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Abstract
Purpose of Review  Improper discharge of industrial effluents would lead to direct contamination of our water, air, and soil 
systems. Without proper treatment, both these inorganic and organic-matter-containing waste would pose harmful effects 
towards aquatic organisms, overall water quality, reduction in soil health, and increase in greenhouse gasses from anaerobic 
microbial degradation activities.
Recent Findings  Current treatment technologies involve the use of combined chemical, biological, and physical approaches, 
which has been proven very effective. Another useful alternative is to utilize the high organic content present in the waste as 
substrate for the metabolism of microbes as catalyst in industrial processes including water treatment as well as production 
of useful microbial secondary metabolites such as pigments.
Summary  This review highlights some example for the microbial biotransformation and biomineralization of organic-rich 
industrial discharges. This is important based on its potential to be applied as useful alternative techniques to dispose huge 
volumes of industrial waste as well as reducing high cost of sustaining biological-based industrial processes that would 
require substantial investment notably for the microbial growth medium. Nevertheless, clear insight into the engineering 
aspects of such processes and sufficient knowledge on its feasibility to function properly at pilot-scale level are of paramount 
importance prior to any commercialization attempts.

Keywords  Biodegradation · Organic waste · High strength · Organic nitrogen · Food waste

Introduction

Generally, industrial waste can be divided into two broad 
types, namely, organic and inorganic. Organic industrial 
waste is mostly generated from agricultural activities which 
contain high concentration of organic substances such as 
various classes of hydrocarbons, oils, lipid, grease, organic 
chemicals, and others that contributed directly to the bio-
logical oxygen demand (BOD) parameter while inorganic 
industrial waste (mostly toxic) is generated by industries 
such as metal-processing, textile manufacturing, and print-
ing that contain major compounds such as acids, bases, 
phenols, cyanide, and heavy metals which can be repre-
sented as chemical oxygen demand (COD). For agricultural 
activities, the productivity is highly dependent on various 
factors such as soil health, natural gasses, water irrigation, 
and pollination insects. However, without proper manage-
ment, intensive agricultural practice would lead to long-term 
deterioration of environmental quality notably from large 
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emission of greenhouse gasses (natural decomposition of 
animal’s manure and excess field-application of fertilizer), 
huge land clearing activities that would normally include 
burning of biomass as well as land and water pollution, i.e., 
uncontrolled application of non-biodegradable chemicals 
such as pesticides [1, 2].

One example is pineapple plantation activities. Overall 
pineapple production throughout the world in the year 2019 
amounted to around 28.18 million metric tons [3]. A mas-
sive increase in pineapple production, particularly canning, 
has resulted in a huge amount of waste due to the removal 
of unwanted parts for human consumption and poor fruit 
handling [1, 2]. The cannery sector normally delivers solid 
pineapple waste to farmers for use as animal feed or ferti-
lizer [4]. On the other hand, liquid pineapple waste (LPW) 
is discharged into the nearby river without being treated. 
Pineapple waste has a high moisture level (over 80%), car-
bohydrates (50–80%), vitamin C, and beta carotene content 
[5]. High-value components such as cellulose, lignin, pro-
tein (bromelain), and simple sugars are present in various 
parts and forms of pineapple waste [4]. The use of LPW, for 
example, as a growth nutrient, is an excellent indicator of 
how to employ cheap and readily available industrial waste 
instead of the much more expensive rich-medium, which 
may present the single most important factor in making this 
approach commercially viable.

Another example for organic-rich waste is fruit waste 
which has become a major problem in terms of disposal 
and treatment especially in huge urban cities with increas-
ing population but decreasing land availability. Currently, 
fruit waste management through landfilling or incineration 
is often limited by emission of methane and carbon dioxide 
gasses during landfilling and incineration and simultane-
ously generates pollutants and other toxic substances. Food 
wastes were mainly produced by households, food manufac-
turing industries, and food service sectors [6]. The residues 
produced from grain processing (maize, barley, wheat, triti-
cale, sorghum, rye, and oats) and sugar industries (cane and 
beet) are mostly used for bioethanol production, whereas oil-
seed wastes (rapeseed, jatropha, canola, palm oil, soybeans, 
castor, and neem) are used for production of biodiesel.

Some of the currently available systems to treat organic-
rich industrial waste include suspended biomass, fixed 
biomass, combined system, and lagoons which can be 
operated both in aerobic or anaerobic modes. For aerobic 
system, examples of processes are conventional activated 
sludge (CAS), step-feed activated sludge (SFAS), contact 
stabilization activated sludge (CSAS), completely mixed 
activated sludge (CMAS), selector activated sludge (SAS), 
modified Ludzack-Ettinger process (MLE), and enhanced 
modified Ludzack-Ettinger process (eMLE). Of these, the 
moving bed biofilm reactor (MBBR) technology offers a 
flexible, simple, reliable, and cost-effective bioprocess that 

uses thousands of polyethylene biofilm carriers operating 
in mixed motion within an aerated wastewater treatment 
basin [7]. Each biocarrier provides a protected surface area 
to support the growth of bacteria; the high-density bacteria 
population, in turn, helps achieve high-rate biodegradation 
within the system, thus supporting BOD reduction, nitrifica-
tion, and total nitrogen removal. Apart from MBBR, there is 
also the integrated fixed-film activated sludge (IFAS) system 
which integrates biofilm carrier technology within conven-
tional activated sludge [8]. IFAS technology is the first pro-
cess specifically designed for ideal operation in municipal 
wastewater treatment/activated sludge processes. Another 
example is the Bardenpho process [9], a system used in 
municipal wastewater treatment specifically for nitrogen 
removal. Depending on the load of the wastewater stream, it 
can be employed either as a four-stage system (anoxic basin, 
aerobic basin, second anoxic basin, and a small reaeration 
aerobic basin) or five-stage system (anaerobic, anoxic, aero-
bic, anoxic, aerobic).

To date, there are some reports available on the bio-
transformation or bioutilization of organic-rich industrial 
discharges into useful products that can be used in various 
applications. Nevertheless, most of these reports tend to 
highlight individual utilization of organic-rich effluent for a 
rather specific application. In view of this, it is the aim of the 
present review to highlight a more diverse biological-based 
utilization of organic-rich industrial discharges. In some of 
the sections, personal experience of the authors in working 
with real organic-rich industrial charges was also included 
to enhance the understanding of readers on subject matters 
discussed.

Health Effects of Pollutants in Organic‑Rich 
Waste

Organic waste or biodegradable waste can be generated from 
various industrial sectors, commercial activities, or house-
hold discharges. