO; Cactus; 600 °C NA NA NA <5 [83]
HCl Reed; 300 °C 6.7 35 71.1 293 [84]
HCl Reed; 400 °C 7.1 3.8 79.2  4.26 [84]
HCl Reed; 500 °C 7.6 39 839 11.85 [84]
HC1 Reed; 600 °C 8.5 44 87.8 88.35 [84]
Acetic acid Eucalyptus saw dust;120 °C NA NA 4528 1.21 [59]
Tartaric acid Eucalyptus saw dust; 120 °C NA NA 44.66 1.28 [59]
Citric acid Eucalyptus saw dust; 120 °C NA NA 45.28 0.69 [59]
Fe Wheat husk; 600 °C 8.3 7.0 36.84 339 [146]
Fe Rice husk; 600 °C 6.8 5.5 38.39 300 [146]
Fe Banana pith; 400 °C NA NA 49.40 31.59 [152]
Fe, KOH Guadua chacoensis; 700 °C 4.0 10.9 10.62 482.4 [153]
Fe Coconut, pinenut, walnut shells; NA NA NA 365 [43]

500 °C

Al Macro-algae; 450 °C NA NA NA 4546 [166]
Al Rice straw; 600 °C NA NA NA 186.95 [169]
Mn Rice husk; 600 °C 10.89 6.72 40.8 429 [106]
Mn Swine manure; 400 °C NA NA NA 7091 [170]
Mn Corn straw; NA 10.0 11.0 73.4 803 [110]
Bi, HCI Wheat straw; 400 °C NA NA NA 8742 [143]
Bi, HCI Wheat straw; 500 °C NA NA NA 190.40 [143]
Bi, HCI Wheat straw; 600 °C NA NA NA 106.70 [143]
Zn Pig manure; 700 °C NA 7.0 34.14 516.67 [113]
Zn Sugarcane bagasse; 450 °C NA 1.9 78.6  21.28 [117]
Zn Crawfish shell; 450 °C NA NA 22.83 134.19 [174]
La Typha latifolia; 500 °C NA 5.6 4231 8.11 [120]
La Sodium alginate fibre; 900 °C NA NA 634 17741 [179]
Mg, electro Macroalgae; 600 °C NA NA NA 56.42 [180]
Mg, electro Laminaria japonica; 600 °C NA 6.0 NA 386.5 [193]
Mg Cupressus sempervirens; 600 °C 5.7 9.7 NA 35.0 [181]
Co Bamboo; NA 5.8 3.1 NA 263 [126]
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Table 2 (continued)

Modification Feedstock; pyrolysis (°C) pH pH C (%) Surface area (m%g) Reference
(unmodified (modified
biochar) biochar)
Ni Bamboo; 500 °C 5.75 4.72 NA 263 [127]
Ca Laminaria japonica; 200 °C NA 8.31 40.81 2.39 [131]
Ca Laminaria japonica; 400 °C NA 11.40 46.50 17.72 [131]
Ca Laminaria japonica; 600 °C NA 11.62 53.25 79.95 [131]
Ca Laminaria japonica; 800 °C NA 12.59 60.51 45.46 [131]
Mg Conocarpus green waste; 600 °C NA NA NA 39138 [137]
Fe Conocarpus green waste; 600 °C NA NA NA  260.5 [137]
Fe-Mn-La Corn straw; 600 °C 8.93 6.83 548 12.2 [185]
Fe-Mn-Ce Corn straw; 600 °C 8.93 9.64 28.8 46.6 [186]
Fe, microwave Walnut shells; NA NA NA NA 418 [241]
Microwave Wheat straw; 950 °C NA NA 264 1193 [191]
Ti, ultrasonic Corncob; 550 °C NA NA 81.79 450.53 [195]
Ozone Pine; 400 °C 7.30 5.28 7131 NA [199]
Graphene oxide Water hyacinth; 300 °C NA NA 66.79 25.89 [242]
CNT, sodium Hickory; 600 °C 7.25 6.74 77.69 359 [203]
dodecylbenzenesulfonate
CNT, sodium Bagasse; 600 °C 6.94 6.72 843 336 [203]
dodecylbenzenesulfonate
Chitosan Eichhornia crassipes; 600 °C NA NA 71.24 90.78 [204]
Clay Bamboo; 300 °C 5.3 6.6 NA 9.84 [247]
Clay Bamboo; 400 °C 5.3 7.1 76.05 19.93 [247]
Clay Bamboo; 500 °C 5.3 7.6 NA 18.05 [247]
Clay Cassava peel; 500 °C NA 54 NA 402 [248]
H,0, Pinewood; 400 °C 7.16 5.6 714 NA [251]
Thioglycolic acid Sugarcane bagasse; 600 °C NA 4.7 NA  5.69x10° [220]

*CNT carbon nanotubes

removal of sulfamethoxazole (100.3 mg/g) and sulfapyridine
(57.9 mg/g) was observed [40].

Chemical Modification

During chemical treatment, alkali/acid is mixed with feed-
stock/biochar to enhance properties like porosity, SA, and
surface functionality (Fig. 1; Table 3) [20, 45]. Exposure to
acidic/alkaline solution oxidises the surface and influences
ion exchange, Qe, and hydrophobic/hydrophilic properties
[1].

Alkali-Modified Biochar

Typically, feedstock/biochar is soaked/suspended in dif-
ferent concentrations of alkaline reagents, such as sodium
hydroxide (NaOH), potassium hydroxide (KOH), and cal-
cium hydroxide (Ca(OH),), at 30-100 °C for 6-24 h (alkali
strengths varying from 0.1 to 10 M), where base:biochar
ratio is crucial in synthesising high-performance biochars

@ Springer

[16, 46]. Alkaline treatments separate ashes and introduce
O-containing groups, like ~OH, on the surface and augment
porosity and SA, which enhances RE [19]. Alkaline modi-
fications facilitate higher H/C (stability) and N/C (basic-
ity) and lower O/C (hydrophilicity), compared to acidic
modifications. High N/C suggests greater N-containing
surface groups, which increases basic properties of modi-
fied biochars [19]. NaOH modifications increase SA and
porosity more than other alkaline modifications [16]. How-
ever, decrease in SA has also been reported in previous
studies, where KOH modification decreased SA of hydro-
char (0.4-1.8 m*/g compared to 4.4-9.1 m*/g of unmodi-
fied hydrochar), but significantly increased Cd Qe from
13.92-14.52 mg/g in unmodified to 30.40-40.78 mg/g in
KOH modified [47]. KOH-modified bamboo/poplar-based
biochar showed improved surface area (1555 m%/g) and
porosity (0.2950 cm?/g), which facilitated sites for load-
ing iron particles and removing Cr (Qe =25.68 mg/g) [48].
Alkaline modification (NaOH) was more effective in adsorp-
tion of Ni (6.20 mg/g), Pb (44.64 mg/g), and Cd (0.65 mg/g)
in comparison to acid modification (sulphuric and oxalic
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acid) [49]. Similarly, alkali modification in corn stalk-based
biochar improved enrofloxacin removal more (54.08%;
58.29 mg/g) than acid modification (27.80%; 41.91 mg/g),
primarily assisted by 14 times increase in SA in alkali modi-
fication (10 times rise in acid modification) [50].

