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Abstract
Biochar is a stable carbonaceous material obtained on pyrolysing biomass. Although it possesses crucial properties of high 
surface area, porosity, surface functionality, and sorption capacity, there is immense scope to augment these properties for 
effective contaminant sorption. Physical and chemical modifications enhance surface area, porosity, and contents of oxygen-
containing functional groups. While acidic modifications augment surface functional groups and cation exchange capacity, 
alkaline modifications increase aromaticity, hydrophobicity, and π-π interactions. Impregnation with metals amplifies mag-
netic properties, availability of active sites, chemisorption, electrostatic attraction, and complexation. These modifications 
assist in sorption of cationic and anionic contaminants. Accordingly, the present study reviews modified biochars which 
promote eco-friendly contaminant removal. Moreover, various biomass and modification methods utilised for modified 
biochar production have been elaborated along with the changes in physico-chemical properties. Importantly, mechanistic 
insights into the functional role of modified biochars for removal of contaminants have been provided. Further, the impact 
of ageing on modified biochars and their contaminant adsorption performance have been discussed. Lastly, the feasibility 
and limitations of various biochar modification methods in addition to different research gaps have been presented to create 
a road map for future investigations. Waste management and contaminant remediation are the need of the hour for planet 
survivability, which could be achieved by precise biochar modification.
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Introduction

In the purview of increasing pollution levels, resulting from 
anthropogenic activities, and the consequent need to remove 
organic and inorganic contaminants, sorption has gained 
enormous attention primarily because of low operational 
costs, unsophisticated treatment, minimal chemical use, 
and safe handling of waste [1]. Previously, metal oxides, 
biomasses, and activated carbons have been used as sorb-
ents with activated carbon being the most widely utilised 
sorbent in industries because of its high porosity, large sur-
face area (SA), and abundant oxygen (O)-containing sur-
face functional groups [2]. However, activated carbons are 
expensive while metal oxides could be toxic to the ecosys-
tem which triggers the need for identifying potential alter-
natives. Lately, biochar has been reported to possess vital 
physicochemical properties such as high porosity, enhanced 
SA, alkaline pH, and O-containing functional groups, which 
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enable sorption of contaminants [3–6]. Biochar is a stable 
carbon-rich material obtained on subjecting biomass to 
thermal energy in oxygen-deprived conditions [7–9]. It is 
used for applications ranging from agricultural amendment 
to industrial manufacturing and from energy production 
to waste management enabled by its vital properties such 
as alkaline pH, high SA, surplus porosity, enhanced water 
holding capacity, commendable sorption capacity (Qe), and 
abundant nutrients, which are dependent on biomass varia-
tion and preparatory conditions [7, 10–12].

Although biochar possesses crucial properties, there 
is huge scope to augment its properties for effective con-
taminant sorption to reduce pollution [2]. Biochar could be 
treated with steam for physical modification, while it could 
be treated with acid/alkali for chemical modification [13, 
14]. Alternatively, biochar could be impinged with different 
materials such as metals, metal oxides, nanomaterials, or 
other waste materials to fabricate modified biochars [2, 10, 
11, 15]. These modifications could be performed before or 
after thermal treatment of biomass to improve the surface 
morphology, physico-chemical property, and contaminant 
removal efficiency (RE) of modified biochar [2, 14]. Previ-
ously, reviews have been published for modified biochars 
mostly focussing on their removal efficiencies for anionic 
contaminants [2, 16–19], but holistic studies on contaminant 
removal potential are limited. Therefore, the present review 
focuses on (i) describing the various types of modification 
of biochars which remove organic and inorganic contami-
nants; (ii) elaborating different methods used for fabrication 
of modified biochars prepared using various biomass materi-
als; (iii) providing a framework to understand the improve-
ment in physico-chemical properties of modified biochars 
prepared via different modification techniques; (iv) facili-
tating insights into the mechanistic aspects of contaminant 
removal by modified biochars; and (v) presenting different 
limitations, challenges, and research gaps to provide a direc-
tion to future research investigations.

Physical Modification

Physical modifications are performed after biochar produc-
tion by ball milling it or treating it with steam or heat or 
purged gas (Fig. 1; Table 1). Although physical modifica-
tions increase SA and porosity, they are not regarded to be 
highly effective in augmenting contaminant removal (espe-
cially anionic contaminants like As, F, nitrate, and phos-
phate), when compared to chemical modifications [20].

Steam‑Modified Biochar

For steam treatment, superheated steam is passed (at 
2.2–5 mL/min) through porous biochar at temperature range 

of 650–950 °C for 30–180 min [21, 22]. During the treat-
ment, oxygen from steam is added to active sites on surface, 
while hydrogen forms complexes. Steam treatment initiates 
devolatilisation and removes particles trapped during incom-
plete combustion, which enhances its porosity and SA [19]. 
Steam reacts with biochar, thereby converting fixed carbon 
and volatile matter into CO and  CO2 resulting in pore for-
mation [23]. Further, it oxidises the surface and increases 
O-containing functional groups (e.g. hydroxyl, carboxyl, 
carbonyl, phenol, and ether). Although steam is a weak oxi-
dant, it increases hydrophilicity of biochar, which augments 
electrostatic repulsion with anionic contaminants and elec-
trostatic attraction with cationic contaminants. Longer acti-
vation times enable larger contaminant removal. However, 
steam modification could be associated with limited increase 
in surface functional groups and repulsive forces between 
anions and surface, which could be disadvantageous [20, 
24–26]. Further, steam modification decreases aromaticity, 
polarity, and H/C, N/C, and O/C ratio, which makes it less 
preferable to other treatments. Steam treatment augmented 
the SA of aegle shell (wood apple)-based biochar from 2.3 to 
7.1  m2/g, while the biochar removed ibuprofen with 95% effi-
ciency [27]. Rajapaksha et al. [28] treated tea waste biochar 
with steam, which decreased its pH at 700 °C (from 11.05 to 
10.48), eventually enabling a higher removal of sulfamethaz-
ine. In another study, Rajapaksha et al. [22] modified Sicyos 
angulatus-based biochar with steam, where pH at 700 °C 
decreased from 12.32 to 11.72, eventually facilitating higher 
sulfamethazine removal (increased from 20.56 to 37.73 mg/g 
after steam treatment) (Table 2). Lou et al. [25] modified pine 
sawdust with steam to remove phosphate from aqueous solu-
tions, where steam treatment decreased pH from 4.92 to 4.82 
at 300 °C and from 8.16 to 7.46 at 700 °C, which influences 
surface charge and Qe of biochar.

Purged Gas‑Modified Biochar

Biochar is modified by purging  CO2/NH3 gas, primarily to 
improve its SA and Qe. While  CO2 modification enhances 
SA and porosity (especially microporosity),  NH3 modifica-
tion enriches surface with N-containing compounds.  CO2 
purging also increases the activated sites on biochar surface. 
 CO2 modification increased the SA from 56.9 to 755.3  m2/g 
in corncob-based biochar [29].  CO2 reacts with C of bio-
char to form CO, resulting in formation of a microporous 
structure, which increases its sorption capacity [23]. The 
increase in SA, porosity, complexation (between graphitic-N 
and surface functional groups), and cation-π bonding ena-
bles contaminant sorption [30, 31]. Soybean straw–derived 
biochar was modified with both  CO2 and  NH3 to simulta-
neously improve the SA (up to 627.15  m2/g) and nitrogen 
functional groups on surface, which eventually augments 
sorption capacity [32].
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Heat‑Modified Biochar

During heat treatment, biochar is exposed to high tempera-
tures (800–900 °C) for 1–2 h mainly to furnish basic surface 
functional groups to increase hydrocarbon sorption [33, 34]. 
Removal of hydrophilic groups (such as ether- or carbonyl 
groups) during heat treatment enhances surface hydropho-
bicity. Heat-treated biochars could be exposed to gases (such 
as hydrogen or argon) to form basic functional groups such 
as pyrone-type groups (arising from hydrophilic ether or 
carbonyl groups). Moreover, exposure to hydrogen deacti-
vates active sites on surface by forming C–H bonds which 
stabilises and enhances basicity of biochar [33, 34].

Ball‑Milled Biochar

Ball milling is a common technique to augment surface area 
of any substance by utilising the kinetic energy of moving 
balls of the instrument to break, grind, mix, and fabricate 
a material with physical and chemical modifications and 

an improved surface [35, 36]. It avoids the use of chemi-
cals and is less energy intensive than conventional tech-
nologies such as microwave pyrolysis and laser ablation 
[37]. Ball milling reduces the particle size, increases the 
pore volume, increases the oxygen-containing surface func-
tional groups, and modifies the surface chemical compo-
sition, which eventually augments the adsorption capacity 
of biochar [38]. The increase in pore volume exposes the 
graphitic structure of biochar, which enhances the cation-π 
action [35]. Spheres of dense ceramic materials such as 
yttria-stabilised zirconia could be utilised as grinding media, 
due to its chemical inertness, low wear and tear rate, and 
high reusability [39]. Salt-assisted milling is another ball 
milling method that utilises sodium chloride crystals along 
with yttria-stabilised zirconia, where salt crystals in con-
junction with biochar is broken down into smaller pieces 
during milling; salt is later removed by dispersing the milled 
biochar in an aqueous media followed by centrifugation so 
that the salt remains in top layer [39]. Bamboo, bagasse, 
and hickory chip-based biochars were ball milled and high 

Fig. 1  Biochar modifications and their effects
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Table 2  Properties of modified biochars

Modification Feedstock; pyrolysis (°C) pH 
(unmodified 
biochar)

pH 
(modified 
biochar)

C (%) Surface area (m2/g) Reference

Steam Mung bean husk; 550 °C NA NA NA 405 [21]
Steam Tea waste; 300 °C 7.9 8.6 71.5 1.5 [28]
Steam Tea waste; 700 °C 11.1 10.5 82.4 576.1 [28]
Steam Sicyos angulatus; 300 °C 10.9 11.1 68.1 1.2 [22]
Steam Sicyos angulatus; 700 °C 12.3 11.7 50.6 7.1 [22]
Steam Pine sawdust; 300 °C 4.9 4.8 64.0  < 1 [25]
Steam Pine sawdust; 550 °C 8.2 7.5 69.6 397.1 [25]
CO2 Cotton stalk; 600 °C NA NA NA 351.5 [30]
NH3 Cotton stalk; 600 °C NA NA NA 251.9 [30]
NH3 Corn straw; 800 °C NA NA 77.6 418.7 [31]
Heat (800 °C) Bamboo; 550 °C NA NA 70.7 494.2 [33]
KOH Rice husk; NA NA NA NA 1818.45 [62]
KOH Cotton stalk; 400 °C NA NA NA 60.3 [66]
NaOH Rice straw; 400 °C NA NA 69.17 141.6 [68]
NaOH Poplar wood; 400 °C NA NA 68.06 41.0 [68]
NaOH Bamboo; 400 °C NA NA 80.32 8.3 [68]
H3PO4 Cotton stalk; 400 °C NA NA NA 47.3 [66]
HNO3 Cactus; 600 °C NA NA NA  < 5 [83]
HCl Reed; 300 °C 6.7 3.5 71.1 2.93 [84]
HCl Reed; 400 °C 7.1 3.8 79.2 4.26 [84]
HCl Reed; 500 °C 7.6 3.9 83.9 11.85 [84]
HCl Reed; 600 °C 8.5 4.4 87.8 88.35 [84]
Acetic acid Eucalyptus saw dust;120 °C NA NA 45.28 1.21 [59]
Tartaric acid Eucalyptus saw dust; 120 °C NA NA 44.66 1.28 [59]
Citric acid Eucalyptus saw dust; 120 °C NA NA 45.28 0.69 [59]
Fe Wheat husk; 600 °C 8.3 7.0 36.84 339 [146]
Fe Rice husk; 600 °C 6.8 5.5 38.39 300 [146]
Fe Banana pith; 400 °C NA NA 49.40 31.59 [152]
Fe, KOH Guadua chacoensis; 700 °C 4.0 10.9 10.62 482.4 [153]
Fe Coconut, pinenut, walnut shells; 

500 °C
NA NA NA 365 [43]

Al Macro-algae; 450 °C NA NA NA 45.46 [166]
Al Rice straw; 600 °C NA NA NA 186.95 [169]
Mn Rice husk; 600 °C 10.89 6.72 40.8 42.9 [106]
Mn Swine manure; 400 °C NA NA NA 70.91 [170]
Mn Corn straw; NA 10.0 11.0 73.4 80.3 [110]
Bi, HCl Wheat straw; 400 °C NA NA NA 87.42 [143]
Bi, HCl Wheat straw; 500 °C NA NA NA 190.40 [143]
Bi, HCl Wheat straw; 600 °C NA NA NA 106.70 [143]
Zn Pig manure; 700 °C NA 7.0 34.14 516.67 [113]
Zn Sugarcane bagasse; 450 °C NA 1.9 78.6 21.28 [117]
Zn Crawfish shell; 450 °C NA NA 22.83 134.19 [174]
La Typha latifolia; 500 °C NA 5.6 42.31 8.11 [120]
La Sodium alginate fibre; 900 °C NA NA 63.4 177.41 [179]
Mg, electro Macroalgae; 600 °C NA NA NA 56.42 [180]
Mg, electro Laminaria japonica; 600 °C NA 6.0 NA 386.5 [193]
Mg Cupressus sempervirens; 600 °C 5.7 9.7 NA 35.0 [181]
Co Bamboo; NA 5.8 3.1 NA 263 [126]
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removal of sulfamethoxazole (100.3 mg/g) and sulfapyridine 
(57.9 mg/g) was observed [40].

Chemical Modification

During chemical treatment, alkali/acid is mixed with feed-
stock/biochar to enhance properties like porosity, SA, and 
surface functionality (Fig. 1; Table 3) [20, 45]. Exposure to 
acidic/alkaline solution oxidises the surface and influences 
ion exchange, Qe, and hydrophobic/hydrophilic properties 
[1].

Alkali‑Modified Biochar

Typically, feedstock/biochar is soaked/suspended in dif-
ferent concentrations of alkaline reagents, such as sodium 
hydroxide (NaOH), potassium hydroxide (KOH), and cal-
cium hydroxide (Ca(OH)2), at 30–100 °C for 6–24 h (alkali 
strengths varying from 0.1 to 10 M), where base:biochar 
ratio is crucial in synthesising high-performance biochars 

[16, 46]. Alkaline treatments separate ashes and introduce 
O-containing groups, like –OH, on the surface and augment 
porosity and SA, which enhances RE [19]. Alkaline modi-
fications facilitate higher H/C (stability) and N/C (basic-
ity) and lower O/C (hydrophilicity), compared to acidic 
modifications. High N/C suggests greater N-containing 
surface groups, which increases basic properties of modi-
fied biochars [19]. NaOH modifications increase SA and 
porosity more than other alkaline modifications [16]. How-
ever, decrease in SA has also been reported in previous 
studies, where KOH modification decreased SA of hydro-
char (0.4–1.8  m2/g compared to 4.4–9.1  m2/g of unmodi-
fied hydrochar), but significantly increased Cd Qe from 
13.92–14.52 mg/g in unmodified to 30.40–40.78 mg/g in 
KOH modified [47]. KOH-modified bamboo/poplar-based 
biochar showed improved surface area (1555  m2/g) and 
porosity (0.2950  cm3/g), which facilitated sites for load-
ing iron particles and removing Cr (Qe = 25.68 mg/g) [48]. 
Alkaline modification (NaOH) was more effective in adsorp-
tion of Ni (6.20 mg/g), Pb (44.64 mg/g), and Cd (0.65 mg/g) 
in comparison to acid modification (sulphuric and oxalic 

*CNT carbon nanotubes

Table 2  (continued)

Modification Feedstock; pyrolysis (°C) pH 
(unmodified 
biochar)

pH 
(modified 
biochar)

C (%) Surface area (m2/g) Reference

Ni Bamboo; 500 °C 5.75 4.72 NA 263 [127]
Ca Laminaria japonica; 200 °C NA 8.31 40.81 2.39 [131]
Ca Laminaria japonica; 400 °C NA 11.40 46.50 17.72 [131]
Ca Laminaria japonica; 600 °C NA 11.62 53.25 79.95 [131]
Ca Laminaria japonica; 800 °C NA 12.59 60.51 45.46 [131]
Mg Conocarpus green waste; 600 °C NA NA NA 391.8 [137]
Fe Conocarpus green waste; 600 °C NA NA NA 260.5 [137]
Fe–Mn–La Corn straw; 600 °C 8.93 6.83 54.8 12.2 [185]
Fe–Mn–Ce Corn straw; 600 °C 8.93 9.64 28.8 46.6 [186]
Fe, microwave Walnut shells; NA NA NA NA 418 [241]
Microwave Wheat straw; 950 °C NA NA 26.4 119.3 [191]
Ti, ultrasonic Corncob; 550 °C NA NA 81.79 450.53 [195]
Ozone Pine; 400 °C 7.30 5.28 71.31 NA [199]
Graphene oxide Water hyacinth; 300 °C NA NA 66.79 25.89 [242]
CNT, sodium 

dodecylbenzenesulfonate
Hickory; 600 °C 7.25 6.74 77.69 359 [203]

CNT, sodium 
dodecylbenzenesulfonate

Bagasse; 600 °C 6.94 6.72 84.3 336 [203]

Chitosan Eichhornia crassipes; 600 °C NA NA 71.24 90.78 [204]
Clay Bamboo; 300 °C 5.3 6.6 NA 9.84 [247]
Clay Bamboo; 400 °C 5.3 7.1 76.05 19.93 [247]
Clay Bamboo; 500 °C 5.3 7.6 NA 18.05 [247]
Clay Cassava peel; 500 °C NA 5.4 NA 402 [248]
H2O2 Pinewood; 400 °C 7.16 5.6 71.4 NA [251]
Thioglycolic acid Sugarcane bagasse; 600 °C NA 4.7 NA 5.69 ×  103 [220]
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1 3

acid) [49]. Similarly, alkali modification in corn stalk-based 
biochar improved enrofloxacin removal more (54.08%; 
58.29 mg/g) than acid modification (27.80%; 41.91 mg/g), 
primarily assisted by 14 times increase in SA in alkali modi-
fication (10 times rise in acid modification) [50].

Acid‑Modified Biochar

Generally, feedstock/biochar is soaked/suspended in acidic 
reagents (with ratios up to 1:10 w:v ratio), like hydrochloric 
acid (HCl), sulphuric acid  (H2SO4), and weak acids (e.g., cit-
ric acid) at 30–120 °C for several hours/days (acid strengths 
varying from 0.1 to 2.5 M) [16, 51–53]. Acid treatments 
remove residues of metals and impurities, and increase 
stability, regeneration, and RE by augmenting SA, micro-
porosity, electrostatic interactions, and surface functional-
ity (hydroxylic, carboxylic, carbonylic, phenolic, lactonic, 
and ketonic).  H2SO4 and  H3PO4 activation increased SA 
by 80% and microporosity by 263% in pork bone–derived 
biochar [54]. Acid-modification augments SA less than 
other modifications due to the breakdown of porous struc-
tures and expansion of micro-pores into meso-/macropores. 
Sahin et al. [55] compared the effect of acid treatments on 
poultry manure–derived biochar before and after pyrolysis 
conditions. While in pre-treatment, biochar pH decreased 
from 9.38 to 8.57 and 9.14 for  H3PO4 and  HNO3 treatments, 
respectively, in post-treatment biochar pH decreased to 5.39 
and 4.46 for  H3PO4 and  HNO3 treatments, respectively, 
suggesting that acid treatment after pyrolysis significantly 
decreased the pH which could be beneficial for alkaline cal-
careous soils (Table 2). Yakout et al. [56] observed decrease 
in SA from 71.4 to 56.9  m2/g in rice straw–based biochar 
after  H2SO4 modification. Acid treatment could enhance 
density of bio-sorbents, which could diminish its Qe [1]. 
The diminished C content and enhanced O content and 
acidic surface functional groups increase H/C and O/C of 
acid-modified biochars [33, 57]. Biochars treated with 30% 
 H3PO4 (among 0–50%) showed best sorption results, sug-
gesting importance of its optimisation [58]. Spent sorbents 
could be reused by using 0.1 N HCl for removing contami-
nants [59]. Rice husk–derived biochar-supported sulphidated 
nano-zerovalent iron was pre-treated with HCl, NaOH, and 
 H2O2 to improve nitrobenzene reduction performance and 
observed HCl-modified composite to be the most effective 
sorbent (100% removal at 200 mg/L in 60 min), probably 
assisted by negative surface charge, increased acidic func-
tional groups, high surface area, and enhanced electron 
transfer rate [60]. Acid and alkaline treatments were com-
pared by Mahdi et al. [61] using date seed–based biochar 
(550 °C pyrolysed), who reported acid pre-treatment to be 
most effective in greater removal of contaminants (Qe of 
0.91 mmol/g, 0.71 mmol/g, and 0.69 mmol/g for Pb, Cu, 
and Ni, respectively).

Impregnated Biochars

Generally, chemical and physical treatments facilitate 
biochar with low sorption capacities. Correspondingly, 
biochar composites have been prepared with enhanced 
properties including new functional groups and high  
SA [17]. Typically, their preparation involves pre-/post-
processing stages including immersion of feedstock/bio-
char into solutions of metal oxides or metals (e.g., Fe, Al, 
Mn, Bi, Zn, and others) (Fig. 1; Table 4), which depos-
its metals in pores and on surface of biochar, provides 
positive charge, and enhances RE [2]. Generally, these 
impregnations improve porosity, SA, surface functional-
ity, and H/C, O/C, and N/C ratios [86]. The increase in 
surface area result from the accumulation of minerals on 
surface [87]. Metal impregnation could be combined with 
physical/chemical modifications to harness additional 
benefits of multiple treatments for improving the con-
taminant removal efficiency, as demonstrated in several 
previous studies (Table 4).

Fe‑Modified Biochar

Iron modified biochars are the most studied biochars, 
primarily due to their magnetic properties (easy recol-
lection) and the strong interaction between Fe and sur-
face functional groups. Fe modification is achieved by 
soaking biomass/biochar in  FeCl3, Fe(NO3)3,  FeSO4, or 
 Fe3O4. Pre-treatment is more effective in removing con-
taminants than post-treatment (due to Fe transformation 
into more complex crystalline phases) [88]. Pre-treatment 
with  HNO3 helps increase hydrophilicity, aiding in verti-
cal growth of iron oxide on the surface and shortening 
the distance needed for contaminant diffusion in biochar, 
thereby improving its Qe [89]. Qe also depends on the type 
and/or structure of iron oxide (Qe-amorphous > crystal-
line) [90]. Fe modification at high pH and high pyroly-
sis temperature favours higher Qe [91]. Iron oxide is 
converted to zero-valent iron (ZVI) during pyrolysis/
modification  (Fe2O3 →  Fe3O4 → FeO → Fe°), affecting 
biochar’s properties and Qe [92]. Fe-modified biochar 
oxidises As(III) to As(V), and the removal is assisted by 
precipitation, surface sorption, electrostatic interaction, 
and inner-sphere complexation [93]. A rise in magnetic 
property of biochar could decrease its Qe. Anyika et al. 
[94] reported  FeCl3-modified palm kernel shell-derived 
biochar with significant magnetic property (saturation 
magnetisation—49.5 emu/g) but low contaminant sorp-
tion (Qe = 0.054 mg/g), while Lunge et al. [95] suggested 
 FeCl3-modified tea waste–derived biochar, with low sat-
uration magnetisation (6.9 emu/g) and high Qe. Never-
theless, Dhoble et al. [96] fabricated Fe(NO3)3-modified 

528 Current Pollution Reports (2022) 8:519–555



1 3

Ta
bl

e 
4 

 M
et

al
 im

pr
eg

na
tio

n

Fe
ed

st
oc

k;
 tr

ea
tm

en
t

Ta
rg

et
 p

ol
lu

ta
nt

A
ds

or
pt

io
n 

ca
pa

ci
ty

 o
r 

re
m

ov
al

 e
ffi

ci
en

cy
 

(R
E)

M
ec

ha
ni

sm
 a

nd
 o

th
er

 c
om

m
en

ts
R

ef
er

en
ce

W
he

at
, r

ic
e 

hu
sk

; c
o-

py
ro

ly
si

s w
ith

  F
eC

l 3 
(6

00
 °C

)
A

s
10

0%
Fe

3O
4 e

na
bl

ed
 A

s r
em

ov
al

; m
on

o-
de

nt
at

e,
 b

i- 
de

nt
at

e 
su

rfa
ce

 c
om

pl
ex

es
[1

46
]

R
ic

e 
str

aw
;  F

eC
l 3

A
s(

V
)

 >
 46

%
Fe

 tr
an

sf
or

m
at

io
n 

in
to

 c
om

pl
ex

 c
ry

st
al

lin
e 

ph
as

es
[8

8]
C

d(
II

)
 >

 50
%

R
ic

e 
hu

sk
, m

un
ic

ip
al

 so
lid

 w
as

te
;  F

eC
l 3

A
s

58
–9

5%
El

ec
tro

st
at

ic
 in

te
ra

ct
io

ns
, c

o-
pr

ec
ip

ita
tio

n 
(b

et
w

ee
n 

A
s a

nd
 F

e(
O

H
) 3

)
[1

47
]

C
r

14
–8

9%
B

am
bo

o;
 c

hi
to

sa
n,

 Z
V

I
Pb

93
%

Ch
ito

sa
n 

(w
ith

ou
t Z

V
I) 

en
ha

nc
ed

 am
in

e g
ro

up
s 

w
hi

ch
 es

ca
la

te
d 

 Pb
2+

,  C
r6+

, m
et

hy
le

ne
 b

lu
e 

re
m

ov
al

 (a
ss

ist
ed

 b
y 

co
m

pl
ex

at
io

n,
 re

du
ct

io
n,

 
su

rfa
ce

 ad
so

rp
tio

n)
 b

ut
 in

hi
bi

te
d 

an
io

n 
re

m
ov

al
; 

ZV
I i

nc
re

as
ed

 el
ec

tro
sta

tic
 at

tra
ct

io
n,

 an
io

ni
c 

so
rp

tio
n

[1
48

]
C

r
40

%
A

s
95

%
P

96
%

M
et

hy
le

ne
 b

lu
e

68
%

W
at

er
 h

ya
ci

nt
h;

  F
eC

l 2,
  F

eC
l 3 

(2
50

, 4
00

 °C
 

py
ro

ly
se

d)
A

s(
V

)
 >

 90
%

; 7
.4

1 
m

g/
g

En
ha

nc
ed

 in
te

ra
ct

io
n 

be
tw

ee
n 

 O
H

−
 a

nd
 A

s
[9

1]

O
ak

 w
oo

d,
 b

ar
k 

(fa
st 

py
ro

ly
si

s 4
00

–4
50

 °C
); 

 Fe
3+

/F
e2+

, N
aO

H
C

d,
 P

b
O

ak
 b

ar
k 

(P
b—

30
.2

 m
g/

g;
 C

d—
7.

4 
m

g/
g)

; 
oa

k 
w

oo
d 

(P
b—

10
.1

3 
m

g/
g;

 C
d—

2.
87

 m
g/

g)
El

ec
tro

st
at

ic
 a

ttr
ac

tio
n;

 a
bu

nd
an

t f
un

ct
io

na
l 

gr
ou

ps
; h

ig
h 

SA
[1

45
]

B
ag

as
se

, b
am

bo
o,

 ty
re

; F
e(

O
H

) 3
Pb

86
.6

%
, 9

3.
8%

, 9
4.

9%
 fo

r b
am

bo
o,

 b
ag

as
se

, 
ty

re
En

ric
he

d 
fu

nc
tio

na
l g

ro
up

s; 
m

et
al

 p
re

ci
pi

ta
tio

n 
w

ith
 ca

rb
on

at
es

, p
ho

sp
ha

te
s; 

po
sit

iv
ely

 ch
ar

ge
d 

pa
rti

cl
es

 (s
ilv

ite
, p

er
ic

la
se

, d
ol

om
ite

, c
al

ci
te

) i
n 

m
in

er
al

 en
ha

nc
e p

ho
sp

ha
te

 re
m

ov
al

[1
49

]

PO
43−

71
.7

%
 fo

r b
ag

as
se

, 6
1.

5%
 fo

r b
am

bo
o

C
u

70
.4

%
, 7

0.
1%

, 7
0.

3%
 fo

r b
ag

as
se

, b
am

bo
o,

 
ty

re
H

g
77

%
, 6

6%
, 8

3.
4%

 fo
r b

ag
as

se
, b

am
bo

o,
 ty

re
H

ic
ko

ry
 c

hi
ps

 (6
00

 °C
 p

yr
ol

ys
ed

); 
Fe

(N
O

3)
3

A
s

2.
16

 m
g/

g
C

he
m

is
or

pt
io

n,
 O

-c
on

ta
in

in
g 

gr
ou

ps
[1

50
]

C
or

n 
co

b;
 F

e(
N

O
3)

3
A

s
2.

26
 m

g/
g

En
ha

nc
ed

 S
A

, P
V

[1
51

]
Eu

0.
98

 m
g/

g
G

ra
pe

 se
ed

; p
re

-tr
ea

te
d 

 (H
N

O
3)

, p
os

t-t
re

at
ed

 
(F

e(
N

O
3)

3)
A

s
34

.9
 m

g/
g

En
ha

nc
ed

 S
A

, P
V,

 Q
e 

(~
 7 

tim
es

)
[1

3]

B
an

an
a 

pi
th

; F
e(

N
O

3)
3

A
s(

V
)

10
0%

Fe
 m

od
ifi

ca
tio

n,
 e

ig
ht

 ti
m

es
 la

rg
er

 S
A

 (3
1.