Acid-Modified Biochar

Generally, feedstock/biochar is soaked/suspended in acidic
reagents (with ratios up to 1:10 w:v ratio), like hydrochloric
acid (HCI), sulphuric acid (H,SO,), and weak acids (e.g., cit-
ric acid) at 30-120 °C for several hours/days (acid strengths
varying from 0.1 to 2.5 M) [16, 51-53]. Acid treatments
remove residues of metals and impurities, and increase
stability, regeneration, and RE by augmenting SA, micro-
porosity, electrostatic interactions, and surface functional-
ity (hydroxylic, carboxylic, carbonylic, phenolic, lactonic,
and ketonic). H,SO, and H;PO, activation increased SA
by 80% and microporosity by 263% in pork bone—derived
biochar [54]. Acid-modification augments SA less than
other modifications due to the breakdown of porous struc-
tures and expansion of micro-pores into meso-/macropores.
Sahin et al. [55] compared the effect of acid treatments on
poultry manure—derived biochar before and after pyrolysis
conditions. While in pre-treatment, biochar pH decreased
from 9.38 to 8.57 and 9.14 for H;PO, and HNO; treatments,
respectively, in post-treatment biochar pH decreased to 5.39
and 4.46 for H;PO, and HNO; treatments, respectively,
suggesting that acid treatment after pyrolysis significantly
decreased the pH which could be beneficial for alkaline cal-
careous soils (Table 2). Yakout et al. [56] observed decrease
in SA from 71.4 to 56.9 m*/g in rice straw—based biochar
after H,SO, modification. Acid treatment could enhance
density of bio-sorbents, which could diminish its Qe [1].
The diminished C content and enhanced O content and
acidic surface functional groups increase H/C and O/C of
acid-modified biochars [33, 57]. Biochars treated with 30%
H;PO, (among 0-50%) showed best sorption results, sug-
gesting importance of its optimisation [58]. Spent sorbents
could be reused by using 0.1 N HCl for removing contami-
nants [59]. Rice husk—derived biochar-supported sulphidated
nano-zerovalent iron was pre-treated with HCI, NaOH, and
H,0, to improve nitrobenzene reduction performance and
observed HCl-modified composite to be the most effective
sorbent (100% removal at 200 mg/L in 60 min), probably
assisted by negative surface charge, increased acidic func-
tional groups, high surface area, and enhanced electron
transfer rate [60]. Acid and alkaline treatments were com-
pared by Mahdi et al. [61] using date seed—based biochar
(550 °C pyrolysed), who reported acid pre-treatment to be
most effective in greater removal of contaminants (Qe of
0.91 mmol/g, 0.71 mmol/g, and 0.69 mmol/g for Pb, Cu,
and Ni, respectively).

@ Springer

Impregnated Biochars

Generally, chemical and physical treatments facilitate
biochar with low sorption capacities. Correspondingly,
biochar composites have been prepared with enhanced
properties including new functional groups and high
SA [17]. Typically, their preparation involves pre-/post-
processing stages including immersion of feedstock/bio-
char into solutions of metal oxides or metals (e.g., Fe, Al,
Mn, Bi, Zn, and others) (Fig. 1; Table 4), which depos-
its metals in pores and on surface of biochar, provides
positive charge, and enhances RE [2]. Generally, these
impregnations improve porosity, SA, surface functional-
ity, and H/C, O/C, and N/C ratios [86]. The increase in
surface area result from the accumulation of minerals on
surface [87]. Metal impregnation could be combined with
physical/chemical modifications to harness additional
benefits of multiple treatments for improving the con-
taminant removal efficiency, as demonstrated in several
previous studies (Table 4).

Fe-Modified Biochar

Iron modified biochars are the most studied biochars,
primarily due to their magnetic properties (easy recol-
lection) and the strong interaction between Fe and sur-
face functional groups. Fe modification is achieved by
soaking biomass/biochar in FeCl;, Fe(NO;);, FeSO,, or
Fe;0,. Pre-treatment is more effective in removing con-
taminants than post-treatment (due to Fe transformation
into more complex crystalline phases) [88]. Pre-treatment
with HNOj; helps increase hydrophilicity, aiding in verti-
cal growth of iron oxide on the surface and shortening
the distance needed for contaminant diffusion in biochar,
thereby improving its Qe [89]. Qe also depends on the type
and/or structure of iron oxide (Qe-amorphous > crystal-
line) [90]. Fe modification at high pH and high pyroly-
sis temperature favours higher Qe [91]. Iron oxide is
converted to zero-valent iron (ZVI) during pyrolysis/
modification (Fe,0; — Fe;0,— FeO — Fe®), affecting
biochar’s properties and Qe [92]. Fe-modified biochar
oxidises As(IIl) to As(V), and the removal is assisted by
precipitation, surface sorption, electrostatic interaction,
and inner-sphere complexation [93]. A rise in magnetic
property of biochar could decrease its Qe. Anyika et al.
[94] reported FeCl;-modified palm kernel shell-derived
biochar with significant magnetic property (saturation
magnetisation—49.5 emu/g) but low contaminant sorp-
tion (Qe =0.054 mg/g), while Lunge et al. [95] suggested
FeCl;-modified tea waste—derived biochar, with low sat-
uration magnetisation (6.9 emu/g) and high Qe. Never-
theless, Dhoble et al. [96] fabricated Fe(NO;);-modified
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bark-based biochar with high saturation magnetisation
(38.6 emu/g) and superior As(IIl) affinity (enabled by
inner- and outer-sphere complexation), compared to As(V)
(only inner-sphere complexation). Corn straw—derived
biochars were modified with Fe to compare pre-treatment
(FeCl;.6H,0) and post-treatment (ZVI) and it was
observed that pre-modification removed 50.7-98.6% Cer,
while post-modification removed 6.6-21.6% Cr [97]. Bio-
char prepared from pomelo peel mixed with FeCl; solution
was analysed to remove Cr and phenol, and the sorbent
removed Cr (24.37 mg/g) and phenol (39.32 mg/g) effec-
tively enabled by iron oxides (Fe,Os, Fe’, FeOOH, and
Fe;0,), n—m interactions and electron donor—acceptor com-
plex [98]. Rice straw—derived biochar was treated with
ZnCl, and FeCl; to analyse removal of 17f3-estradiol and
Cu, and it was observed that magnetic biochar pyrolysed
at 700 °C best removed 17p-estradiol (153.2 mg/g), and
that pyrolysed at 300 °C best removed Cu (85.9 mg/g),
with removal enabled by larger surface area, pore volume,
and O-containing functional groups (-COOH, C-OH,
C=0) [99]. Wheat straw—based biochar modified with
a-FeOOH removed Cd (62.9 mg/g) and As (78.3 mg/g)
enabled by co-precipitation and ion exchange [93]. ZVI/
biochar/Ca-alginate composite removed Cr efficiently
(Qe=86.4 mg/g) along with minimal Fe release, sugges-
tive of the resolution of problem of ZVI instability and
decreased secondary pollution resulting from Fe leaching
[100]. Pine wood—derived biochar ball milled with FeS,
removed Cr more efficiently (134 mg/g) than ball milled
FeS, (62 mg/g) and ball milled biochar (20 mg/g), with
92.25% Cr removed through reduction/precipitation and
8.75% removed via adsorption/surface complexation at
equilibrium Cr concentration of 15.7 mg/L [101]. Inter-
estingly, addition of oxalic acid promoted Cr removal from
56 to 100% in the same study. Ren et al. [102] removed
phosphate using cotton stalk—derived biochar modified by
ferric oxides with adsorption capacity of 0.963 mg/g and
observed that coating of ferric oxides on biochar alleviated
phosphate release (from 0.471 mg/g in unmodified biochar
to 0.089 mg/g in modified biochar).

Al-Modified Biochar

Aluminium modification is achieved by immersing biomass
in AICl; followed by pyrolysis; stirring biochar in aqueous
solution with Al electrode-based electrochemical treatment;
or mixing biomass with red mud (achieved during Al pro-
duction) followed by pyrolysis. Modification with Al results
in an enhanced SA and selectivity, which furnishes greater
Qe in composites. Additionally, there could be formation
of positive charge on surface, which enables it attract ani-
ons, thereby augmenting Qe. Mimosa pigra-derived biochar

@ Springer

was modified with 2 M AICl; and observed as an effective
adsorbent of NO,~ (31.80 mg/g) and PO,*~ (95.05 mg/g)
[103]. Al-modified food waste biochar demonstrated high
F removal (Qe=123.4 mg/g) as high as 91.4% at wide pH
range (5—-11) [104].

Mn-Modified Biochar

Biochar could be modified with Mn oxides to furnish high
RE, enabled by metal(loid)s entering amphoteric functional
groups of MnO, via co-precipitation, complexation, adsorp-
tion, or oxidation/reduction. For example, Mn-modified bio-
char is prepared by treating biomass with MnCl,.4H,0 (for
manganosite crystal deposition) or MnO,.nH,0 or KMnO,
(for birnessite crystal deposition) followed by pyrolysis
[105, 106]. Birnessite (a mineral with oxides of Na, K, and
Mn) possesses high contaminant Qe. Birnessite-loaded
biochar was reported superior to manganosite-loaded bio-
char owing to stronger affinity of birnessite toward con-
taminants and enhanced synergistic reactions between cati-
ons and anions. Corn stalk—based biochar modified with
KMnO, removed Cd efficiently (191.9 mg/g) enabled by
greater active sites [107]. Nanomanganese oxide-modified
coconut shell-derived biochar removed EDTA-Cu(Il) from
aqueous solutions (assisted by Fenton reaction) with removal
as high as 94.7%, enabled by increased surface area, pore
volume, and hydroxyl radicals [108]. FeOx-modified bone-
derived biochar (pyrolysed at 450 °C) and MnOx-modified
bone-derived biochar (pyrolysed at 600 °C) removed Cd
(40.59 mg/g and 53.12 mg/g, respectively), Cu (56.25 mg/g
and 74.78 mg/g, respectively), and Pb (178.58 mg/g and
215.03 mg/g, respectively), with greater removal in MnO-
modified biochar primarily enabled by electrostatic attrac-
tion in negatively charged surface [109]. Zhou et al. [110]
reported an increase in pH from 10.0 to 11.0 when corn
straw—derived biochar was modified with nano-MnO,,
which eventually improved its removal efficiency (Table 2).

Bi-Modified Biochar

Bismuth is called “the wonder metal” due to easy chemi-
cal combinations (facilitated by electrons in p-orbital).
Bi-modified biochar is prepared by mixing biomass with
Bi,0; followed by pyrolysis. Bi-mixed biomass could also
be mixed with HCI (stirred at 80 °C and sonicated) followed
by pyrolysis. The obtained sorbent is washed with distilled
water and NaHCO;. Bi-impregnation enhances SA and con-
taminant Qe. Bi,0; inhibits tar formation, which prevents
pore blockage and micropore collapse of the biochar [111].
Bi,05-doped H,0,-modified horse manure-based biochar
(carbonised at 500 °C) showed a high U(VI) removal effi-
ciency (93.9%) with Qe=1516.5 mg/g, where removal was
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enabled by precipitation, electrostatic attraction, reduction,
ion exchange, and surface complexation [112].

Zn-Modified Biochar

Zinc modification makes surface of biochar positively
charged, which facilitates high anion sorption. Zn modifi-
cation is achieved by treating biomass/biochar with ZnCl,,
Zn(NOs;),, or ZnS, which loads ZnO or ZnS nanoparti-
cles on surface and increases SA and porosity of sorbent.
ZnCl,-modified biochar was found superior to KOH, NaOH,
AICl;, and FeCl; modifications, when considering SA,
porosity, and RE [113]. ZnO-impregnated sawdust-based
biochar possessed newly formed —OH groups along with
large surface area (518.54 m%/g), which helped in removal of
Pb (150 mg/g) and p-nitrophenol (170 mg/g) from wastewa-
ter [114]. Glue residue—based biochar modified with ZnCl,
was compared with HCl and KOH modification by Shi et al.
[115], who reported that although Zn modification increased
SA less than KOH modification (85.93 m2/g, 860.45 mzlg,
and 694.03 mZ/g for HC1, KOH, and ZnCl, treatments), it
showed Qe higher than HCI and KOH treatments (48 mg/g,
65 mg/g, and 80 mg/g for HCI, KOH, and ZnCl, treatments).
Water hyacinth—derived biochar modified with ZnO nano-
particles removed 95% Cr (43.48 mg/g), chiefly assisted by
precipitation between Cr ions and ZnO and photo-generated
electrons generated by ZnO nanoparticles which reduce
Cr(VI) to Cr(III) [116]. Gan et al. [117] modified sugar-
cane bagasse—based biochar with ZnCl, which showed pH,,,.
(zero point charge) at 1.9 and the maximum Cr removal was
observed at pH 2.0, attributed primarily to enabled by the
formation of more polymerised chromium oxide species and
stronger interaction between negatively charged chromate
ions and positively charged functional groups of biochar at
lower pH.

La-Modified Biochar

Lanthanum is a non-toxic, low-cost, and chemically sta-
ble element, which provides large number of coordina-
tion sites and augments affinity for anions. La-modified
biochar is prepared by dipping biomass in LaCl; solution
followed by pyrolysis. Modification could be accompa-
nied with NaOH/ethanol treatment or the biomass could be
spun in sodium alginate solution. Lanthanum modification
deposits La,0; on surface, which assists in contaminant
removal. La-modified walnut shell-based biochar (wal-
nut shell powder, stirred in 0.5 mol L™! LaCl, solution
for 2 h and pyrolysed at 400 °C) was reported as good
promoter of increasing P adsorption of soil (increased Qe
from 0.171 to 0.421 mg/g after amendment) where surface
precipitation, ligand exchange, and electrostatic attraction
were involved in adsorption [118]. La carbonate-modified

and La hydroxide-modified wheat straw—based biochar
were compared for P adsorption and similar Qe (64.3
and 65.0 mg/g, respectively) was obtained for both but
selectivity of the latter for P (90-100%) was more than
the former (73-99%) [119]. Xu et al. [120] used cattail
plant-based biochar modified using La to remove phos-
phate (Qe =36.06 mg/g) and observed that strong acid or
alkali solutions could be effectively used for successful
desorption (92% efficiency).

Mg-Modified Biochar

Magnesium is an essential element involved in synthesis-
ing chlorophyll, has low toxicity, and sorbs contaminants. It
is considered a suitable cation for anion removal (e.g. As)
and recovery (e.g. P). Mg-modified biochar is prepared by
dipping biomass/biochar in Mg(OH), or MgCl, and could
be accompanied by acid/base or electrochemical treatment.
Mg modification augments RE. Sugarcane-derived biochar
coated with MgO removed Cr effectively (54.64 mg/g),
and the Qe increased in H,SO,-assisted modified biochar
(62.89 mg/g), chiefly enabled by chemical interactions
between MgO and Cr [121]. Mg-modified corncob-based
biochar showed 2.36-9.34 times metal sorption (Qe for Cu,
Cd, and Pbis 182.7, 83.5, and 308.2 mg/g) than pristine bio-
char, chiefly assisted by ion exchange, complexation, cation
n-bonding, and surface precipitation [122]. Mg-alginate/chi-
tosan-modified biochar demonstrated high PO,>~ sorption
(Qe=46.56 mg/g) assisted by high SA (116.2 m%*/g) [123].
Mg-modified corn-based biochar (300-600 °C pyrolysed)
recovered P (Qe =239 mg/g) from swine wastewater, which
released 3.3-4.4% P during desorption in each cycle [124].

Co-Modified Biochar

Cobalt-modified biochar is prepared by treating biomass
with Co(NOs),-6H,0 followed by pyrolysis. The modifica-
tion could be accompanied with HNO;, HCI, ethanol, or
microwave treatment to enhance biochar properties. Co
modification enhances surface morphology and boosts
spontaneity of contaminant sorption. Magnetic CoFe,O,-
modified banana pseudostem fibre-derived biochar dem-
onstrated high amoxicillin sorption (99.99 mg/g) over a
wide pH and temperature range with dominant monolayer
chemisorption, n-n stacking, H-bonding, and electrostatic
interaction [125]. Wang et al. [126] modified bamboo bio-
char with cobalt to remove Cr and observed a decrease in
pH,, from 5.8 to 3.1 after modification, primarily resulting
from the neutralised or blocked protonated surface func-
tional groups by the coated polymer layer, which eventually
increased the Qe from 8.40 to 45.45 mg/g.

@ Springer
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Ni-Modified Biochar

Nickel modified biochar is prepared by treating biomass
with NiCl, followed by pyrolysis. The treatment could be
accompanied with HNO; addition, microwave heating, or
ultra-sonication [127]. Zhu et al. [128] added N-doped car-
bon nanotube (CNT) to biochar matrix along with Ni and
KOH treatment. Ni modification increases surface properties
and contaminant sorption. Diazotisation-modified Se-rich
fir-based biochar was converted into NiS/NiSe/3D porous
biochar (via vulcanisation and in situ competitive hydrogen
reduction), which showed excellent As(III) removal perfor-
mance from water (100% removal within 110 min) assisted
by adsorption and photocatalysis [129]. Wang et al. [127]
customised bamboo biochar with nickel to remove Pb, where
modification decreased the pH,,. from 5.75 to 4.72, possi-
bly due to abundance of acidic O groups on surface, which
eventually augmented the Qe from 25.0 to 142.7 mg/g after
modification.

Ca-Modified Biochar

Calcium is essential for plant growth. Ca-modified biochar is
prepared by immersing biomass in CaO, CaCO;, and CaCl,
followed by pyrolysis. The treatment could be accompanied
with Fe;O, or alginate modification [130, 131]. Addition
of Ca helps in increasing pH and negative surface charges,
which eventually augments contaminant sorption. Indian
pokeweed (Phytolacca acinosa)-derived biochar was
treated with CaCl, and Na,CO; via vacuum impregnation
method to deposit carbonate ions on surface, which helped
remove ~ 100% Cd (154.54 mg/g), chiefly being enabled by
minerals (89-98%) and Cd —x binding (2-10%) [132].