59
 

 m
2 /g

)
[1

52
]

G
ua

du
a 

ch
ac

oe
ns

is
 (b

am
bo

o)
; K

O
H

,  F
eC

l 3,
 

 F e
SO

4

A
s(

V
)

10
0%

 (8
68

 m
g/

g)
St

ro
ng

 a
ffi

ni
ty

 w
ith

 F
e

[1
53

]

C
oc

on
ut

, p
in

en
ut

, w
al

nu
t s

he
lls

;  F
e 3

O
4 b

al
l 

m
ill

in
g

C
ar

ba
m

az
ep

in
e

62
.7

 m
g/

g
A

ffi
ni

ty
 b

et
w

ee
n 

 Fe
3O

4 a
nd

 –
CO

N
H

2, 
–O

H
, 

–N
(C

H
3)

2; 
hy

dr
op

ho
bi

c 
in

te
ra

ct
io

n,
 π

-π
 

in
te

ra
ct

io
n

[4
3]

Te
tra

cy
cl

in
e

94
.2

 m
g/

g

B
am

bo
o;

  F
e 3

O
4

Po
ly

cy
cl

ic
 a

ro
m

at
ic

 h
yd

ro
ca

rb
on

s
86

%
In

cr
ea

se
d 

de
gr

ad
at

io
n 

effi
ci

en
cy

 d
ue

 to
 re

do
x 

co
up

lin
g 

 (F
e2+

–F
e3+

), 
el

ec
tro

n 
tra

ns
fe

r o
f  

fu
nc

tio
na

l g
ro

up
s (

pr
om

ot
es

 su
lp

ha
te

 
ge

ne
ra

tio
n)

[1
54

]

C
or

n 
str

aw
; F

e 
tre

at
ed

P
 >

 99
%

En
ab

le
d 

by
  F

e 3
O

4
[1

55
]

529Current Pollution Reports (2022) 8:519–555



1 3

Ta
bl

e 
4 

 (c
on

tin
ue

d)

Fe
ed

st
oc

k;
 tr

ea
tm

en
t

Ta
rg

et
 p

ol
lu

ta
nt

A
ds

or
pt

io
n 

ca
pa

ci
ty

 o
r 

re
m

ov
al

 e
ffi

ci
en

cy
 

(R
E)

M
ec

ha
ni

sm
 a

nd
 o

th
er

 c
om

m
en

ts
R

ef
er

en
ce

Pi
ne

 b
ar

k;
  C

oF
e 2

O
4

Pb
2+

3.
3 

m
g/

g
C

he
m

is
or

pt
io

n
[1

56
]

C
d2+

2.
9 

m
g/

g
Pi

ne
w

oo
d;

 h
em

at
ite

A
s

42
9 

m
g/

kg
El

ec
tro

st
at

ic
 in

te
ra

ct
io

ns
 w

ith
 su

rfa
ce

 γ
-F

e 2
O

3
[1

57
]

W
oo

d 
ch

ip
s, 

co
co

nu
t s

he
lls

;  F
eS

O
4.7

H
2O

, 
 Fe

C
l 3.

6H
2O

  (F
e 2

O
3 i

m
pr

eg
na

te
d)

Pb
17

,6
98

 m
g/

kg
H

ig
h 

SA
[1

58
]

C
u

22
06

 m
g/

kg
Ph

en
ol

20
,6

95
 m

g/
kg

Em
pt

y 
fr

ui
t b

un
ch

, r
ic

e 
hu

sk
; F

e(
II

I)
A

s(
II

I)
, A

s(
V

)
em

pt
y 

fr
ui

t b
un

ch
 (3

1.
4 

m
g/

g 
fo

r A
s(

II
I)

, 
15

.2
 m

g/
g 

fo
r A

s(
V

))
; r

ic
e 

hu
sk

 (3
0.

7 
m

g/
g 

fo
r A

s(
II

I)
, 1

6.
0 

m
g/

g 
fo

r A
s(

V
))

O
-c

on
ta

in
in

g 
gr

ou
ps

, z
et

a 
po

te
nt

ia
l, 

O
/C

 ra
tio

, 
po

la
rit

y 
in

de
x 

[(
O

 +
 N

)/C
]

[1
59

]

Em
pt

y 
fr

ui
t b

un
ch

;  F
eC

l 3:
bi

om
as

s =
 1:

2;
 

m
ic

ro
w

av
e 

he
at

in
g 

(2
0 

m
in

 ra
di

at
io

n 
tim

e,
 

90
0 

W
 m

ic
ro

w
av

e 
po

w
er

)

M
et

hy
le

ne
 b

lu
e

99
.9

%
 (2

65
 m

g/
g)

H
ig

h 
SA

 (8
90

  m
2 /g

)
[1

60
]

C
ot

to
n 

st
al

k;
 fe

rr
ic

 o
xi

de
s

Ph
os

ph
at

e
0.

96
3 

m
g/

g
In

cr
ea

se
d 

SA
, P

V
[1

02
]

C
ot

to
nw

oo
d 

(6
00

 °C
 p

yr
ol

ys
ed

); 
 Fe

C
l 3/

or
 

he
m

at
ite

A
s

35
25

 m
g/

kg
El

ec
tro

st
at

ic
 in

te
ra

ct
io

ns
[1

61
]

Pa
pe

r m
ill

 sl
ud

ge
; m

ag
ne

tit
e 

ric
h;

 p
yr

ol
ys

ed
 

w
ith

  C
O

2

A
s

23
.1

 m
g/

g
H

ig
h 

Fe
O

,  F
e 3

O
4, 

 C
aC

O
3 c

on
ce

nt
ra

tio
ns

[1
62

]
C

d
41

.6
 m

g/
g

Pa
pe

r m
ill

 sl
ud

ge
; N

i-Z
V

I
Pe

nt
ac

hl
or

op
he

no
l

97
.5

%
D

ec
hl

or
in

at
io

n,
 a

ds
or

pt
io

n;
 b

io
-s

or
be

nt
s u

se
d 

fo
r b

ric
k 

pr
ep

ar
at

io
n 

(h
ig

h 
co

m
pr

es
siv

e 
str

en
gt

h,
 m

in
im

al
 le

ac
hi

ng
 o

f s
or

be
d 

co
nt

am
in

an
ts)

[1
63

]

R
ic

e 
hu

ll;
 n

an
o-

ZV
I

Tr
ic

hl
or

oe
th

yl
en

e
99

.4
%

O
-c

on
ta

in
in

g 
gr

ou
ps

, l
ar

ge
 S

A
[1

64
]

M
ac

ro
-a

lg
ae

;  F
e 3

O
4 (

el
ec

tro
-m

ag
ne

tis
at

io
n)

A
ci

d 
or

an
ge

38
2.

01
 m

g/
g

Im
pr

ov
ed

 p
or

os
ity

, S
A

 (3
37

  m
2 /g

), 
m

ag
ne

tic
 

pr
op

er
tie

s
[1

65
]

M
ac

ro
-a

lg
ae

; s
tir

re
d 

in
 A

l e
le

ct
ro

de
-b

as
ed

 
el

ec
tro

ch
em

ic
al

 tr
ea

tm
en

t (
45

0 
°C

 p
yr

ol
ys

ed
)

Ph
os

ph
at

e
31

.2
8 

m
g/

g
N

an
o-

A
l c

ry
st

al
s (

be
oh

em
ite

, A
lO

O
H

) a
ss

ist
s 

re
m

ov
al

[1
66

]

C
ot

to
nw

oo
d;

  A
lC

l 3 
(6

00
 °C

 p
yr

ol
ys

ed
)

A
s

17
.4

 m
g/

g
A

lO
O

H
 n

an
oc

om
po

si
te

 h
as

 la
rg

er
 S

A
[1

67
]

C
ot

to
nw

oo
d;

  A
lC

l 3 
(6

00
 °C

 p
yr

ol
ys

ed
)

R
ic

e,
 p

ea
nu

t, 
so

yb
ea

n;
  A

lC
l 3

M
et

hy
le

ne
 b

lu
e

85
.0

 m
g/

g
A

lO
O

H
 n

an
oc

om
po

si
te

 h
as

 la
rg

er
 S

A
Po

si
tiv

el
y 

ch
ar

ge
d 

su
rfa

ce
, i

nc
re

as
ed

 S
A

[1
67

]
[1

68
]

Ph
os

ph
at

e
13

5.
0 

m
g/

g
A

s(
V

)
44

5–
66

7 
m

m
ol

/k
g

R
ic

e 
str

aw
s;

 A
l-r

ic
h 

re
d-

m
ud

 m
ix

ed
 (6

00
 °C

 
py

ro
ly

se
d)

A
s(

V
)

5.
92

 m
g/

g
Su

rfa
ce

 c
om

pl
ex

at
io

n,
 e

le
ct

ro
sta

tic
 in

te
ra

ct
io

n 
be

tw
ee

n 
A

s a
nd

 ir
on

 o
xi

de
s (

he
m

at
ite

, 
m

ag
ne

tit
e)

, a
lu

m
in

iu
m

 o
xi

de
s (

gi
bb

sit
e)

[1
69

]

R
ic

e 
hu

sk
; b

irn
es

si
te

-lo
ad

ed
  (K

M
nO

4 
pr

ec
ip

ita
tio

n)
A

s(
II

I)
3.

54
 m

g/
g

G
re

at
er

 v
ac

an
t s

ite
s; 

sy
ne

rg
ist

ic
 re

ac
tio

ns
 

be
tw

ee
n 

ca
tio

ns
 an

d 
an

io
ns

; h
ig

h 
co

-a
ds

or
pt

io
n 

ab
ili

ty
;  C

d 3
(A

sO
4) 2

 p
re

ci
pi

ta
te

 fo
rm

at
io

n;
 

co
m

pl
ex

at
io

n 
w

ith
 fu

nc
tio

na
l g

ro
up

s

[1
06

]

530 Current Pollution Reports (2022) 8:519–555



1 3

Ta
bl

e 
4 

 (c
on

tin
ue

d)

Fe
ed

st
oc

k;
 tr

ea
tm

en
t

Ta
rg

et
 p

ol
lu

ta
nt

A
ds

or
pt

io
n 

ca
pa

ci
ty

 o
r 

re
m

ov
al

 e
ffi

ci
en

cy
 

(R
E)

M
ec

ha
ni

sm
 a

nd
 o

th
er

 c
om

m
en

ts
R

ef
er

en
ce

R
ic

e 
hu

sk
; b

irn
es

si
te

-lo
ad

ed
  (K

M
nO

4 
pr

ec
ip

ita
tio

n)
Sw

in
e 

m
an

ur
e;

  M
nO

2

A
s(

V
)

2.
41

 m
g/

g
G

re
at

er
 v

ac
an

t s
ite

s; 
sy

ne
rg

ist
ic

 re
ac

tio
ns

 
be

tw
ee

n 
ca

tio
ns

 an
d 

an
io

ns
; h

ig
h 

co
-a

ds
or

pt
io

n 
ab

ili
ty

;  C
d 3

(A
sO

4) 2
 p

re
ci

pi
ta

te
 fo

rm
at

io
n;

 
co

m
pl

ex
at

io
n 

w
ith

 fu
nc

tio
na

l g
ro

up
s

El
ec

tro
st

at
ic

 in
te

ra
ct

io
n,

 io
n 

ex
ch

an
ge

; h
ig

h 
fu

nc
tio

na
l g

ro
up

s, 
PV

, S
A

[1
06

]
[1

70
]

C
d

9.
07

 m
g/

g

Pb
26

8.
0 

m
g/

g

Sw
in

e 
m

an
ur

e;
  M

nO
2

C
or

n 
str

aw
; n

an
o-

M
nO

2 (
vi

a 
 K

M
nO

4 r
ed

uc
tio

n 
by

 e
th

an
ol

)

C
d

45
.8

 m
g/

g
El

ec
tro

st
at

ic
 in

te
ra

ct
io

n,
 io

n 
ex

ch
an

ge
; h

ig
h 

fu
nc

tio
na

l g
ro

up
s, 

PV
, S

A
C

om
pl

ex
at

io
n 

(s
uc

h 
as

 C
O

O
–C

u,
 M

n–
O

–C
u)

[1
70

]
[1

10
]

C
u2+

14
2.

02
 m

g/
g

Pi
ne

 w
oo

d;
  M

nC
l 2.

4H
2O

, b
irn

es
si

te
A

s
0.

59
 m

g/
g 

fo
r  M

nC
l 2;

 0
.9

1 
m

g/
g 

fo
r b

irn
es

si
te

St
ro

ng
 a

ffi
ni

ty
 w

ith
 c

ry
st

al
s

[1
05

]
Pi

ne
 w

oo
d;

  M
nC

l 2.
4H

2O
, b

irn
es

si
te

H
ic

ko
ry

 w
oo

d;
  K

M
nO

4 (
60

0 
°C

 p
yr

ol
ys

ed
)

Pb
4.

91
 m

g/
g 

fo
r  M

nC
l 2;

 4
7.

05
 m

g/
g 

fo
r b

irn
es

sit
e

St
ro

ng
 a

ffi
ni

ty
 w

ith
 c

ry
st

al
s

M
nO

x u
ltr

afi
ne

 p
ar

tic
le

s a
ss

ist
s r

em
ov

al
; 

A
ug

m
en

te
d 

SA
 (f

ro
m

 1
01

 to
 2

05
  m

2 /g
), 

su
rfa

ce
 O

-c
on

ta
in

in
g 

gr
ou

ps

[1
05

]
[8

7]
Pb

2 
+

15
3.

1 
m

g/
g

H
ic

ko
ry

 w
oo

d;
  K

M
nO

4 (
60

0 
°C

 p
yr

ol
ys

ed
)

Pi
ne

 w
oo

d;
  M

nO
2

C
u2+

34
.2

 m
g/

g
M

nO
x u

ltr
afi

ne
 p

ar
tic

le
s a

ss
ist

s r
em

ov
al

; 
A

ug
m

en
te

d 
SA

 (f
ro

m
 1

01
 to

 2
05

  m
2 /g

), 
su

rfa
ce

 O
-c

on
ta

in
in

g 
gr

ou
ps

Su
rfa

ce
 h

yd
ro

xy
l g

ro
up

s

[8
7]

[1
71

]
C

d2+
28

.1
 m

g/
g

Pb
2+

98
.9

%

C
or

n 
str

aw
;  K

M
nO

4
C

u2+
16

0 
m

g/
g

In
ne

r-s
ph

er
e 

co
m

pl
ex

at
io

n 
of

  M
nO

x, 
M

nO
H

 
w

ith
 O

-c
on

ta
in

in
g 

gr
ou

ps
[8

6]

G
ra

pe
 st

al
k;

  M
nO

2
Pb

99
%

Pr
ec

ip
ita

te
 fo

rm
at

io
n

[1
72

]
G

ra
pe

 st
al

k;
  M

nO
2

W
he

at
 st

ra
w

;  B
i 2O

3, 
H

C
l; 

so
ni

ca
tio

n;
 4

00
, 

50
0,

 6
00

 °C
 p

yr
ol

ys
ed

A
s

91
%

Pr
ec

ip
ita

te
 fo

rm
at

io
n

H
ig

h 
SA

, p
or

os
ity

; l
ig

an
d 

ex
ch

an
ge

 (L
ew

is
 

ac
id

–b
as

e 
re

ac
tio

n)
 b

et
w

ee
n 

B
i a

nd
 

co
nt

am
in

an
ts

[1
72

]
[1

43
]

C
d

51
%

C
r

12
.2

 m
g/

g

W
he

at
 st

ra
w

;  B
i 2O

3, 
H

C
l; 

so
ni

ca
tio

n;
 4

00
, 

50
0,

 6
00

 °C
 p

yr
ol

ys
ed

W
he

at
 st

ra
w

; B
i(N

O
3)

3.5
H

2O
, H

C
l 

(s
tir

re
d—

3 
h,

 8
0 

°C
), 

dr
ie

d 
(2

00
 °C

), 
py

ro
ly

se
d 

(4
00

, 5
00

, 6
00

 °C
); 

 N
aH

CO
3 

w
as

he
d

P
16

.2
 m

g/
g

H
ig

h 
SA

, p
or

os
ity

; l
ig

an
d 

ex
ch

an
ge

 (L
ew

is
 

ac
id

–b
as

e 
re

ac
tio

n)
 b

et
w

ee
n 

B
i a

nd
 

co
nt

am
in

an
ts

Re
du

ct
io

n 
of

 ir
on

 o
xi

de
s a

nd
 e

nh
an

ce
d 

Fe
(I

I)
 

co
nc

en
tra

tio
n;

 ri
se

 in
 F

e(
II

) t
ra

ns
po

rts
 A

s 
fro

m
 su

rfa
ce

 in
to

 p
or

es

[1
43

]
[1

73
]

A
s

12
5 

m
g/

g
A

s
22

.4
 m

g/
g

Pi
g 

m
an

ur
e;

 K
O

H
, N

aO
H

,  A
lC

l 3,
  F

eC
l 3,

  Z
nC

l 2
A

s
26

.6
 m

g/
g

M
ax

im
um

 Q
e 

fo
r  Z

nC
l 2-

m
od

ifi
ed

 b
io

ch
ar

 
(S

A
 =

 51
6.

7 
 m

2 /g
; p

or
os

ity
 =

 0.
24

  c
m

3 /g
); 

Zn
–O

H
 fo

rm
s Z

n–
O

–A
s(

II
I)

 b
y 

lig
an

d 
ex

ch
an

ge

[1
13

]

Su
ga

rc
an

e 
ba

ga
ss

e;
 Z

n
C

r(
V

I)
10

2.
66

 m
g/

g
fu

nc
tio

na
lis

ed
 w

ith
 C

O
O

– 
gr

ou
ps

; h
ig

h 
po

ro
si

ty
[1

17
]

C
ra

w
fis

h 
sh

el
l; 

 Zn
C

l 2;
 4

50
 °C

 p
yr

ol
ys

ed
A

s
17

.2
 m

g/
g

H
ig

h 
SA

, p
or

os
ity

 d
ue

 to
 fa

br
ic

at
io

n 
of

 Z
nO

 
na

no
pa

rti
cl

es
; e

nh
an

ce
d 

su
rfa

ce
 p

os
iti

ve
 

ch
ar

ge

[1
74

]

Pi
ne

 c
on

e;
 Z

n
A

s
10

.4
 μ

g/
g

M
et

al
–l

ig
an

d 
co

m
pl

ex
at

io
n

[1
75

]

531Current Pollution Reports (2022) 8:519–555



1 3

Ta
bl

e 
4 

 (c
on

tin
ue

d)

Fe
ed

st
oc

k;
 tr

ea
tm

en
t

Ta
rg

et
 p

ol
lu

ta
nt

A
ds

or
pt

io
n 

ca
pa

ci
ty

 o
r 

re
m

ov
al

 e
ffi

ci
en

cy
 

(R
E)

M
ec

ha
ni

sm
 a

nd
 o

th
er

 c
om

m
en

ts
R

ef
er

en
ce

Ri
ce

 h
ul

l; 
Zn

S 
na

no
cr

ys
ta

l; 
fe

rr
ic

 ac
et

yl
ac

et
on

at
e

Pb
2+

36
7.

65
 m

g/
g

C
he

m
is

or
pt

io
n

[1
76

]
Pi

ne
 c

on
e;

 Z
n(

N
O

3)
2

A
s

7 
μg

/g
B

ou
nd

ar
y 

la
ye

r d
iff

us
io

n,
 in

tra
-p

ar
tic

le
 

di
ffu

si
on

[1
77

]

O
pu

nt
ia

 fi
cu

s i
nd

ic
a;

  Z
nC

l 2
A

s
8 

m
g/

g
Pr

es
en

ce
 o

f z
in

c;
 su

rfa
ce

 a
ss

ist
an

ce
[1

78
]

Ty
ph

a 
la

tif
ol

ia
 (c

at
ta

il 
pl

an
t);

 L
a

Ph
os

ph
at

e
36

.0
6 

m
g/

g
El

ec
tro

st
at

ic
 a

ttr
ac

tio
n,

 li
ga

nd
 e

xc
ha

ng
e,

 
co

m
pl

ex
at

io
n

[1
20

]

So
di

um
 a

lg
in

at
e 

fib
re

 (w
et

 sp
in

ni
ng

 
te

ch
no

lo
gy

); 
La

C
r

10
4.

9 
m

g/
g

El
ec

tro
st

at
ic

 in
te

ra
ct

io
n,

 c
om

pl
ex

at
io

n,
 li

ga
nd

 
ex

ch
an

ge
[1

79
]

M
ac

ro
al

ga
e;

  M
gC

l 2 
di

pp
ed

; e
le

ct
ro

ch
em

ic
al

ly
 

m
od

ifi
ed

 (2
0 

V
; 1

0 
m

in
)

Ph
os

ph
at

e
62

0 
m

g/
g

Pe
ric

la
se

 (M
gO

) n
an

oc
om

po
si

te
[1

80
]

C
up

re
ss

us
 se

m
pe

rv
ire

ns
 (c

yp
re

ss
); 

 M
gC

l 2
Pb

20
2.

2 
m

g/
g

H
ig

h 
po

ro
si

ty
, S

A
, h

ig
h 

 pH
ZP

C
, a

pp
re

ci
ab

le
 

su
rfa

ce
 O

-c
on

ta
in

in
g 

fu
nc

tio
na

l g
ro

up
s, 

le
ad

 
pr

ec
ip

ita
te

 fo
rm

at
io

n 
(w

ith
 in

or
ga

ni
cs

)

[1
81

]

Pe
an

ut
 sh

el
ls

, p
in

e 
w

oo
ds

, c
ot

to
nw

oo
ds

, 
su

ga
rc

an
e 

ba
ga

ss
e,

 su
ga

r b
ee

t t
ai

lin
gs

 
(6

00
 °C

 p
yr

ol
ys

ed
); 

 M
gC

l 2.
H

2O

Ph
os

ph
at

e
83

5 
m

g/
g

G
re

at
er

 M
gO

 c
on

te
nt

 (8
.3

–2
6.

1%
)

[1
82

]

Pe
an

ut
 sh

el
ls

, p
in

e 
w

oo
ds

, c
ot

to
nw

oo
ds

, 
su

ga
rc

an
e 

ba
ga

ss
e,

 su
ga

r b
ee

t t
ai

lin
gs

 
(6

00
 °C

 p
yr

ol
ys

ed
); 

 M
gC

l 2.
H

2O
C

on
oc

ar
pu

s;
 M

g(
O

H
) 2

N
itr

at
e

95
 m

g/
g

G
re

at
er

 M
gO

 c
on

te
nt

 (8
.3

–2
6.

1%
)

M
or

e 
th

an
 u

nm
od

ifi
ed

 b
io

ch
ar

 (3
8.

3–
97

.6
%

), 
ze

ol
ite

/c
lin

op
til

ol
ite

 (1
2.

3–
95

.5
%

)

[1
82

]
[1

83
]

Fe
2+

84
.6

–9
9.

8%

W
he

at
 st

ra
w

; N
aO

H
,  M

gC
l 2 

(M
g(

O
H

) 2
 c

oa
te

d)
A

ni
on

ic
 fr

oz
en

 y
el

lo
w

 d
ye

16
7.

5 
m

g/
g

El
ec

tro
st

at
ic

 in
te

ra
ct

io
n;

 9
8%

 re
ge

ne
ra

tio
n

[1
84

]
B

am
bo

o;
  H

N
O

3,
 C

o(
N

O
3)

2; 
m

ic
ro

w
av

e 
irr

ad
ia

tio
n 

(C
o 

co
at

ed
)

C
r6+

45
.4

5 
m

g/
g

C
he

m
is

or
pt

io
n;

 h
ig

h 
PV

 (0
.2

7 
 cm

3 /g
), 

SA
 

(2
63

  m
2 /g

)
[1

26
]

C
am

el
lia

 o
le

ife
ra

 sh
el

ls
; C

o(
N

O
3)

2·6
H

2O
, 

G
d(

N
O

3)
3·6

H
2O

; H
C

l, 
et

ha
no

l
C

ip
ro

flo
xa

ci
n

44
.4

4 
m

g/
g

C
he

m
is

or
pt

io
n;

 h
ig

h 
SA

 (3
70

.3
73

7 
 m

2 /g
), 

PV
 

(0
.1

99
1 

 cm
3 /g

)
[1

44
]

C
am

el
lia

 o
le

ife
ra

 sh
el

ls
; C

o(
N

O
3)

2·6
H

2O
, 

G
d(

N
O

3)
3·6

H
2O

; H
C

l, 
et

ha
no

l
B

am
bo

o;
 N

i

Te
tra

cy
cl

in
e

11
9.

05
 m

g/
g

C
he

m
is

or
pt

io
n;

 h
ig

h 
SA

 (3
70

.3
73

7 
 m

2 /g
), 

PV
 

(0
.1

99
1 

 cm
3 /g

)
In

cr
ea

se
d 

SA
 (f

ro
m

 1
5.

5 
to

 2
63

  m
2 /g

), 
PV

 
(f

ro
m

 0
.1

05
 to

 0
.2

70
  c

m
3 /g

); 
de

cr
ea

se
d 

po
re

 
si

ze
 (f

ro
m

 1
5.

2 
to

 4
.1

1 
nm

)

[1
44

]
[1

27
]

Pb
2+

14
2.

7 
m

g/
g

Su
ga

rc
an

e 
ba

ga
ss

e;
  N

iC
l 2,

 N
-d

op
ed

 C
N

Ts
; 

K
O

H
C

r
82

4.
4 

m
g/

g
H

ig
h 

po
ro

si
ty

 (m
ic

ro
po

re
s, 

m
es

op
or

es
), 

su
rfa

ce
 p

re
ci

pi
ta

tio
n

[1
28

]

R
ic

e 
str

aw
; C

a-
m

od
ifi

ed
  (F

e 3
O

4, 
 C

aC
O

3)
A

s, 
C

d
6.

34
 m

g/
g 

fo
r A

s, 
10

.0
7 

m
g/

g 
fo

r C
d

El
ec

tro
st

at
ic

 in
te

ra
ct

io
n,

 su
rfa

ce
 c

om
pl

ex
at

io
n

[1
30

]
La

m
in

ar
ia

 ja
po

ni
ca

; a
lg

in
at

e,
  C

aC
l 2

Ph
os

ph
at

e
97

.0
2%

In
tra

-p
ar

tic
le

 d
iff

us
io

n,
 e

xt
er

na
l m

as
s t

ra
ns

fe
r 

m
ec

ha
ni

sm
s, 

hi
gh

 M
g/

P,
 C

a/
P 

ra
tio

s
[1

31
]

R
ic

e 
hu

sk
; C

aO
A

s
 >

 95
%

C
he

m
is

or
pt

io
n,

 m
et

al
 p

re
ci

pi
ta

tio
n,

 
el

ec
tro

st
at

ic
 in

te
ra

ct
io

n
[1

47
]

532 Current Pollution Reports (2022) 8:519–555



1 3

Ta
bl

e 
4 

 (c
on

tin
ue

d)

Fe
ed

st
oc

k;
 tr

ea
tm

en
t

Ta
rg

et
 p

ol
lu

ta
nt

A
ds

or
pt

io
n 

ca
pa

ci
ty

 o
r 

re
m

ov
al

 e
ffi

ci
en

cy
 

(R
E)

M
ec

ha
ni

sm
 a

nd
 o

th
er

 c
om

m
en

ts
R

ef
er

en
ce

R
ic

e 
hu

sk
; C

aO
C

on
oc

ar
pu

s g
re

en
 w

as
te

; M
gO

, i
ro

n 
ox

id
e

C
r

20
%

Ch
em

iso
rp

tio
n,

 m
et

al
 p

re
ci

pi
ta

tio
n,

 e
le

ct
ro

sta
tic

 
in

te
ra

ct
io

n
C

he
m

is
or

pt
io

n,
 c

om
pl

ex
at

io
n,

 h
ig

h 
SA

[1
47

]
[1

37
]

N
itr

at
e

89
%

 (4
5.

36
 m

m
ol

/ k
g)

Ri
ce

 h
us

k;
 p

ol
yd

op
am

in
e 

(h
yd

ro
ph

ili
c 

po
ly

m
er

), 
na

no
-Z

V
I

Te
tra

cy
cl

in
e

99
.1

6%
Im

pr
ov

ed
 h

yd
ro

ph
ili

ci
ty

; l
ar

ge
 S

A
[1

39
]

C
or

n 
str

aw
; F

e(
N

O
3)

3, 
 K

M
nO

4, 
 La

C
l 3

A
s

28
.4

 m
g/

g
Fe

–O
–A

s c
om

pl
ex

 fo
rm

at
io

n 
(a

id
ed

 b
y 

Fe
O

, 
 Fe

2O
3, 

Fe
O

O
H

), 
el

ec
tro

sta
tic

 a
ttr

ac
tio

n,
  

in
ne

r-s
ph

er
e 

La
–O

–A
s c

om
pl

ex
 fo

rm
at

io
n 

(e
na

bl
ed

 b
y 

La
–O

), 
 M

nO
2-

as
sis

te
d 

A
s 

ox
id

at
io

n

[1
85

]

C
or

n 
str

aw
; F

e(
N

O
3)

3, 
 K

M
nO

4, 
 C

e 2
(C

O
3)

3
A

s
8.