Mo-Modified Biochar

Metal removal could be enhanced by modification of surface
using metal hybrids such as MoS,. Decoration of surface
with MoS, exposes S atoms and increases surface area and
number of active sites [133]. Corn straw—derived biochar
was modified with iron nitrate and ammonium tetrathiomo-
lybdate to increase its surface area and functional groups
(O-, C-, S-, and Fe-containing), and the composite removed
Cd effectively (139 mg/g) > 7 times more than pristine bio-
char (17.8 mg/g) enabled by electrostatic attraction, Cd-n
interaction, and strong Cd—S complex formation [133]. In a
later study, they identified Cd—S complexation (61.7%) and
Cd-O bonds (38.3%) as major players in Cd removal [134].
Sawdust-based biochar modified with ammonium tetrathi-
omolybdate using solvothermal reaction was analysed for
Pb removal, where the S groups helped increase Qe from
32.6 mg/g in pristine biochar to 189 mg/g in MoS,-modified
biochar [135].

@ Springer

Multi-modified Biochar

Biochar has been modified with multiple organic and
inorganic agents to improve its properties. Ca and Mg
were loaded on biochar, which helped in sorbing P from
biogas fermentation liquid/wastewater (Qe =326.63 mg/g)
(later recovered for fertiliser application) and the pres-
ence of CaO and MgO nanoparticles minimises negative
influence of coexisting ions on sorption [136]. MgO- and
Fe,0;-impregnated biochar removed nitrate [137], while
chloride (NH,CI, ZnCl,, and HCl)-activated biochar
removed mercury [138]. Polydopamine (hydrophilic poly-
mer with self-polymerising property, enhanced interfacial
interactions with nano-ZVI, and —OH assists in dispers-
ing nano-ZVI in adsorbent) and nano-ZVI-modified bio-
char removed tetracycline [139]. Corn straw—derived bio-
chars pre-treated with FeCl; and KMnO, solutions were
found to remove 91.79% Cr (118.03 mg/g) in comparison
to 32.17% by pristine biochar, chiefly enabled by 3 times
SA [140]. Similarly, Fe-Mn-modified Pennisetum straw-
derived biochar efficiently removed Cd (95.23 mg/g; Qe
of pristine biochar was 30.58 mg/g), primarily assisted
by cation exchange, Cd-zn interactions, complexation with
surface functional groups, and precipitation with minerals
[141]. Fe—Zn-modified Robinia pseudoacacia and durian
shell-derived biochar (post-treated with Fe(NO);.9H,0
and ZnSO,.7H,0) demonstrated 5 times (98.58 mg/g) and
3 times (161.14 mg/g) improved Qe when compared to pris-
tine biochar (18.18 mg/g and 54.11 mg/g for Robinia pseu-
doacacia and durian shell-derived biochar, respectively)
[142].

Moreover, several studies have combined different types
of treatments (physical, chemical, or impregnation) to
capture the benefits of multiple treatments for enhancing
the efficacy of contaminant removal (Table 4). Zhu et al.
[143] modified wheat straw—derived biochar with Bi,O4
mixed with HCI followed by sonication to remove Cr, P,
and As with 12.2 mg/g, 16.2 mg/g, and 125 mg/g adsorp-
tion capacities. Hu et al. [144] pyrolysed Camellia oleifera
shells with nitrates of cobalt and gadolinium, treated the
biochar with 0.1 M HCI, and rinsed it alternately with etha-
nol and ultrapure water. The modification introduced spongy
pore structure in biochar and newly generated sorption sites
which enabled removal of ciprofloxacin and tetracycline
accomplished with adsorption capacities of 44.44 mg/g and
119.05 mg/g, respectively. Mohan et al. [145] modified oak
wood and bark with salts of Fe>*/Fe** followed by NaOH
treatment. While the Fe treatment introduced magnetic prop-
erties and decreased porosity, NaOH modification helped
improve the porosity of the biochar. While oak bark—based
biochar showed 30.2 mg/g Pb and 7.4 mg/g Cd adsorption
capacity, oak wood—based biochar showed 10.13 mg/g Pb
and 2.87 mg/g Cd adsorption capacity. Fristak et al. [13]
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pre-treated grape seed—based biochar with HNO; followed
by Fe(NO;); post-treatment. While the acid treatment aug-
mented external, internal surfaces, and porosity, iron treat-
ment clogged the pores and blocked the inner sphere pores
but Fe impregnation also added — NOj functional groups,
which eventually improved the As adsorption capacity from
5.08 to 34.91 mg/g. Various mixed combination modifica-
tions are summarised in Table 4.

Other Modifications
Microwave Pyrolysis Modification

Conventional pyrolytic methods are associated with
extended production time, fast firing, outside to inside heat-
ing (energy transfer through radiation, conduction, and con-
vection), and high synthesis cost [190]. On the contrary,
microwave pyrolysis involves ~ 1/2 production cost, indirect
internal heating (uniform energy transfer through dipole
rotations and ionic conduction), and high energy efficiency.
However, microwave pyrolysis is associated with inefficien-
cies such as minimal scaling-up of technology, limited pen-
etration capacity of microwaves, and large-scale production
costs [191, 192]. Nevertheless, previous investigations have
analysed microwave-assisted pyrolysis, where biochar was
used for removing contaminants (Table 5).

Electro Modification

Application of electric field enables efficient and homogene-
ous deposition of metal oxide on biochar surface by evenly
depositing electrolyte and electrode (metal) ions. For elec-
tro-modification, current density of 93.96 mA/cm? (0-12
A and 0-100 V) is applied to a biomass using a power sup-
ply (Al electrode SA, 75.56 cm?; electrode distance, 5 cm)
in an electrolyte solution (NaCl or MgCl,.6H,0), followed
by pyrolysis. Electro-modification generates strong oxida-
tion agents (OC1™ and HOCI) or minerals on surface (like
MgO, MgAl,0,, AIOOH, and Al,O;) from electrolyte which
increases SA, microporosity, and RE [165, 193].

Ultrasonic Modification

Ultrasonic treatment could be performed before/after pyrol-
ysis to increase porosity and hasten loading of metals or
metal oxides. During ultrasonic treatment, biomass/biochar
is placed in ultrasonic bath and provided 40-170 kHz of fre-
quency and 250-1000 W of ultrasonic energy at 20-80 °C for
15-120 min [194]. The treatment is generally accompanied
with other modifications, such as Ti-impregnation [195], Bi-
loading [143], Fe-loading [196], ZVI-complexation [197], or
Mn-impregnation [106].

0Ozone Modification

Ozonation has been suggested to increase O:C ratio to aug-
ment cation exchange capacity and maintain poly-aromaticity
for high biochar stability. Ozone-modified biochar is pre-
pared by exposing biochar to ozone through ozone generator
flushed with 3 L/min oxygen flow for 5 min at 25 °C [194].
Jimenez-Cordero et al. [198] exposed grape seed—derived
biochar (flash pyrolysed at 800 °C) to ozone and elevated
temperature (850-950 °C) in inert atmosphere to desorb the
formed O-containing groups, increase the SA, and decrease
the pore size (increased micro-porosity). Huff et al. [199]
treated pine-derived biochar with ozone to improve its cat-
ion exchange capacity and observed a reduction in pH from
7.30 to 5.28 after 90 min ozone treatment, possibly due to
the addition of acidic oxygen-functional groups on surface,
while the cation exchange capacity doubled from 15.39 to
32.69 cmol/kg.

Carbonaceous Modification

Carbonaceous materials (e.g., CNT and graphene) could be
utilised for biochar modification, which transfers significant
properties of carbonaceous materials to biochar, decreases
production cost, and proliferates their contaminant RE. Bio-
char is modified with graphene oxide by stirring biomass in
graphene suspension for 60 min (homogenised via ultrasonic
treatment) followed by pyrolysis. Graphite could be used
to synthesise graphene oxide nanosheets through modified
Hummers method involving H,SO, and KMnO, [200]. On
the other hand, CNT modification is achieved by stirring
biomass in CNT suspension for 60 min (homogenised via
ultrasonic treatment of 20 kHz at pulse intervals of 12 min)
followed by pyrolysis. These modifications increase the
contents of O-containing functional groups and SA. Car-
bonaceous modification could be accompanied with other
treatments (e.g. sodium dodecyl-benzenesulfonate disper-
sion) to facilitate superior properties. Corn stalk mixed with
graphene was pyrolysed at 350 °C to prepare biochar to
remove Cd from aqueous solutions and it was observed that
addition of graphene increased sorption capacity 1.26-2.36
times compared to pristine biochar, primarily enable by phy-
sisorption, complexation, and ion exchange [201]. Sawdust
mixed with graphene oxide pyrolysed at 700 °C to fabricate
the composite was used to remove Cd and it was observed as
an effective sorbent of Cd (Qe=55.68 mg/g), with adsorp-
tion following pseudo-second-order kinetics and Freundlich
isotherm and column study following Admas—Bohart model
[202]. Inyang et al. [203] modified hickory and bagasse
bichar with CNT and sodium dodecylbenzenesulfonate to
improve the Qe of lead and sulfapyridine, where the pH
decreased from 7.25 to 6.74 in hickory biochar and from
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6.94 to 6.72 in bagasse biochar, possibly enabled by the
addition of acidic functional groups on surface.