74
 m

g/
L

Su
rfa

ce
 so

rp
tio

n,
 A

s o
xi

da
tio

n;
 m

on
o-

de
nt

at
e 

an
d 

bi
-d

en
ta

te
 c

om
pl

ex
at

io
n 

w
ith

 –
O

H
[1

86
]

C
or

n 
ste

m
; F

e 
an

d 
M

n 
ox

id
es

A
s

8.
25

 m
g/

g
A

ss
ist

ed
 b

y 
Fe

–M
n 

ox
id

es
, c

he
m

is
or

pt
io

n,
 A

s 
in

te
ra

ct
io

n 
w

ith
 O

-r
ic

h 
fu

nc
tio

na
l g

ro
up

s
[1

87
]

R
ic

e 
hu

sk
;  K

M
nO

4, 
Fe

(S
O

4)
2, 

hu
m

ic
 a

ci
d

A
s

35
.5

 m
g/

g
C

ov
al

en
t b

on
ds

 in
vo

lv
ed

 in
 A

s s
or

pt
io

n;
 

ch
el

at
io

n,
 d

ep
os

iti
on

 in
vo

lv
ed

 in
 C

d 
re

m
ov

al
[1

88
]

R
ic

e 
hu

sk
;  K

M
nO

4, 
Fe

(S
O

4)
2, 

hu
m

ic
 a

ci
d

Pi
ne

 (P
in

us
 ta

ed
a)

; N
i/M

n 
ox

id
e 

(p
re

-p
yr

ol
ys

is)
; 

N
i/M

n-
la

ye
re

d 
do

ub
le

 h
yd

ro
xi

de
s (

po
st-

py
ro

ly
sis

)

C
d

67
.1

1 
m

g/
g

C
ov

al
en

t b
on

ds
 in

vo
lv

ed
 in

 A
s s

or
pt

io
n;

 
ch

el
at

io
n,

 d
ep

os
iti

on
 in

vo
lv

ed
 in

 C
d 

re
m

ov
al

A
ni

on
 e

xc
ha

ng
e,

 su
rfa

ce
 c

om
pl

ex
at

io
n;

 
po

st-
tre

at
m

en
t 1

2 
tim

es
 m

or
e 

eff
ec

tiv
e 

in
 

re
m

ov
al

; e
ffi

ci
en

t r
em

ov
al

 e
ve

n 
af

te
r 3

 
de

so
rp

tio
n 

cy
cl

es

[1
88

]
[1

89
]

A
s

0.
54

9 
an

d 
6.

52
 m

g/
g 

fo
r N

i/M
n 

ox
id

e 
an

d 
N

i/
M

n-
la

ye
re

d 
do

ub
le

 h
yd

ro
xi

de
s

*C
EC

 c
at

io
n 

ex
ch

an
ge

 c
ap

ac
ity

, p
H

zp
c p

H
 a

t p
oi

nt
 o

f z
er

o 
ch

ar
ge

, P
V 

po
re

 v
ol

um
e,

 S
A 

su
rfa

ce
 a

re
a,

 Z
VI

 z
er

o-
va

le
nt

 ir
on

533Current Pollution Reports (2022) 8:519–555



1 3

bark-based biochar with high saturation magnetisation 
(38.6 emu/g) and superior As(III) affinity (enabled by 
inner- and outer-sphere complexation), compared to As(V) 
(only inner-sphere complexation). Corn straw–derived 
biochars were modified with Fe to compare pre-treatment   
(FeCl3.6H2O) and post-treatment (ZVI) and it was 
observed that pre-modification removed 50.7–98.6% Cr, 
while post-modification removed 6.6–21.6% Cr [97]. Bio-
char prepared from pomelo peel mixed with  FeCl3 solution 
was analysed to remove Cr and phenol, and the sorbent 
removed Cr (24.37 mg/g) and phenol (39.32 mg/g) effec-
tively enabled by iron oxides  (Fe2O3,  Fe0, FeOOH, and 
 Fe3O4), π–π interactions and electron donor–acceptor com-
plex [98]. Rice straw–derived biochar was treated with 
 ZnCl2 and  FeCl3 to analyse removal of 17β-estradiol and 
Cu, and it was observed that magnetic biochar pyrolysed 
at 700 °C best removed 17β-estradiol (153.2 mg/g), and 
that pyrolysed at 300 °C best removed Cu (85.9 mg/g), 
with removal enabled by larger surface area, pore volume, 
and O-containing functional groups (–COOH, C–OH, 
C = O) [99]. Wheat straw–based biochar modified with 
α-FeOOH removed Cd (62.9 mg/g) and As (78.3 mg/g) 
enabled by co-precipitation and ion exchange [93]. ZVI/
biochar/Ca-alginate composite removed Cr efficiently 
(Qe = 86.4 mg/g) along with minimal Fe release, sugges-
tive of the resolution of problem of ZVI instability and 
decreased secondary pollution resulting from Fe leaching 
[100]. Pine wood–derived biochar ball milled with  FeS2 
removed Cr more efficiently (134 mg/g) than ball milled 
 FeS2 (62 mg/g) and ball milled biochar (20 mg/g), with 
92.25% Cr removed through reduction/precipitation and 
8.75% removed via adsorption/surface complexation at 
equilibrium Cr concentration of 15.7 mg/L [101]. Inter-
estingly, addition of oxalic acid promoted Cr removal from 
56 to 100% in the same study. Ren et al. [102] removed 
phosphate using cotton stalk–derived biochar modified by 
ferric oxides with adsorption capacity of 0.963 mg/g and 
observed that coating of ferric oxides on biochar alleviated 
phosphate release (from 0.471 mg/g in unmodified biochar 
to 0.089 mg/g in modified biochar).

Al‑Modified Biochar

Aluminium modification is achieved by immersing biomass 
in  AlCl3 followed by pyrolysis; stirring biochar in aqueous 
solution with Al electrode-based electrochemical treatment; 
or mixing biomass with red mud (achieved during Al pro-
duction) followed by pyrolysis. Modification with Al results 
in an enhanced SA and selectivity, which furnishes greater 
Qe in composites. Additionally, there could be formation 
of positive charge on surface, which enables it attract ani-
ons, thereby augmenting Qe. Mimosa pigra-derived biochar 

was modified with 2 M  AlCl3 and observed as an effective 
adsorbent of  NO3

− (31.80 mg/g) and  PO4
3− (95.05 mg/g) 

[103]. Al-modified food waste biochar demonstrated high 
F removal (Qe = 123.4 mg/g) as high as 91.4% at wide pH 
range (5–11) [104].

Mn‑Modified Biochar

Biochar could be modified with Mn oxides to furnish high 
RE, enabled by metal(loid)s entering amphoteric functional 
groups of  MnOx via co-precipitation, complexation, adsorp-
tion, or oxidation/reduction. For example, Mn-modified bio-
char is prepared by treating biomass with  MnCl2.4H2O (for 
manganosite crystal deposition) or  MnO2.nH2O or  KMnO4 
(for birnessite crystal deposition) followed by pyrolysis 
[105, 106]. Birnessite (a mineral with oxides of Na, K, and 
Mn) possesses high contaminant Qe. Birnessite-loaded 
biochar was reported superior to manganosite-loaded bio-
char owing to stronger affinity of birnessite toward con-
taminants and enhanced synergistic reactions between cati-
ons and anions. Corn stalk–based biochar modified with 
 KMnO4 removed Cd efficiently (191.9 mg/g) enabled by 
greater active sites [107]. Nanomanganese oxide–modified 
coconut shell–derived biochar removed EDTA-Cu(II) from 
aqueous solutions (assisted by Fenton reaction) with removal 
as high as 94.7%, enabled by increased surface area, pore 
volume, and hydroxyl radicals [108]. FeOx-modified bone-
derived biochar (pyrolysed at 450 °C) and MnOx-modified 
bone-derived biochar (pyrolysed at 600 °C) removed Cd 
(40.59 mg/g and 53.12 mg/g, respectively), Cu (56.25 mg/g 
and 74.78 mg/g, respectively), and Pb (178.58 mg/g and 
215.03 mg/g, respectively), with greater removal in MnO-
modified biochar primarily enabled by electrostatic attrac-
tion in negatively charged surface [109]. Zhou et al. [110] 
reported an increase in pH from 10.0 to 11.0 when corn 
straw–derived biochar was modified with nano-MnO2, 
which eventually improved its removal efficiency (Table 2).

Bi‑Modified Biochar

Bismuth is called “the wonder metal” due to easy chemi-
cal combinations (facilitated by electrons in p-orbital). 
Bi-modified biochar is prepared by mixing biomass with 
 Bi2O3 followed by pyrolysis. Bi-mixed biomass could also 
be mixed with HCl (stirred at 80 °C and sonicated) followed 
by pyrolysis. The obtained sorbent is washed with distilled 
water and  NaHCO3. Bi-impregnation enhances SA and con-
taminant Qe.  Bi2O3 inhibits tar formation, which prevents 
pore blockage and micropore collapse of the biochar [111]. 
 Bi2O3-doped  H2O2-modified horse manure–based biochar 
(carbonised at 500 °C) showed a high U(VI) removal effi-
ciency (93.9%) with Qe = 516.5 mg/g, where removal was 
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enabled by precipitation, electrostatic attraction, reduction, 
ion exchange, and surface complexation [112].

Zn‑Modified Biochar

Zinc modification makes surface of biochar positively 
charged, which facilitates high anion sorption. Zn modifi-
cation is achieved by treating biomass/biochar with  ZnCl2, 
Zn(NO3)2, or ZnS, which loads ZnO or ZnS nanoparti-
cles on surface and increases SA and porosity of sorbent. 
 ZnCl2-modified biochar was found superior to KOH, NaOH, 
 AlCl3, and  FeCl3 modifications, when considering SA, 
porosity, and RE [113]. ZnO-impregnated sawdust-based 
biochar possessed newly formed –OH groups along with 
large surface area (518.54  m2/g), which helped in removal of 
Pb (150 mg/g) and p-nitrophenol (170 mg/g) from wastewa-
ter [114]. Glue residue–based biochar modified with  ZnCl2 
was compared with HCl and KOH modification by Shi et al. 
[115], who reported that although Zn modification increased 
SA less than KOH modification (85.93  m2/g, 860.45  m2/g, 
and 694.03  m2/g for HCl, KOH, and  ZnCl2 treatments), it 
showed Qe higher than HCl and KOH treatments (48 mg/g, 
65 mg/g, and 80 mg/g for HCl, KOH, and  ZnCl2 treatments). 
Water hyacinth–derived biochar modified with ZnO nano-
particles removed 95% Cr (43.48 mg/g), chiefly assisted by 
precipitation between Cr ions and ZnO and photo-generated 
electrons generated by ZnO nanoparticles which reduce 
Cr(VI) to Cr(III) [116]. Gan et al. [117] modified sugar-
cane bagasse–based biochar with  ZnCl2 which showed  pHzpc 
(zero point charge) at 1.9 and the maximum Cr removal was 
observed at pH 2.0, attributed primarily to enabled by the 
formation of more polymerised chromium oxide species and 
stronger interaction between negatively charged chromate 
ions and positively charged functional groups of biochar at 
lower pH.

La‑Modified Biochar

Lanthanum is a non-toxic, low-cost, and chemically sta-
ble element, which provides large number of coordina-
tion sites and augments affinity for anions. La-modified 
biochar is prepared by dipping biomass in  LaCl3 solution 
followed by pyrolysis. Modification could be accompa-
nied with NaOH/ethanol treatment or the biomass could be 
spun in sodium alginate solution. Lanthanum modification 
deposits  La2O3 on surface, which assists in contaminant 
removal. La-modified walnut shell–based biochar (wal-
nut shell powder, stirred in 0.5 mol  L−1  LaCl3 solution 
for 2 h and pyrolysed at 400 °C) was reported as good 
promoter of increasing P adsorption of soil (increased Qe 
from 0.171 to 0.421 mg/g after amendment) where surface 
precipitation, ligand exchange, and electrostatic attraction 
were involved in adsorption [118]. La carbonate-modified 

and La hydroxide-modified wheat straw–based biochar 
were compared for P adsorption and similar Qe (64.3 
and 65.0 mg/g, respectively) was obtained for both but 
selectivity of the latter for P (90–100%) was more than 
the former (73–99%) [119]. Xu et al. [120] used cattail 
plant–based biochar modified using La to remove phos-
phate (Qe = 36.06 mg/g) and observed that strong acid or 
alkali solutions could be effectively used for successful 
desorption (92% efficiency).

Mg‑Modified Biochar

Magnesium is an essential element involved in synthesis-
ing chlorophyll, has low toxicity, and sorbs contaminants. It 
is considered a suitable cation for anion removal (e.g. As) 
and recovery (e.g. P). Mg-modified biochar is prepared by 
dipping biomass/biochar in Mg(OH)2 or  MgCl2 and could 
be accompanied by acid/base or electrochemical treatment. 
Mg modification augments RE. Sugarcane-derived biochar 
coated with MgO removed Cr effectively (54.64 mg/g), 
and the Qe increased in  H2SO4-assisted modified biochar 
(62.89 mg/g), chiefly enabled by chemical interactions 
between MgO and Cr [121]. Mg-modified corncob-based 
biochar showed 2.36–9.34 times metal sorption (Qe for Cu, 
Cd, and Pb is 182.7, 83.5, and 308.2 mg/g) than pristine bio-
char, chiefly assisted by ion exchange, complexation, cation 
π-bonding, and surface precipitation [122]. Mg-alginate/chi-
tosan-modified biochar demonstrated high  PO4

3− sorption 
(Qe = 46.56 mg/g) assisted by high SA (116.2  m2/g) [123]. 
Mg-modified corn-based biochar (300–600 °C pyrolysed) 
recovered P (Qe = 239 mg/g) from swine wastewater, which 
released 3.3–4.4% P during desorption in each cycle [124].

Co‑Modified Biochar

Cobalt-modified biochar is prepared by treating biomass 
with Co(NO3)2·6H2O followed by pyrolysis. The modifica-
tion could be accompanied with  HNO3, HCl, ethanol, or 
microwave treatment to enhance biochar properties. Co 
modification enhances surface morphology and boosts 
spontaneity of contaminant sorption. Magnetic  CoFe2O4‐
modified banana pseudostem fibre-derived biochar dem-
onstrated high amoxicillin sorption (99.99 mg/g) over a 
wide pH and temperature range with dominant monolayer 
chemisorption, π-π stacking, H-bonding, and electrostatic 
interaction [125]. Wang et al. [126] modified bamboo bio-
char with cobalt to remove Cr and observed a decrease in 
 pHzpc from 5.8 to 3.1 after modification, primarily resulting 
from the neutralised or blocked protonated surface func-
tional groups by the coated polymer layer, which eventually 
increased the Qe from 8.40 to 45.45 mg/g.
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Ni‑Modified Biochar

Nickel modified biochar is prepared by treating biomass 
with  NiCl2 followed by pyrolysis. The treatment could be 
accompanied with  HNO3 addition, microwave heating, or 
ultra-sonication [127]. Zhu et al. [128] added N-doped car-
bon nanotube (CNT) to biochar matrix along with Ni and 
KOH treatment. Ni modification increases surface properties 
and contaminant sorption. Diazotisation-modified Se-rich 
fir-based biochar was converted into NiS/NiSe/3D porous 
biochar (via vulcanisation and in situ competitive hydrogen 
reduction), which showed excellent As(III) removal perfor-
mance from water (100% removal within 110 min) assisted 
by adsorption and photocatalysis [129]. Wang et al. [127] 
customised bamboo biochar with nickel to remove Pb, where 
modification decreased the  pHzpc from 5.75 to 4.72, possi-
bly due to abundance of acidic O groups on surface, which 
eventually augmented the Qe from 25.0 to 142.7 mg/g after 
modification.

Ca‑Modified Biochar

Calcium is essential for plant growth. Ca-modified biochar is 
prepared by immersing biomass in CaO,  CaCO3, and  CaCl2 
followed by pyrolysis. The treatment could be accompanied 
with  Fe3O4 or alginate modification [130, 131]. Addition 
of Ca helps in increasing pH and negative surface charges, 
which eventually augments contaminant sorption. Indian 
pokeweed (Phytolacca acinosa)-derived biochar was 
treated with  CaCl2 and  Na2CO3 via vacuum impregnation 
method to deposit carbonate ions on surface, which helped 
remove ~ 100% Cd (154.54 mg/g), chiefly being enabled by 
minerals (89–98%) and Cd − π binding (2–10%) [132].

Mo‑Modified Biochar

Metal removal could be enhanced by modification of surface 
using metal hybrids such as  MoS2. Decoration of surface 
with  MoS2 exposes S atoms and increases surface area and 
number of active sites [133]. Corn straw–derived biochar 
was modified with iron nitrate and ammonium tetrathiomo-
lybdate to increase its surface area and functional groups 
(O-, C-, S-, and Fe-containing), and the composite removed 
Cd effectively (139 mg/g) > 7 times more than pristine bio-
char (17.8 mg/g) enabled by electrostatic attraction, Cd-π 
interaction, and strong Cd–S complex formation [133]. In a 
later study, they identified Cd–S complexation (61.7%) and 
Cd–O bonds (38.3%) as major players in Cd removal [134]. 
Sawdust-based biochar modified with ammonium tetrathi-
omolybdate using solvothermal reaction was analysed for 
Pb removal, where the S groups helped increase Qe from 
32.6 mg/g in pristine biochar to 189 mg/g in  MoS2-modified 
biochar [135].

Multi‑modified Biochar

Biochar has been modified with multiple organic and 
inorganic agents to improve its properties. Ca and Mg 
were loaded on biochar, which helped in sorbing P from 
biogas fermentation liquid/wastewater (Qe = 326.63 mg/g) 
(later recovered for fertiliser application) and the pres-
ence of CaO and MgO nanoparticles minimises negative 
influence of coexisting ions on sorption [136]. MgO- and 
 Fe2O3-impregnated biochar removed nitrate [137], while 
chloride  (NH4Cl,  ZnCl2, and HCl)-activated biochar 
removed mercury [138]. Polydopamine (hydrophilic poly-
mer with self-polymerising property, enhanced interfacial 
interactions with nano-ZVI, and –OH assists in dispers-
ing nano-ZVI in adsorbent) and nano-ZVI-modified bio-
char removed tetracycline [139]. Corn straw–derived bio-
chars pre-treated with  FeCl3 and  KMnO4 solutions were 
found to remove 91.79% Cr (118.03 mg/g) in comparison 
to 32.17% by pristine biochar, chiefly enabled by 3 times 
SA [140]. Similarly, Fe–Mn-modified Pennisetum straw-
derived biochar efficiently removed Cd (95.23 mg/g; Qe 
of pristine biochar was 30.58 mg/g), primarily assisted 
by cation exchange, Cd-π interactions, complexation with 
surface functional groups, and precipitation with minerals 
[141]. Fe–Zn-modified Robinia pseudoacacia and durian 
shell–derived biochar (post-treated with Fe(NO)3.9H2O 
and  ZnSO4.7H2O) demonstrated 5 times (98.58 mg/g) and 
3 times (161.14 mg/g) improved Qe when compared to pris-
tine biochar (18.18 mg/g and 54.11 mg/g for Robinia pseu-
doacacia and durian shell–derived biochar, respectively) 
[142].

Moreover, several studies have combined different types 
of treatments (physical, chemical, or impregnation) to 
capture the benefits of multiple treatments for enhancing 
the efficacy of contaminant removal (Table 4). Zhu et al. 
[143] modified wheat straw–derived biochar with  Bi2O3 
mixed with HCl followed by sonication to remove Cr, P, 
and As with 12.2 mg/g, 16.2 mg/g, and 125 mg/g adsorp-
tion capacities. Hu et al. [144] pyrolysed Camellia oleifera 
shells with nitrates of cobalt and gadolinium, treated the 
biochar with 0.1 M HCl, and rinsed it alternately with etha-
nol and ultrapure water. The modification introduced spongy 
pore structure in biochar and newly generated sorption sites 
which enabled removal of ciprofloxacin and tetracycline 
accomplished with adsorption capacities of 44.44 mg/g and 
119.05 mg/g, respectively. Mohan et al. [145] modified oak 
wood and bark with salts of  Fe3+/Fe2+ followed by NaOH 
treatment. While the Fe treatment introduced magnetic prop-
erties and decreased porosity, NaOH modification helped 
improve the porosity of the biochar. While oak bark–based 
biochar showed 30.2 mg/g Pb and 7.4 mg/g Cd adsorption 
capacity, oak wood–based biochar showed 10.13 mg/g Pb 
and 2.87 mg/g Cd adsorption capacity. Frišták et al. [13] 
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pre-treated grape seed–based biochar with  HNO3 followed 
by Fe(NO3)3 post-treatment. While the acid treatment aug-
mented external, internal surfaces, and porosity, iron treat-
ment clogged the pores and blocked the inner sphere pores 
but Fe impregnation also added −  NO3 functional groups, 
which eventually improved the As adsorption capacity from 
5.08 to 34.91 mg/g. Various mixed combination modifica-
tions are summarised in Table 4.

Other Modifications

Microwave Pyrolysis Modification

Conventional pyrolytic methods are associated with 
extended production time, fast firing, outside to inside heat-
ing (energy transfer through radiation, conduction, and con-
vection), and high synthesis cost [190]. On the contrary, 
microwave pyrolysis involves ~ 1/2 production cost, indirect 
internal heating (uniform energy transfer through dipole 
rotations and ionic conduction), and high energy efficiency. 
However, microwave pyrolysis is associated with inefficien-
cies such as minimal scaling-up of technology, limited pen-
etration capacity of microwaves, and large-scale production 
costs [191, 192]. Nevertheless, previous investigations have 
analysed microwave-assisted pyrolysis, where biochar was 
used for removing contaminants (Table 5).

Electro Modification

Application of electric field enables efficient and homogene-
ous deposition of metal oxide on biochar surface by evenly 
depositing electrolyte and electrode (metal) ions. For elec-
tro-modification, current density of 93.96 mA/cm2 (0–12 
A and 0–100 V) is applied to a biomass using a power sup-
ply (Al electrode SA, 75.56  cm2; electrode distance, 5 cm) 
in an electrolyte solution (NaCl or  MgCl2.6H2O), followed 
by pyrolysis. Electro-modification generates strong oxida-
tion agents  (OCl− and HOCl) or minerals on surface (like 
MgO,  MgAl2O4, AlOOH, and  Al2O3) from electrolyte which 
increases SA, microporosity, and RE [165, 193].

Ultrasonic Modification

Ultrasonic treatment could be performed before/after pyrol-
ysis to increase porosity and hasten loading of metals or 
metal oxides. During ultrasonic treatment, biomass/biochar 
is placed in ultrasonic bath and provided 40–170 kHz of fre-
quency and 250–1000 W of ultrasonic energy at 20–80 °C for 
15–120 min [194]. The treatment is generally accompanied 
with other modifications, such as Ti-impregnation [195], Bi-
loading [143], Fe-loading [196], ZVI-complexation [197], or 
Mn-impregnation [106].

Ozone Modification

Ozonation has been suggested to increase O:C ratio to aug-
ment cation exchange capacity and maintain poly-aromaticity  
for high biochar stability. Ozone-modified biochar is pre-
pared by exposing biochar to ozone through ozone generator 
flushed with 3 L/min oxygen flow for 5 min at 25 °C [194]. 
Jimenez-Cordero et al. [198] exposed grape seed–derived 
biochar (flash pyrolysed at 800 °C) to ozone and elevated 
temperature (850–950 °C) in inert atmosphere to desorb the 
formed O-containing groups, increase the SA, and decrease 
the pore size (increased micro-porosity). Huff et al. [199] 
treated pine-derived biochar with ozone to improve its cat-
ion exchange capacity and observed a reduction in pH from 
7.30 to 5.28 after 90 min ozone treatment, possibly due to 
the addition of acidic oxygen-functional groups on surface, 
while the cation exchange capacity doubled from 15.39 to 
32.69 cmol/kg.

Carbonaceous Modification

Carbonaceous materials (e.g., CNT and graphene) could be 
utilised for biochar modification, which transfers significant 
properties of carbonaceous materials to biochar, decreases 
production cost, and proliferates their contaminant RE. Bio-
char is modified with graphene oxide by stirring biomass in 
graphene suspension for 60 min (homogenised via ultrasonic 
treatment) followed by pyrolysis. Graphite could be used 
to synthesise graphene oxide nanosheets through modified 
Hummers method involving  H2SO4 and  KMnO4 [200]. On 
the other hand, CNT modification is achieved by stirring 
biomass in CNT suspension for 60 min (homogenised via 
ultrasonic treatment of 20 kHz at pulse intervals of 12 min) 
followed by pyrolysis. These modifications increase the 
contents of O-containing functional groups and SA. Car-
bonaceous modification could be accompanied with other 
treatments (e.g. sodium dodecyl-benzenesulfonate disper-
sion) to facilitate superior properties. Corn stalk mixed with 
graphene was pyrolysed at 350 °C to prepare biochar to 
remove Cd from aqueous solutions and it was observed that 
addition of graphene increased sorption capacity 1.26–2.36 
times compared to pristine biochar, primarily enable by phy-
sisorption, complexation, and ion exchange [201]. Sawdust 
mixed with graphene oxide pyrolysed at 700 °C to fabricate 
the composite was used to remove Cd and it was observed as 
an effective sorbent of Cd (Qe = 55.68 mg/g), with adsorp-
tion following pseudo-second-order kinetics and Freundlich 
isotherm and column study following Admas–Bohart model 
[202]. Inyang et al. [203] modified hickory and bagasse 
bichar with CNT and sodium dodecylbenzenesulfonate to 
improve the Qe of lead and sulfapyridine, where the pH 
decreased from 7.25 to 6.74 in hickory biochar and from 
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6.94 to 6.72 in bagasse biochar, possibly enabled by the 
addition of acidic functional groups on surface.

Chitosan Modification

Chitosan is derived from chitin and contains abundant free 
–NH2, –OH, and hydrogen bonds (between the main chains 
in secondary structure), which provides ion exchange, chela-
tion, and contaminant sorption ability. Chitosan-modified 
biochar is prepared by stirring biochar in 2% acetic acid 
solution containing chitosan for 30 min at 40 °C followed 
by addition of glutaraldehyde and suspension into NaOH 
solution for 1–12 h [204, 205]. The treatment could be 
accompanied with addition of ZVI to enhance its RE [148]. 
Walnut shell–derived biochars were modified with beta-
cyclodextrin–chitosan to remove Cr from aqueous solu-
tions, and an RE of 93% was achieved (Qe = 206 mg/g), 
primarily enabled by electrostatic attraction of  HCrO4

− and 
 Cr2O7

2− to positively charged surface and complexation with 
–NH2 and –OH functional groups [206]. Rice straw–derived 
biochar (450 °C pyrolysed) was modified with chitosan and 
pyromellitic dianhydride to increase amide and carboxyl 
groups, which could strongly interact with contaminants 
via electrostatic attraction, ion exchange, and complexa-
tion [207]. Modification improved the RE by ~ 10% with 
Qe of 8.62 mg/g, 25.78 mg/g, and 71.40 mg/g for Pb, Cd, 
and Cu, respectively. Chitosan-combined magnetic Loofah 
sponge-based biochar removed Cr (30.14 mg/g) and Cu 
(54.68 mg/g) efficiently, mostly assisted by ion exchange 
and surface complexation, despite the decrease in SA (from 
337.35 to 96.91  m2/g) [208].

Clay/Silt/Silica Modification

Biochars could be loaded with clay minerals, such as benton-
ite, montmorillonite, or kaolinite, to modify its composition 
and properties to increase sorption of oxyanions, like  PO4

3−, 
and polyatomic cations, like  NH4

+. Typically, biomass is 
mixed with a suspension of ultrasonicated (form homog-
enisation) clay minerals, stirred for 60 min and pyrolysed 
to obtain amorphous biochar with crystalline clay minerals. 
Additionally, higher pyrolytic temperatures evaporate water 
molecules from clay minerals, which reduces pore volume 
(PV) (and pore diameter) [17]. The treatment is enhanced 
by activation under  CO2 flow for greater microporosity. 
Rawal et al. [209] pyrolysed bamboo biomass, pre-treated 
with iron sulphate-clay mixture, at 250–550 °C to obtain 
clay-modified biochar with enhanced PV and mineral infu-
sion into pores (high content of S, Fe, and Al). Yao et al. 
[210] reported > 15% enhanced green pepper yield, > 1 0% 
increased vitamin C content, and ~ 1/3rd decreased nitrate 
content after amendment with wheat straw–derived biochar 
(pre-treated with urea, minerals, and  H3PO4) compared to 

conventional fertilisers. Oiltea camellia shell–derived bio-
char modified with silicon was observed to possess aug-
mented surface area (45–112%) and porosity (5–12%) and 
Cd removal was enabled by complexation with –COOH and 
C–Si–O groups, surface precipitation  (CdCO3,  CdSiO3, or 
 Cd2SiO4), coordination with π electrons (C = C), and ion 
exchange with  Na+ [211]. Rosin-based bentonite-coated 
 Fe2O3 nanoparticle-supported biochar removed 95% 
Cr(VI) within 1 min (81.7 mg/g) mainly due to the key role 
played by α-Fe2O3 nanoparticles [212]. Cigarette factory 
waste–derived biochar modified with bentonite and calcite 
minerals removed Pb efficiently (99%), with bentonite and 
calcite catalysing changes in yield, carbonisation, miner-
als, functional groups, texture, and pH [213]. Siltstone- 
nanomagnetite-modified Eleocharis dulcis–derived biochar 
demonstrated high Cr Qe (35.57 mg/g), assisted by elec-
trostatic attraction [214]. Montmorillonite-modified wheat 
straw–based biochar showed high norfloxacin Qe (increased 
from 10.58 to 25.53 mg/g after modification), enabled by 
pore filling, H-bonding, and electrostatic interaction [215]. 
They also stated that presence of humic acid and  Cu2+ could 
reduce norfloxacin sorption due to competitive adsorption 
and pore blockage. Montmorillonite-modified corncob-
based biochar removed Pb (139.78 mg/g) and atenolol effi-
ciently (86.86 mg/g) enabled by hydroxyl O atom acting 
as a possible reaction site and amino N and amide O atom 
providing lone pair of electrons, which generates H-bond 
or strong electrostatic interactions with surface functional 
groups [216].