Chitosan Modification

Chitosan is derived from chitin and contains abundant free
—NH,, —OH, and hydrogen bonds (between the main chains
in secondary structure), which provides ion exchange, chela-
tion, and contaminant sorption ability. Chitosan-modified
biochar is prepared by stirring biochar in 2% acetic acid
solution containing chitosan for 30 min at 40 °C followed
by addition of glutaraldehyde and suspension into NaOH
solution for 1-12 h [204, 205]. The treatment could be
accompanied with addition of ZVI to enhance its RE [148].
Walnut shell-derived biochars were modified with beta-
cyclodextrin—chitosan to remove Cr from aqueous solu-
tions, and an RE of 93% was achieved (Qe =206 mg/g),
primarily enabled by electrostatic attraction of HCrO,~ and
Cr,0,>~ to positively charged surface and complexation with
—NH, and —OH functional groups [206]. Rice straw—derived
biochar (450 °C pyrolysed) was modified with chitosan and
pyromellitic dianhydride to increase amide and carboxyl
groups, which could strongly interact with contaminants
via electrostatic attraction, ion exchange, and complexa-
tion [207]. Modification improved the RE by ~ 10% with
Qe of 8.62 mg/g, 25.78 mg/g, and 71.40 mg/g for Pb, Cd,
and Cu, respectively. Chitosan-combined magnetic Loofah
sponge-based biochar removed Cr (30.14 mg/g) and Cu
(54.68 mg/g) efficiently, mostly assisted by ion exchange
and surface complexation, despite the decrease in SA (from
337.35 t0 96.91 m?%/g) [208].

Clay/Silt/Silica Modification

Biochars could be loaded with clay minerals, such as benton-
ite, montmorillonite, or kaolinite, to modify its composition
and properties to increase sorption of oxyanions, like PO43_,
and polyatomic cations, like NH,*. Typically, biomass is
mixed with a suspension of ultrasonicated (form homog-
enisation) clay minerals, stirred for 60 min and pyrolysed
to obtain amorphous biochar with crystalline clay minerals.
Additionally, higher pyrolytic temperatures evaporate water
molecules from clay minerals, which reduces pore volume
(PV) (and pore diameter) [17]. The treatment is enhanced
by activation under CO, flow for greater microporosity.
Rawal et al. [209] pyrolysed bamboo biomass, pre-treated
with iron sulphate-clay mixture, at 250-550 °C to obtain
clay-modified biochar with enhanced PV and mineral infu-
sion into pores (high content of S, Fe, and Al). Yao et al.
[210] reported > 15% enhanced green pepper yield,>1 0%
increased vitamin C content, and ~ 1/3rd decreased nitrate
content after amendment with wheat straw—derived biochar
(pre-treated with urea, minerals, and H;PO,) compared to

@ Springer

conventional fertilisers. Oiltea camellia shell-derived bio-
char modified with silicon was observed to possess aug-
mented surface area (45-112%) and porosity (5-12%) and
Cd removal was enabled by complexation with —-COOH and
C-Si-O groups, surface precipitation (CdCO;, CdSiO;, or
Cd,Si0,), coordination with = electrons (C=C), and ion
exchange with Nat [211]. Rosin-based bentonite-coated
Fe,0; nanoparticle-supported biochar removed 95%
Cr(VI) within 1 min (81.7 mg/g) mainly due to the key role
played by a-Fe,O; nanoparticles [212]. Cigarette factory
waste—derived biochar modified with bentonite and calcite
minerals removed Pb efficiently (99%), with bentonite and
calcite catalysing changes in yield, carbonisation, miner-
als, functional groups, texture, and pH [213]. Siltstone-
nanomagnetite-modified Eleocharis dulcis—derived biochar
demonstrated high Cr Qe (35.57 mg/g), assisted by elec-
trostatic attraction [214]. Montmorillonite-modified wheat
straw—based biochar showed high norfloxacin Qe (increased
from 10.58 to 25.53 mg/g after modification), enabled by
pore filling, H-bonding, and electrostatic interaction [215].
They also stated that presence of humic acid and Cu?* could
reduce norfloxacin sorption due to competitive adsorption
and pore blockage. Montmorillonite-modified corncob-
based biochar removed Pb (139.78 mg/g) and atenolol effi-
ciently (86.86 mg/g) enabled by hydroxyl O atom acting
as a possible reaction site and amino N and amide O atom
providing lone pair of electrons, which generates H-bond
or strong electrostatic interactions with surface functional
groups [216].

H,0, Modification

Hydrogen peroxide (H,0,) is a clean and less-expensive
product proposed to modify biochar for high sorption. Typi-
cally, H,0,-modified biochar is prepared by placing biochar
in H,0, solutions (1-30%) and stirred for 120—180 min fol-
lowed by filtration, washing, and drying. H,0, modification
was compared with H,SO,, HNO;, and KOH modifications,
where H,SO, and HNO; treatments caused porosity loss and
heterogeneous micropore distribution, while H,O, and KOH
treatments enhanced homogenous micropore distribution,
micro-PV, and SA. All the treatments enhanced acidic sur-
face functional groups, which enabled biochars (rice straw
derived) in removing contaminants like methylene blue,
phenol, and iodine [56, 217]. Wongrod et al. [45] reported
decreased As removal after H,O, and KOH modification
of biochar (while H,O, oxidised organic content, KOH dis-
solved ash). Pig manure—derived biochar was oxidised using
H,0, (oxidation occurred at C=C bonds) and thiolated
using 3-mercaptopropyltrimethoxysilane (sulphur content
increased to 4.43%), where sorption capacity of biochars
augmented by 2.5-4.2 times for Cd and Pb with increase
in pyrolysis temperature from 300 to 700 °C [218]. Metal
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removal was enabled by cation exchange, complexation with
functional groups, cation-r EDA interaction, and precipita-
tion with minerals.

Organic Solvent/Compound Modification

Biochar could be modified with organic solvents such as
methanol and thioglycolic acid to increase the content of
surface functional groups (especially carboxyl and carbonyl
groups). However, the volatile nature and high costs associ-
ated with the organic solvents limit their real-time large-
scale applicability for biochar modification. Previously,
organic solvent-modified biochar was used to remove con-
taminants (Table 5) [219, 220]. Organic compounds like thi-
ourea, polyaniline, and poly(vinyl alcohol) (PVA) have been
used to modify biochar. Swine sludge—derived biochar was
pre-treated with NaOH and HNO; and modified with thio-
urea to augment C-O, C=0, C-S, C=S5, and RSO;™ groups,
which enabled high Pb removal (Qe =143.13 mg/g) [221].
Rice husk— and Eucalyptus saw dust—based biochar was
modified with polyaniline to graft NH, groups of polyani-
line directly on surface, where an increase in SA (38.7—41.3
m?/g) and Cr removal (72.31-81.43%) was observed [222].
Rice straw—derived biochar was aminated with poly(vinyl
alcohol), epichlorohydrin, and diethylenetriamine to aug-
ment surface functional groups (such as —OH) and Cr(VI)
removal (Qe=140.39 mg/g) [223]. KMnO,-modified corn-
cob-based biochar was entrapped/immobilised in poly(vinyl
alcohol)/sodium alginate hydrogel beads to study Cu
removal and an increase in Qe was observed (23.70 mg/g
in pristine biochar; 87.07 mg/g after modification), prob-
ably due to inner-sphere complexation (Cu—O, Mn—-O-Cu
bonds) [224]. 3-aminopropyltriethoxysilane and polyami-
doamine dendrimer-modified magnetic rice straw—derived
biochar removed Cu efficiently (251.81 mg/g) mainly due to
electrostatic attraction and bridging influences with -NH,
groups, despite the decrease in SA [225].

Nitrogen Modification

Biochar is modified with N by recapturing N from waste-
water (polar functional groups enable sorption in low
temperature—synthesised biochars; high SA enables sorp-
tion in high temperature—pyrolysed biochars). Biochars
could recover nitrates and ammonium from human urine
present in wastewater treatment plants [226]. Polyeth-
ylenimine and methanol were used to augment N- and
O-containing groups (primarily amino groups) in rice
husk—derived biochar to sorb Cr (Qe =435.7 mg/g) [227].
Stillage-derived biochar was loaded with N-containing
phosphates (urea phosphate, ammonia polyphosphate,
and ammonia phosphate) to augment its porosity (0.464

cm?/g) and SA (798 m?/g), which sorbed toluene effec-
tively (Qe=496.2 mg/g) [228]. Saw dust—derived biochar
was treated with H,SO,, HNO;, NH,OH, Na,S,0,, and
glacial CH;COOH to furnish amino groups, which helps
sorb Cu®* (Qe=16.11 mg/g) [229]. Rice straw—derived
biochar was modified with iron and (3-aminopropyl)-
triethoxysilane to enhance Fe and NH, radicals to augment
Cr (100.59 mg/g) and Zn removal (83.92 mg/g) [230].
Waste-derived biochar (municipal waste, oak wood, anaer-
obic digestate press cake, and greenhouse waste; pyrolysed
at 450-650 °C) sorbed ammonium (Qe = 146.4 mg/g) and
phosphate (Qe=37.1 mg/g) [231]. Takaya et al. [231] also
reported minimal desorption of ammonium (5.1 mg/g) and
phosphate (8.5 mg/g), which could enable its usability as
slow release soil amendments.

Sulphur Modification

Sulphur modified biochar could be prepared by sorbing
H,S produced during anaerobic digestion of biomass for
bioenergy generation. Dairy manure—derived biochar
adsorbed H,S generated during anaerobic digestion of
organic waste and obtained S-modified biochar (36.5%
S) [232]. S modification could also be achieved by sur-
face modification with reagents like thiols, CS,, or SO,
[233, 234]. S-modified biochars immobilise Hg in soils,
primarily enabled by the strong affinity of S for Hg.
Rice husk—derived biochar modified with S (13.04% S)
minimised Hg contamination by ~73% (Qe=67.11 mg/g)
primarily by forming HgS [235]. Na,S-modification of
corn straw—based biochar enhanced Hg?* sorption by
76.95% and atrazine sorption by 38.66% [76]. Oilseed
rape straw—derived biochar (with enhanced S) immobi-
lised methyl-Hg by complexation and reduced methyl-Hg
accumulation in rice grains [236]. Corncob biochar modi-
fied with Na,S showed best Ni removal (15.40 mg/g), SA
(195.64 m?/g), and PV (0.2340 cm?/g) among modified
crayfish shell, cotton stalks, corncob, and peanut shell-
based biochars, chiefly enabled by ion exchange [237].

Living Feedstock Modification

There was a unique and interesting study where plants
were irrigated with metal-rich water to enhance the con-
tents of essential nutrients in plants which could boost
its yield. Yao et al. [238] irrigated tomato plants with
25 mM Mg solutions to obtain Mg-enriched tomato tis-
sues. Later, it was pyrolysed to produce biochar, where
pyrolysis augmented Mg concentrations in the sorbent
(8.8% Mg). The presence of MgO and Mg(OH), provided
greater removal of phosphate (88.5%).

@ Springer
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Microbe Modification

The property of high SA enables biochar in facilitating the
growth and colonisation of microorganisms on its surface.
The colonised microbes develop a biofilm on surface via
secretion of adhesives (polymers), which facilitates stronger
viability (due to protection provided by biofilm). The inoc-
ulation and colonisation of microbes aids in degrading
organic contaminants and biosorbing metals [17]. Micro-
organism-colonised (Streptomyces violarus strain SBP1)
H,0,-modified wood waste—derived biochar effectively
removed ~74.8% Mn(II) and oxidised it into lesser toxic
Mn(IIT) and Mn(IV) [239]. Since biofilm-associated biochar
could assist in removal of contaminants, it was suggested
for application as filters and treatment of polluted water,
wastewater, and soils [240].

Mechanistic Insights into Contaminant
Removal

Different models have been proposed to identify processes
involved in adsorption, where adsorption capacity of con-
taminants is plotted against initial concentration, contact
time, and temperature to diagnose the best fitting iso-
therm, kinetic, and thermodynamic model. Langmuir and
Freundlich are the most used adsorption isotherm models
[256-258], while Lagergren pseudo-1st order, pseudo-2nd

Fig.2 Contaminant removal by
modified biochar
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order, intra-particle diffusion, and Elovich are the most
used adsorption kinetic models [259-261]. Thermodynamic
parameters like entropy, enthalpy, and Gibbs free energy
are calculated by plotting adsorption capacity versus tem-
perature [262]. Previous studies have proposed the following
mechanisms as chiefly involved in removal of contaminants
(Fig. 2): (i) precipitation/co-precipitation, (ii) complexation
(coordination, surface complexation), (iii) ion exchange
(anion and cation exchange), (iv) physical adsorption, (v)
specific adsorption (including chemical process), (vi) elec-
trostatic interaction/attraction/attachment, (vii) reduction,
(viii) ®-bond interaction, and (ix) micro-electrolysis reaction
[263]. For example, Cr (which exists as Cr(VI) and Cr(III),
with + 6 state being more toxic) removal primarily involved
electrostatic interaction, complexation, reduction from
Cr(VI) to Cr(III) through surface functional groups such as
—OH and -COOH and ion exchange with AI**, HT, and Zn?*
[222,264,265]. Cd (existing as Cd(II) and hydrxo-complex)
removal chiefly incorporates complexation with functional
groups (O-, C-, S-, and Fe-containing) and ion exchange
with Ca?*, Na*, and K*, apart from physical adsorption and
electrostatic attraction [133, 141, 201, 265]. As (existing
predominantly in H,AsO,~ and HAsO,*~ at 3-6 pH and
AsO,* at alkaline pH) removal mainly involves electrostatic
interactions (with —OH and —COOH groups on surface) and
complexation/precipitation (with metals and metal oxides on
surface), apart from redox transformation, ion exchange, and
H-bonding [266]. Pb (primarily prevalent as Pb(Il)) removal

‘ INORGANIC
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o— s
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A
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involves complexation with C-O, —OH, —-SH, and C-S
functional groups (mainly inner-sphere surface complexa-
tion), chemisorption with ion-exchange groups (R—SH and
—~RSO?") and coordination groups (-COO, -C=S, -C-NH,)
[135, 221]. Cu (occurring as Cu(I) and Cu(Il), with +2 being
more harmful) removal incorporates complexation with sur-
face functional groups (such as -COOH, —OH, and —NH,)
[229]. Removal of Pb(Il) and Cd(II) involved ion exchange,
specific adsorption (Pb/Cd-O or hydroxyl binding), and
electrostatic attachment [170]. When competitive adsorption
of Pb(Il), Cd(II), and Cu(II) was investigated, differential
role of functional groups was observed, with N—-C =0 group
majorly involved in Pb(IT) removal, C=C and N-containing
groups involved in Cd(II) removal, and carbonyl and N-
containing groups involved in Cu(Il) removal [207].

pH is a crucial factor influencing the removal of contami-
nants by modified biochars. For example, heavy-metal ions
precipitate in alkaline environment, thereby affecting the
Qe of modified biochars. The contaminants form complexes
with OH™ or H' under alkaline or acidic environments,
which affect the RE of modified biochars [263]. Changes in
surface functionality also affect the acidic/alkaline proper-
ties of modified biochars, eventually affecting contaminant
removal. pH at zero point charge (pH,,.) affects the surface
charge of modified biochars by changing the protonation
effect of surface functional groups of modified biochars in
acidic conditions. While a pH lower than pH,,. makes the
surface of modified biochars positively charged and attracts
anionic contaminants, a pH higher than pH,,. makes the
surface negatively charged, augmenting the electrostatic
attraction of cationic contaminants. Solution pH is another
factor governing the removal of contaminants by modified
biochars. For example, an increase in solution pH from 2 to
8 augmented the removal of Cd by MgCl,-modified biochar
from 47.17 to 98.30% [267]. In general, a decrease in pH
of biochar after modification is observed. While Huff et al.
[199] observed a reduction in pH (from 7.30 to 5.28) after
ozonation, Wang et al. [126] and Wang et al. [127] reported
areduction in pH,,. of biochar after modification with nickel
(from 5.75 to 4.72) and cobalt (from 5.8 to 3.1), respectively,
which increased Qe from 25.0 to 142.7 mg/g and from 8.40
to 45.45 mg/g, respectively. However, an increase in pH
has also been reported after modification, like an increase
from 10 to 11 after modification with nano-MnO, eventu-
ally improving removal efficiency as reported by Zhou et al.
[110].