H2O2 Modification

Hydrogen peroxide  (H2O2) is a clean and less-expensive 
product proposed to modify biochar for high sorption. Typi-
cally,  H2O2-modified biochar is prepared by placing biochar 
in  H2O2 solutions (1–30%) and stirred for 120–180 min fol-
lowed by filtration, washing, and drying.  H2O2 modification 
was compared with  H2SO4,  HNO3, and KOH modifications, 
where  H2SO4 and  HNO3 treatments caused porosity loss and 
heterogeneous micropore distribution, while  H2O2 and KOH 
treatments enhanced homogenous micropore distribution, 
micro-PV, and SA. All the treatments enhanced acidic sur-
face functional groups, which enabled biochars (rice straw 
derived) in removing contaminants like methylene blue, 
phenol, and iodine [56, 217]. Wongrod et al. [45] reported 
decreased As removal after  H2O2 and KOH modification 
of biochar (while  H2O2 oxidised organic content, KOH dis-
solved ash). Pig manure–derived biochar was oxidised using 
 H2O2 (oxidation occurred at C = C bonds) and thiolated 
using 3-mercaptopropyltrimethoxysilane (sulphur content 
increased to 4.43%), where sorption capacity of biochars 
augmented by 2.5–4.2 times for Cd and Pb with increase 
in pyrolysis temperature from 300 to 700 °C [218]. Metal 
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removal was enabled by cation exchange, complexation with 
functional groups, cation-π EDA interaction, and precipita-
tion with minerals.

Organic Solvent/Compound Modification

Biochar could be modified with organic solvents such as 
methanol and thioglycolic acid to increase the content of 
surface functional groups (especially carboxyl and carbonyl 
groups). However, the volatile nature and high costs associ-
ated with the organic solvents limit their real-time large-
scale applicability for biochar modification. Previously, 
organic solvent-modified biochar was used to remove con-
taminants (Table 5) [219, 220]. Organic compounds like thi-
ourea, polyaniline, and poly(vinyl alcohol) (PVA) have been 
used to modify biochar. Swine sludge–derived biochar was 
pre-treated with NaOH and  HNO3 and modified with thio-
urea to augment C–O, C = O, C–S, C = S, and  RSO3

− groups, 
which enabled high Pb removal (Qe = 143.13 mg/g) [221]. 
Rice husk– and Eucalyptus saw dust–based biochar was 
modified with polyaniline to graft  NH2 groups of polyani-
line directly on surface, where an increase in SA (38.7–41.3 
 m2/g) and Cr removal (72.31–81.43%) was observed [222]. 
Rice straw–derived biochar was aminated with poly(vinyl 
alcohol), epichlorohydrin, and diethylenetriamine to aug-
ment surface functional groups (such as –OH) and Cr(VI) 
removal (Qe = 140.39 mg/g) [223].  KMnO4-modified corn-
cob-based biochar was entrapped/immobilised in poly(vinyl 
alcohol)/sodium alginate hydrogel beads to study Cu 
removal and an increase in Qe was observed (23.70 mg/g 
in pristine biochar; 87.07 mg/g after modification), prob-
ably due to inner-sphere complexation (Cu–O, Mn–O–Cu 
bonds) [224]. 3-aminopropyltriethoxysilane and polyami-
doamine dendrimer-modified magnetic rice straw–derived 
biochar removed Cu efficiently (251.81 mg/g) mainly due to 
electrostatic attraction and bridging influences with –NH2 
groups, despite the decrease in SA [225].

Nitrogen Modification

Biochar is modified with N by recapturing N from waste-
water (polar functional groups enable sorption in low 
temperature–synthesised biochars; high SA enables sorp-
tion in high temperature–pyrolysed biochars). Biochars 
could recover nitrates and ammonium from human urine 
present in wastewater treatment plants [226]. Polyeth-
ylenimine and methanol were used to augment N- and 
O-containing groups (primarily amino groups) in rice 
husk–derived biochar to sorb Cr (Qe = 435.7 mg/g) [227]. 
Stillage-derived biochar was loaded with N-containing 
phosphates (urea phosphate, ammonia polyphosphate, 
and ammonia phosphate) to augment its porosity (0.464 

 cm3/g) and SA (798  m2/g), which sorbed toluene effec-
tively (Qe = 496.2 mg/g) [228]. Saw dust–derived biochar 
was treated with  H2SO4,  HNO3,  NH4OH,  Na2S2O4, and 
glacial  CH3COOH to furnish amino groups, which helps 
sorb  Cu2+ (Qe = 16.11 mg/g) [229]. Rice straw–derived 
biochar was modified with iron and (3-aminopropyl)- 
triethoxysilane to enhance Fe and  NH2 radicals to augment 
Cr (100.59 mg/g) and Zn removal (83.92 mg/g) [230]. 
Waste-derived biochar (municipal waste, oak wood, anaer-
obic digestate press cake, and greenhouse waste; pyrolysed 
at 450–650 °C) sorbed ammonium (Qe = 146.4 mg/g) and 
phosphate (Qe = 37.1 mg/g) [231]. Takaya et al. [231] also 
reported minimal desorption of ammonium (5.1 mg/g) and 
phosphate (8.5 mg/g), which could enable its usability as 
slow release soil amendments.

Sulphur Modification

Sulphur modified biochar could be prepared by sorbing 
 H2S produced during anaerobic digestion of biomass for 
bioenergy generation. Dairy manure–derived biochar 
adsorbed  H2S generated during anaerobic digestion of 
organic waste and obtained S-modified biochar (36.5% 
S) [232]. S modification could also be achieved by sur-
face modification with reagents like thiols,  CS2, or  SO2 
[233, 234]. S-modified biochars immobilise Hg in soils, 
primarily enabled by the strong affinity of S for Hg. 
Rice husk–derived biochar modified with S (13.04% S) 
minimised Hg contamination by ~ 73% (Qe = 67.11 mg/g) 
primarily by forming HgS [235].  Na2S-modification of 
corn straw–based biochar enhanced  Hg2+ sorption by 
76.95% and atrazine sorption by 38.66% [76]. Oilseed 
rape straw–derived biochar (with enhanced S) immobi-
lised methyl-Hg by complexation and reduced methyl-Hg 
accumulation in rice grains [236]. Corncob biochar modi-
fied with  Na2S showed best Ni removal (15.40 mg/g), SA 
(195.64  m2/g), and PV (0.2340  cm3/g) among modified 
crayfish shell, cotton stalks, corncob, and peanut shell-
based biochars, chiefly enabled by ion exchange [237].

Living Feedstock Modification

There was a unique and interesting study where plants 
were irrigated with metal-rich water to enhance the con-
tents of essential nutrients in plants which could boost 
its yield. Yao et al. [238] irrigated tomato plants with 
25 mM Mg solutions to obtain Mg-enriched tomato tis-
sues. Later, it was pyrolysed to produce biochar, where 
pyrolysis augmented Mg concentrations in the sorbent 
(8.8% Mg). The presence of MgO and Mg(OH)2 provided 
greater removal of phosphate (88.5%).

541Current Pollution Reports (2022) 8:519–555



1 3

Microbe Modification

The property of high SA enables biochar in facilitating the 
growth and colonisation of microorganisms on its surface. 
The colonised microbes develop a biofilm on surface via 
secretion of adhesives (polymers), which facilitates stronger 
viability (due to protection provided by biofilm). The inoc-
ulation and colonisation of microbes aids in degrading 
organic contaminants and biosorbing metals [17]. Micro-
organism-colonised (Streptomyces violarus strain SBP1) 
 H2O2-modified wood waste–derived biochar effectively 
removed ~ 74.8% Mn(II) and oxidised it into lesser toxic 
Mn(III) and Mn(IV) [239]. Since biofilm-associated biochar 
could assist in removal of contaminants, it was suggested 
for application as filters and treatment of polluted water, 
wastewater, and soils [240].

Mechanistic Insights into Contaminant 
Removal

Different models have been proposed to identify processes 
involved in adsorption, where adsorption capacity of con-
taminants is plotted against initial concentration, contact 
time, and temperature to diagnose the best fitting iso-
therm, kinetic, and thermodynamic model. Langmuir and 
Freundlich are the most used adsorption isotherm models 
[256–258], while Lagergren pseudo-1st order, pseudo-2nd 

order, intra-particle diffusion, and Elovich are the most 
used adsorption kinetic models [259–261]. Thermodynamic 
parameters like entropy, enthalpy, and Gibbs free energy 
are calculated by plotting adsorption capacity versus tem-
perature [262]. Previous studies have proposed the following 
mechanisms as chiefly involved in removal of contaminants 
(Fig. 2): (i) precipitation/co-precipitation, (ii) complexation 
(coordination, surface complexation), (iii) ion exchange 
(anion and cation exchange), (iv) physical adsorption, (v) 
specific adsorption (including chemical process), (vi) elec-
trostatic interaction/attraction/attachment, (vii) reduction, 
(viii) π-bond interaction, and (ix) micro-electrolysis reaction 
[263]. For example, Cr (which exists as Cr(VI) and Cr(III), 
with + 6 state being more toxic) removal primarily involved 
electrostatic interaction, complexation, reduction from 
Cr(VI) to Cr(III) through surface functional groups such as 
–OH and –COOH and ion exchange with  Al3+,  H+, and  Zn2+ 
[222, 264, 265]. Cd (existing as Cd(II) and hydrxo-complex) 
removal chiefly incorporates complexation with functional 
groups (O-, C-, S-, and Fe-containing) and ion exchange 
with  Ca2+,  Na+, and  K+, apart from physical adsorption and 
electrostatic attraction [133, 141, 201, 265]. As (existing 
predominantly in  H2AsO4

− and  HAsO4
2− at 3–6 pH and 

 AsO4
3− at alkaline pH) removal mainly involves electrostatic 

interactions (with –OH and –COOH groups on surface) and 
complexation/precipitation (with metals and metal oxides on 
surface), apart from redox transformation, ion exchange, and 
H-bonding [266]. Pb (primarily prevalent as Pb(II)) removal 

Fig. 2  Contaminant removal by 
modified biochar
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involves complexation with C–O, –OH, –SH, and C–S 
functional groups (mainly inner-sphere surface complexa-
tion), chemisorption with ion-exchange groups (R–SH and 
–RSO3−) and coordination groups (–COO, –C = S, –C–NH2) 
[135, 221]. Cu (occurring as Cu(I) and Cu(II), with + 2 being 
more harmful) removal incorporates complexation with sur-
face functional groups (such as –COOH, –OH, and –NH2) 
[229]. Removal of Pb(II) and Cd(II) involved ion exchange, 
specific adsorption (Pb/Cd–O or hydroxyl binding), and 
electrostatic attachment [170]. When competitive adsorption 
of Pb(II), Cd(II), and Cu(II) was investigated, differential 
role of functional groups was observed, with N–C = O group 
majorly involved in Pb(II) removal, C = C and N-containing 
groups involved in Cd(II) removal, and carbonyl and N- 
containing groups involved in Cu(II) removal [207].

pH is a crucial factor influencing the removal of contami-
nants by modified biochars. For example, heavy-metal ions 
precipitate in alkaline environment, thereby affecting the 
Qe of modified biochars. The contaminants form complexes 
with  OH− or  H+ under alkaline or acidic environments, 
which affect the RE of modified biochars [263]. Changes in 
surface functionality also affect the acidic/alkaline proper-
ties of modified biochars, eventually affecting contaminant 
removal. pH at zero point charge  (pHzpc) affects the surface 
charge of modified biochars by changing the protonation 
effect of surface functional groups of modified biochars in 
acidic conditions. While a pH lower than  pHzpc makes the 
surface of modified biochars positively charged and attracts 
anionic contaminants, a pH higher than  pHzpc makes the 
surface negatively charged, augmenting the electrostatic 
attraction of cationic contaminants. Solution pH is another 
factor governing the removal of contaminants by modified 
biochars. For example, an increase in solution pH from 2 to 
8 augmented the removal of Cd by  MgCl2-modified biochar 
from 47.17 to 98.30% [267]. In general, a decrease in pH 
of biochar after modification is observed. While Huff et al. 
[199] observed a reduction in pH (from 7.30 to 5.28) after 
ozonation, Wang et al. [126] and Wang et al. [127] reported 
a reduction in  pHzpc of biochar after modification with nickel 
(from 5.75 to 4.72) and cobalt (from 5.8 to 3.1), respectively, 
which increased Qe from 25.0 to 142.7 mg/g and from 8.40 
to 45.45 mg/g, respectively. However, an increase in pH 
has also been reported after modification, like an increase 
from 10 to 11 after modification with nano-MnO2 eventu-
ally improving removal efficiency as reported by Zhou et al. 
[110].

Surface properties of modified biochar (SA, charge, 
and functionality) are involved in removal of emerging 
organic contaminants [18]. Chemical modification gener-
ates abundant adsorption sites, making the surface favour-
able for surface precipitation, surface complexation, and 
electrostatic attraction, while physical modification influ-
ences SA and microporosity, which affects mechanisms 

like intra-particle diffusion and pore filling [268]. 
 H3PO4-modified pig manure–derived biochar removed 
tetracycline primarily through π-π electron donor–acceptor  
interaction and hydrogen bonding [269]. Chitosan and 
Fe/S-modified sludge-based biochar removed tetracycline 
primarily using π-π stacking, hydrogen bonding, silicate 
bond interaction, and pore filling, but also involved chela-
tion and ion exchange, which rarely occurs during adsorp-
tion of organic contaminants [270]. KOH-treated potato 
stem and leaf-derived biochar adsorbed ciprofloxacin via 
π-π interactions, electrostatic interaction, and hydrogen 
bonding [271]. Magnetised pine sawdust–based biochar 
adsorbed ethinyl estradiol and sulphamethoxazole primar-
ily through π-π electron donor–acceptor and hydrophobic 
interaction [272]. Magnetic bagasse biochar nanoparticles 
removed 17β-estradiol chiefly via simultaneous hydro-
phobic interactions (dominating at lower pyrolysis tem-
peratures) and π-π electron donor–acceptor interactions 
(dominating at higher pyrolysis temperatures) [273]. Ca- 
and Fe–Mn-modified litchi-derived biochars were sug-
gested to effectively control estrone/estrogen in water and 
soil environments, where immobilisation was primarily 
achieved through hydrogen bonding interaction [274]. 
Magnetic Fe2O3–modified banana peel–based biochar 
effectively degraded bisphenol-A (completely removed 
within 20 min), without pH adjustment, through hydrogen 
bonding and involvement of surface functionality [275]. 
Bamboo-derived biochar supported  CuZnFe2O4 compos-
ite removed bisphenol-A and sulphamethoxazole through 
hydrogen bond interaction, hydrophobicity, and π-π inter-
actions [276]. Cotton straw–based biochar removed sul-
phonamide primarily via van der Waals and hydrophobic-
ity [277]. Tylosin removal using novel goethite biochar 
was assisted by hydrophobic, π-π electron donor–acceptor 
electrostatic, cation exchange, and H-bonding interactions, 
with best fitting of Henry and Freundlich models [278]. 
KOH-treated wild plum–derived biochar modified with 
microwave treatment (700 W for 12 min) removed nap-
roxen efficiently (73.14 mg/g) with maximum assistance 
from electrostatic attraction between positively charged 
–OH groups on surface and negatively charged naproxen 
[279]. NaOH-activated alfalfa-derived biochar superiorly 
removed tetracycline from water (302.37  mg/g), with 
prime involvement of chemisorption interaction and intra-
particle diffusion [78]. MgAl-double lamellar hydroxides/
bovine bone–based biochar composite completely removed 
caffeine from water within 20 min (26.22 mg/g), with best 
fitting of Redlich–Peterson, indicating that both monolayer 
and multilayer adsorptions are involved in the removal of 
caffeine [280]. Overall, electrostatic interactions, cation 
exchange, surface complexation, hydrogen bonding, and 
non-specific van der Waals interactions are involved in 
removal of organic contaminants [281].
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Modified Biochar and Ageing

Biochars undergo ageing when applied in the environment, 
primarily under the influence of natural forces including 
temperature-induced freeze–thaw cycles, rainfall-induced 
wetting–drying cycles, sunlight-induced photochemical 
degradation, and mild forms of oxidation (arising from 
microorganisms, root exudates, or atmospheric oxygen) 
[282]. Ageing affects physico-chemical properties like 
aromaticity, elemental composition, surface morphology, 
and surface area, which could either increase or decrease 
removal of organic/inorganic contaminants by biochar. In 
general, chemically/biologically oxidised biochar removes 
pronounced amounts of inorganic contaminants, aided by 
higher surface complexation with O-containing functional 
groups and retained ash content, which furnishes contam-
inant co-precipitation. On the contrary, physically aged 
biochars demonstrate diminished contaminant removal 
because of lower mineral content and O-containing groups, 
which minimises complexation and co-precipitation. With 
respect to ageing, contrasting results of decrease in con-
taminant removal (Cu and Pb removal decreased due to 
wet-dry ageing, as reported by Shen et  al. [283]) and 
increase in contaminant remediation (Cd and Pb removal 
increased by KOH-modified biochar, reported by Wang 
et al. [284]) after application of biochar has been reported 
previously. Such contrasting reports could be emanating 
from dissolved organic matter–induced contaminant mobi-
lisation or O-containing group-supported contaminant 
immobilisation [285, 286]. Biochar ageing favours micro-
bial degradation of organic contaminants, where biochar 
acts as electron shuttle between organic contaminants and 
microorganisms colonised on external and internal sur-
face and with progressive ageing, enhanced O-containing 
groups favour electron shuttle effect.

Huang et al. [287] prepared Ce/Mn-modified wheat 
straw biochar to remove As(V), where the team assessed 
the influence of three different ageing processes (natural, 
freeze–thaw, and dry–wet cycles) on the adsorption per-
formance of modified biochar. Interestingly, freeze–thaw 
ageing increased the SA of modified biochar (214.98  m2/g) 
more than the other two ageing processes. However, pH 
and C contents reduced after ageing, but contents of H 
and O increased after ageing. Qe augmented by 16.2% 
and 10.6% for freeze–thaw and dry–wet ageing treatments, 
respectively. Freeze–thaw and dry–wet ageing processes 
also activated Ce/Mn oxides in augmenting  Mn2+/3+ and 
Ce generation, eventually increasing  CeAsO4 precipitation 
and Ce/Mn–O–As complexation. In an interesting study, 
Wang et al. [288] prepared aged biochars by treating corn 
straw–derived biochar with 20%  H2O2 at 1:20 (w/v) ratio 

for 24 h. The team observed a decrease in Cd and Pb RE 
attributable to a reduction in mineral precipitation and 
cation exchange mechanism. In another study, Cui et al. 
[289] simulated Fenton-like chemical ageing by oxidising 
peanut and bush biochar with citric acid/Fe2O3 and citric 
acid/FeCl3. The team observed that ageing improved sur-
face properties, surface functionality, and elemental con-
tent in biochars, which increased 2,4,6-trichlorophenol 
removal by 1–11% and 7–38% in aged bush and peanut 
shell biochar, respectively. The contrasting results trigger 
the need for performing extensive studies to examine the 
adsorption/degradation performance of modified biochars 
with respect to ageing. It is also noteworthy that produc-
tion temperature could affect the adsorption performance 
of ageing biochar [290]. While high temperature biochars 
demonstrate lower Qe when exposed to acid rain leaching 
or oxidation (which remove inorganic alkaline elements 
and minimises pH), low temperature biochars display 
an increase in Qe, assisted by augmented O-containing 
groups (which promotes ion exchange and surface compl-
exation). A major condensed aromatic carbon portion of 
biochars remain very stable, the labile portion still remains 
biodegradable [291].

Theoretically, biochars could immobilise contaminants 
for a very long term, but Shen et al. [283] reported metal 
immobilisation for a short term and mobilisation with an 
accelerated ageing simulated by a wet-dry-ageing experi-
ment (for example, metals such as Cd, Cu, Pb, Ni, and Zn). 
Therefore, utilisation of biochar for immobilising con-
taminants in soils could pose long-term risks and might 
necessitate further enquiry for safer application. Martin 
et al. [292] compared un-aged biochars to 32-month-aged 
biochars and observed that removal of contaminants like 
diuron and atrazine minimised significantly in the latter by 
47–68%. Similarly, Ren et al. [293] suggested that adsorp-
tion performance of biochar amended soils (for contami-
nants like atrazine and phenanthrene) reduced to levels of 
untreated soils after 30 months of application. However, 
Jones et al. [294] reported that 2-year ageing did not affect 
the RE of contaminants like simazine. A 3-year experi-
ment by Li et al. [295] observed that hardwood-derived 
biochar minimised Cu and Cd concentrations by 63.8% 
and 57.9%, respectively in first year in soil, but the bio-
chars increased mobilisation in the following years. On 
the contrary, corn straw–derived biochar minimised metal 
concentrations steadily throughout the experiment. Such 
a variation in results was attributed to the differences in 
lignin content. These observations signify that it is crucial 
to choose the appropriate kinds of feedstock to minimise 
the bio-availability and mobility of contaminants stably for 
longer periods in contaminated environments.
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Feasibility and Limitations of Biochar 
Modification

The feasibility of modified biochars is dependent on a 
number of factors inclusive of the biochar properties, the 
costs of fabrication, the risks associated with their appli-
cation, and the viability of its scalability (from lab scale to 
industrial scale). The physico-chemical properties of the 
modified biochars depend on the type of feedstock used, 
treatment temperature, and the modification method. An 
improved understanding of the properties would enable 
a better utilisation of the fabricated adsorbents for vari-
ous applications including removal of contaminants. The 
calculation of costs of fabrication is complicated and 
depends again on the feedstock, treatment temperature, 
and the modifying agent. Waste biomasses, which are 
typically free, could be used to minimise the costs of pro-
duction. However, assessment of costs becomes difficult, 
when factors such as treatment cost, transportation tariffs, 
labour charges, energy consummation, and operating and 
maintenance costs are included in the cost calculation, as 
these are typically the most crucial components of biochar 
preparation on a large scale [2]. Interestingly, Inyang and 
Dickenson [296] suggested that on an average unmodified 
biochar cost ~ 1/6th of the production costs of activated 
carbon (~ $1500/ton). Such a large difference in produc-
tion costs could be used to advantage for the fabrication 
of modified biochars, where only an additional expense 
of the modifying agent or treatment condition would 
need to be incorporated. Most of the studies reviewed 
focussed on batch studies using modified biochars for 
contaminant removal, while the actual performance of 
the adsorbent needs to be examined with column/con-
tinuous setups incorporating real-time contaminated soil/
water in addition to subjecting the adsorbent to multiple 
sorption-regeneration cycles. Additionally, recovery of 
the adsorbent and its stability after real-time application 
for removal of contaminants would be crucial in enhanc-
ing the feasibility of the fabricated adsorbent. Recovery 
and regeneration of adsorbent would critically depend on 
the mechanisms involved in contaminant sorption, where 
weaker binding of contaminant (via physisorption) to 
adsorbent would amplify the regeneration and reusabil-
ity of adsorbent, when compared to a stronger bonding 
(involving chemisorption) between adsorbent and con-
taminants [2].

It must also be observed that different studies compar-
ing different biochar modifications have reported a supe-
rior performance of one or the other biochar modification, 
which on the first instance could intricately confuse the 
research team in selecting the appropriate modification 
method. For example, while Wang et al. [50] reported 

alkaline modification to be superior to acid modifica-
tion, Zhang et al. [60] reported the contrary superiority of 
acid modification for contaminant removal. However, Liu 
et al. [297] suggested that acidic modifications persist with 
issues of non-recyclability, higher pollution, and larger 
consumption of activation energy, while alkaline modifi-
cations are associated with advantages of higher biochar 
yield, lower activation temperature, and controllable void 
structure, which could be suggestive of the preferability 
of alkaline modifications, also re-affirmed by Lima et al. 
[20] and Hussain et al. [66]. It makes it crucial for the 
future research teams to compare the different modifica-
tion methods for a better understanding of the feasibility 
and the limitations of its applications, especially removal 
of contaminants. Modifications such as steam and gas 
treatment, alkaline treatment, and carbonaceous modifi-
cation improve the surface area and porosity of adsorbent. 
However, steam, gas, and carbon modification are associ-
ated with high costs, while alkaline treatments are much 
less costly and could favour their usability. Additionally, 
physical modifications consume huge amounts of energy, 
which increases the production costs and makes the fab-
rication non-greener. Different modifications influence 
the elemental composition of biochars differently, which 
affects the basic or hydrophilic nature of biochar [16]. For 
example, nitrogen-to-carbon ratio regulates basic nature 
of biochar, while oxygen-to-carbon ratio dictates the 
hydrophilic nature of biochar. Alkaline treatments when 
compared to acidic treatments increase basicity and aro-
maticity of biochar and decreased the hydrophilic nature 
by altering the carbon, oxygen, and nitrogen contents 
of biochar. Treatments involving alkaline and oxidising 
agents augment oxygen-containing functional groups on 
surface. While alkaline treatments augment hydroxyl and 
carboxylic groups, oxidising treatments increase carbox-
ylic groups. However, it is also important that after modi-
fication, the acid/alkali solutions might need further treat-
ment, which could eventually complicate the fabrication 
of biochar. In due course, acid/alkali solutions could be 
treated by neutralising it with alkali/acid solutions. Also, 
the costs of modifying agents need to be kept into per-
spective, which could limit its applicability. Nonetheless, 
cyclic utilisation of modifying agents could minimise the 
costs of fabrication. When compared to other treatments, 
metal impregnation enhances the active adsorption sites 
the most, thereby supporting the removal of contaminants 
the most. Still, previous reports have suggested leakage 
of metal ions from the adsorbent, which could influence 
the stability of modified biochars [19]. By and large, the 
selection of modification methods depends on the costs 
of fabrication or the feasibility of follow-up treatments 
required during modification.
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Future Perspectives

• With evolving biochar treatment/modification methods, 
optimisation of feedstock variation, production condi-
tion, and modification route have become inevitable. 
Studies have been limited to laboratory setups and need 
proliferation for pilot-scale industrial and commercial 
application, inclusive of actual contaminated soil and 
water for determining real-time efficacy.

• Fewer studies have focussed on the removal of con-
taminants from simulated/industrial wastewater using 
modified biochars. Further, application of modified 
biochars for contaminant removal from large-scale 
industrial wastewater has not been reported. Lesser 
investigative analysis has been performed on mixed 
multi-contaminant systems and identification of the 
probable involved mechanisms could be crucial in the 
future studies.

• There is a need to investigate the stability of modified 
biochar composites. Long-term experiments would be 
needed to examine the bonding strength of composite 
and achieve a composite with long lifetime and high 
adsorption capacity under changing climatic scenarios 
[298, 299].

• Contrasting results were obtained in studies performed 
on the impact of ageing on adsorption performance of 
biochars. Moreover, minimal studies have analysed the 
adsorption behaviour of modified biochars exposed to 
ageing. Such a scenario triggers the need for perform-
ing extensive studies to examine the adsorption/degra-
dation performance of ageing-modified biochars.

• Life cycle assessment of modified biochars should be 
performed to compare its applicability with sorbents, 
presently used at industrial setups, considering factors 
like contaminant RE, biochar stability, biochar reuse, 
fabrication cost (production and modification), and 
real-time applicability (transportation, labour involved, 
and maintenance).

Conclusions

Physical and chemical modification of biochar could 
enhance the contents of O-containing functional moieties 
and SA, which eventually assists in sorption of organic and 
inorganic contaminants. In general, acidic modifications 
enhance surface functional groups and cation exchange 
capacity, which promotes ion exchange and sorption of 
cationic and anionic contaminants. Alkaline modifications 
facilitate high aromaticity, apart from improving hydro-
phobicity and contaminant RE. Sorption of oxyanions 

could be escalated by metal impregnation in biochar. 
Metal-impregnated biochars sorb contaminants effectively 
with mechanisms involving chemisorption, electrostatic 
attraction, and complexation. Biochar could be facilitated 
with magnetic properties (via Fe modification) to ease its 
recovery. Pb could be effectively removed by metal/metal 
oxide-impregnated biochars because of the formation of 
stable inner sphere complexes. Cd could be better removed 
by Mn-modified or alkali-modified biochars because of 
the facilitation of surface basicity that favours electrostatic 
attraction with cations. Cu could be preferably removed 
by nitrogen-doped or metal/metal oxide-modified biochars 
because of the formation of N–Cu complexes. Cr could 
be efficiently removed by Fe-modified biochar because 
of the mild reduction reactivity possessed by ZVI, while 
Cr(VI) is reduced to Cr(III) by oxidising Fe to Fe(III) and 
formation of Cr(III) hydroxides. Hg could be removed by 
S-impregnated biochar, as it enables HgS precipitate for-
mation apart from O-containing functional groups involve-
ment in Hg sorption. As could be preferably removed by 
metal-modified biochars, primarily enabled by electro-
static attraction and formation of complexes with metals. 
Modified biochars (especially metal oxide and metal salt 
modification) show high removal of organic contaminants 
enabled by electrostatic interactions, cation exchange, 
surface complexation, hydrogen bonding, and van der 
Waals interactions. In view of contaminant removal and 
waste management, production of modified biochars from 
diverse agro-ecological waste could be critical for planet 
survivability. However, it would be beneficial to perform 
reality check of contaminant removal using modified and 
tailor-made biochars with real-time wastewaters and actual 
contaminated soils along with identifying routes of scal-
ing-up the fabrication of low cost environment-friendly 
modified biochars and determining the influence of ageing 
on the stability and adsorption performance of the modi-
fied biochars.
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