Surface properties of modified biochar (SA, charge,
and functionality) are involved in removal of emerging
organic contaminants [18]. Chemical modification gener-
ates abundant adsorption sites, making the surface favour-
able for surface precipitation, surface complexation, and
electrostatic attraction, while physical modification influ-
ences SA and microporosity, which affects mechanisms

like intra-particle diffusion and pore filling [268].
H;PO,-modified pig manure—derived biochar removed
tetracycline primarily through n-r electron donor—acceptor
interaction and hydrogen bonding [269]. Chitosan and
Fe/S-modified sludge-based biochar removed tetracycline
primarily using n-m stacking, hydrogen bonding, silicate
bond interaction, and pore filling, but also involved chela-
tion and ion exchange, which rarely occurs during adsorp-
tion of organic contaminants [270]. KOH-treated potato
stem and leaf-derived biochar adsorbed ciprofloxacin via
n-m interactions, electrostatic interaction, and hydrogen
bonding [271]. Magnetised pine sawdust—based biochar
adsorbed ethinyl estradiol and sulphamethoxazole primar-
ily through =-x electron donor—acceptor and hydrophobic
interaction [272]. Magnetic bagasse biochar nanoparticles
removed 17B-estradiol chiefly via simultaneous hydro-
phobic interactions (dominating at lower pyrolysis tem-
peratures) and n-x electron donor—acceptor interactions
(dominating at higher pyrolysis temperatures) [273]. Ca-
and Fe-Mn-modified litchi-derived biochars were sug-
gested to effectively control estrone/estrogen in water and
soil environments, where immobilisation was primarily
achieved through hydrogen bonding interaction [274].
Magnetic Fe203-modified banana peel-based biochar
effectively degraded bisphenol-A (completely removed
within 20 min), without pH adjustment, through hydrogen
bonding and involvement of surface functionality [275].
Bamboo-derived biochar supported CuZnFe,0O, compos-
ite removed bisphenol-A and sulphamethoxazole through
hydrogen bond interaction, hydrophobicity, and n-x inter-
actions [276]. Cotton straw—based biochar removed sul-
phonamide primarily via van der Waals and hydrophobic-
ity [277]. Tylosin removal using novel goethite biochar
was assisted by hydrophobic, n-n electron donor—acceptor
electrostatic, cation exchange, and H-bonding interactions,
with best fitting of Henry and Freundlich models [278].
KOH-treated wild plum-derived biochar modified with
microwave treatment (700 W for 12 min) removed nap-
roxen efficiently (73.14 mg/g) with maximum assistance
from electrostatic attraction between positively charged
—OH groups on surface and negatively charged naproxen
[279]. NaOH-activated alfalfa-derived biochar superiorly
removed tetracycline from water (302.37 mg/g), with
prime involvement of chemisorption interaction and intra-
particle diffusion [78]. MgAl-double lamellar hydroxides/
bovine bone-based biochar composite completely removed
caffeine from water within 20 min (26.22 mg/g), with best
fitting of Redlich—Peterson, indicating that both monolayer
and multilayer adsorptions are involved in the removal of
caffeine [280]. Overall, electrostatic interactions, cation
exchange, surface complexation, hydrogen bonding, and
non-specific van der Waals interactions are involved in
removal of organic contaminants [281].
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Modified Biochar and Ageing

Biochars undergo ageing when applied in the environment,
primarily under the influence of natural forces including
temperature-induced freeze—thaw cycles, rainfall-induced
wetting—drying cycles, sunlight-induced photochemical
degradation, and mild forms of oxidation (arising from
microorganisms, root exudates, or atmospheric oxygen)
[282]. Ageing affects physico-chemical properties like
aromaticity, elemental composition, surface morphology,
and surface area, which could either increase or decrease
removal of organic/inorganic contaminants by biochar. In
general, chemically/biologically oxidised biochar removes
pronounced amounts of inorganic contaminants, aided by
higher surface complexation with O-containing functional
groups and retained ash content, which furnishes contam-
inant co-precipitation. On the contrary, physically aged
biochars demonstrate diminished contaminant removal
because of lower mineral content and O-containing groups,
which minimises complexation and co-precipitation. With
respect to ageing, contrasting results of decrease in con-
taminant removal (Cu and Pb removal decreased due to
wet-dry ageing, as reported by Shen et al. [283]) and
increase in contaminant remediation (Cd and Pb removal
increased by KOH-modified biochar, reported by Wang
et al. [284]) after application of biochar has been reported
previously. Such contrasting reports could be emanating
from dissolved organic matter—induced contaminant mobi-
lisation or O-containing group-supported contaminant
immobilisation [285, 286]. Biochar ageing favours micro-
bial degradation of organic contaminants, where biochar
acts as electron shuttle between organic contaminants and
microorganisms colonised on external and internal sur-
face and with progressive ageing, enhanced O-containing
groups favour electron shuttle effect.

Huang et al. [287] prepared Ce/Mn-modified wheat
straw biochar to remove As(V), where the team assessed
the influence of three different ageing processes (natural,
freeze—thaw, and dry—wet cycles) on the adsorption per-
formance of modified biochar. Interestingly, freeze—thaw
ageing increased the SA of modified biochar (214.98 m%/g)
more than the other two ageing processes. However, pH
and C contents reduced after ageing, but contents of H
and O increased after ageing. Qe augmented by 16.2%
and 10.6% for freeze—thaw and dry—wet ageing treatments,
respectively. Freeze—thaw and dry—wet ageing processes
also activated Ce/Mn oxides in augmenting Mn>*3* and
Ce generation, eventually increasing CeAsO, precipitation
and Ce/Mn—O—-As complexation. In an interesting study,
Wang et al. [288] prepared aged biochars by treating corn
straw—derived biochar with 20% H,0, at 1:20 (w/v) ratio
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for 24 h. The team observed a decrease in Cd and Pb RE
attributable to a reduction in mineral precipitation and
cation exchange mechanism. In another study, Cui et al.
[289] simulated Fenton-like chemical ageing by oxidising
peanut and bush biochar with citric acid/Fe,O5 and citric
acid/FeCl;. The team observed that ageing improved sur-
face properties, surface functionality, and elemental con-
tent in biochars, which increased 2,4,6-trichlorophenol
removal by 1-11% and 7-38% in aged bush and peanut
shell biochar, respectively. The contrasting results trigger
the need for performing extensive studies to examine the
adsorption/degradation performance of modified biochars
with respect to ageing. It is also noteworthy that produc-
tion temperature could affect the adsorption performance
of ageing biochar [290]. While high temperature biochars
demonstrate lower Qe when exposed to acid rain leaching
or oxidation (which remove inorganic alkaline elements
and minimises pH), low temperature biochars display
an increase in Qe, assisted by augmented O-containing
groups (which promotes ion exchange and surface compl-
exation). A major condensed aromatic carbon portion of
biochars remain very stable, the labile portion still remains
biodegradable [291].

Theoretically, biochars could immobilise contaminants
for a very long term, but Shen et al. [283] reported metal
immobilisation for a short term and mobilisation with an
accelerated ageing simulated by a wet-dry-ageing experi-
ment (for example, metals such as Cd, Cu, Pb, Ni, and Zn).
Therefore, utilisation of biochar for immobilising con-
taminants in soils could pose long-term risks and might
necessitate further enquiry for safer application. Martin
et al. [292] compared un-aged biochars to 32-month-aged
biochars and observed that removal of contaminants like
diuron and atrazine minimised significantly in the latter by
47-68%. Similarly, Ren et al. [293] suggested that adsorp-
tion performance of biochar amended soils (for contami-
nants like atrazine and phenanthrene) reduced to levels of
untreated soils after 30 months of application. However,
Jones et al. [294] reported that 2-year ageing did not affect
the RE of contaminants like simazine. A 3-year experi-
ment by Li et al. [295] observed that hardwood-derived
biochar minimised Cu and Cd concentrations by 63.8%
and 57.9%, respectively in first year in soil, but the bio-
chars increased mobilisation in the following years. On
the contrary, corn straw—derived biochar minimised metal
concentrations steadily throughout the experiment. Such
a variation in results was attributed to the differences in
lignin content. These observations signify that it is crucial
to choose the appropriate kinds of feedstock to minimise
the bio-availability and mobility of contaminants stably for
longer periods in contaminated environments.
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Feasibility and Limitations of Biochar
Modification

The feasibility of modified biochars is dependent on a
number of factors inclusive of the biochar properties, the
costs of fabrication, the risks associated with their appli-
cation, and the viability of its scalability (from lab scale to
industrial scale). The physico-chemical properties of the
modified biochars depend on the type of feedstock used,
treatment temperature, and the modification method. An
improved understanding of the properties would enable
a better utilisation of the fabricated adsorbents for vari-
ous applications including removal of contaminants. The
calculation of costs of fabrication is complicated and
depends again on the feedstock, treatment temperature,
and the modifying agent. Waste biomasses, which are
typically free, could be used to minimise the costs of pro-
duction. However, assessment of costs becomes difficult,
when factors such as treatment cost, transportation tariffs,
labour charges, energy consummation, and operating and
maintenance costs are included in the cost calculation, as
these are typically the most crucial components of biochar
preparation on a large scale [2]. Interestingly, Inyang and
Dickenson [296] suggested that on an average unmodified
biochar cost ~ 1/6th of the production costs of activated
carbon (~$1500/ton). Such a large difference in produc-
tion costs could be used to advantage for the fabrication
of modified biochars, where only an additional expense
of the modifying agent or treatment condition would
need to be incorporated. Most of the studies reviewed
focussed on batch studies using modified biochars for
contaminant removal, while the actual performance of
the adsorbent needs to be examined with column/con-
tinuous setups incorporating real-time contaminated soil/
water in addition to subjecting the adsorbent to multiple
sorption-regeneration cycles. Additionally, recovery of
the adsorbent and its stability after real-time application
for removal of contaminants would be crucial in enhanc-
ing the feasibility of the fabricated adsorbent. Recovery
and regeneration of adsorbent would critically depend on
the mechanisms involved in contaminant sorption, where
weaker binding of contaminant (via physisorption) to
adsorbent would amplify the regeneration and reusabil-
ity of adsorbent, when compared to a stronger bonding
(involving chemisorption) between adsorbent and con-
taminants [2].

It must also be observed that different studies compar-
ing different biochar modifications have reported a supe-
rior performance of one or the other biochar modification,
which on the first instance could intricately confuse the
research team in selecting the appropriate modification
method. For example, while Wang et al. [50] reported

alkaline modification to be superior to acid modifica-
tion, Zhang et al. [60] reported the contrary superiority of
acid modification for contaminant removal. However, Liu
et al. [297] suggested that acidic modifications persist with
issues of non-recyclability, higher pollution, and larger
consumption of activation energy, while alkaline modifi-
cations are associated with advantages of higher biochar
yield, lower activation temperature, and controllable void
structure, which could be suggestive of the preferability
of alkaline modifications, also re-affirmed by Lima et al.
[20] and Hussain et al. [66]. It makes it crucial for the
future research teams to compare the different modifica-
tion methods for a better understanding of the feasibility
and the limitations of its applications, especially removal
of contaminants. Modifications such as steam and gas
treatment, alkaline treatment, and carbonaceous modifi-
cation improve the surface area and porosity of adsorbent.
However, steam, gas, and carbon modification are associ-
ated with high costs, while alkaline treatments are much
less costly and could favour their usability. Additionally,
physical modifications consume huge amounts of energy,
which increases the production costs and makes the fab-
rication non-greener. Different modifications influence
the elemental composition of biochars differently, which
affects the basic or hydrophilic nature of biochar [16]. For
example, nitrogen-to-carbon ratio regulates basic nature
of biochar, while oxygen-to-carbon ratio dictates the
hydrophilic nature of biochar. Alkaline treatments when
compared to acidic treatments increase basicity and aro-
maticity of biochar and decreased the hydrophilic nature
by altering the carbon, oxygen, and nitrogen contents
of biochar. Treatments involving alkaline and oxidising
agents augment oxygen-containing functional groups on
surface. While alkaline treatments augment hydroxyl and
carboxylic groups, oxidising treatments increase carbox-
ylic groups. However, it is also important that after modi-
fication, the acid/alkali solutions might need further treat-
ment, which could eventually complicate the fabrication
of biochar. In due course, acid/alkali solutions could be
treated by neutralising it with alkali/acid solutions. Also,
the costs of modifying agents need to be kept into per-
spective, which could limit its applicability. Nonetheless,
cyclic utilisation of modifying agents could minimise the
costs of fabrication. When compared to other treatments,
metal impregnation enhances the active adsorption sites
the most, thereby supporting the removal of contaminants
the most. Still, previous reports have suggested leakage
of metal ions from the adsorbent, which could influence
the stability of modified biochars [19]. By and large, the
selection of modification methods depends on the costs
of fabrication or the feasibility of follow-up treatments
required during modification.
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Future Perspectives

e With evolving biochar treatment/modification methods,
optimisation of feedstock variation, production condi-
tion, and modification route have become inevitable.
Studies have been limited to laboratory setups and need
proliferation for pilot-scale industrial and commercial
application, inclusive of actual contaminated soil and
water for determining real-time efficacy.

e Fewer studies have focussed on the removal of con-
taminants from simulated/industrial wastewater using
modified biochars. Further, application of modified
biochars for contaminant removal from large-scale
industrial wastewater has not been reported. Lesser
investigative analysis has been performed on mixed
multi-contaminant systems and identification of the
probable involved mechanisms could be crucial in the
future studies.

e There is a need to investigate the stability of modified
biochar composites. Long-term experiments would be
needed to examine the bonding strength of composite
and achieve a composite with long lifetime and high
adsorption capacity under changing climatic scenarios
[298, 299].

e Contrasting results were obtained in studies performed
on the impact of ageing on adsorption performance of
biochars. Moreover, minimal studies have analysed the
adsorption behaviour of modified biochars exposed to
ageing. Such a scenario triggers the need for perform-
ing extensive studies to examine the adsorption/degra-
dation performance of ageing-modified biochars.

e Life cycle assessment of modified biochars should be
performed to compare its applicability with sorbents,
presently used at industrial setups, considering factors
like contaminant RE, biochar stability, biochar reuse,
fabrication cost (production and modification), and
real-time applicability (transportation, labour involved,
and maintenance).

Conclusions

Physical and chemical modification of biochar could
enhance the contents of O-containing functional moieties
and SA, which eventually assists in sorption of organic and
inorganic contaminants. In general, acidic modifications
enhance surface functional groups and cation exchange
capacity, which promotes ion exchange and sorption of
cationic and anionic contaminants. Alkaline modifications
facilitate high aromaticity, apart from improving hydro-
phobicity and contaminant RE. Sorption of oxyanions
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could be escalated by metal impregnation in biochar.
Metal-impregnated biochars sorb contaminants effectively
with mechanisms involving chemisorption, electrostatic
attraction, and complexation. Biochar could be facilitated
with magnetic properties (via Fe modification) to ease its
recovery. Pb could be effectively removed by metal/metal
oxide-impregnated biochars because of the formation of
stable inner sphere complexes. Cd could be better removed
by Mn-modified or alkali-modified biochars because of
the facilitation of surface basicity that favours electrostatic
attraction with cations. Cu could be preferably removed
by nitrogen-doped or metal/metal oxide-modified biochars
because of the formation of N—Cu complexes. Cr could
be efficiently removed by Fe-modified biochar because
of the mild reduction reactivity possessed by ZVI, while
Cr(VI) is reduced to Cr(III) by oxidising Fe to Fe(III) and
formation of Cr(III) hydroxides. Hg could be removed by
S-impregnated biochar, as it enables HgS precipitate for-
mation apart from O-containing functional groups involve-
ment in Hg sorption. As could be preferably removed by
metal-modified biochars, primarily enabled by electro-
static attraction and formation of complexes with metals.
Modified biochars (especially metal oxide and metal salt
modification) show high removal of organic contaminants
enabled by electrostatic interactions, cation exchange,
surface complexation, hydrogen bonding, and van der
Waals interactions. In view of contaminant removal and
waste management, production of modified biochars from
diverse agro-ecological waste could be critical for planet
survivability. However, it would be beneficial to perform
reality check of contaminant removal using modified and
tailor-made biochars with real-time wastewaters and actual
contaminated soils along with identifying routes of scal-
ing-up the fabrication of low cost environment-friendly
modified biochars and determining the influence of ageing
on the stability and adsorption performance of the modi-
fied biochars.
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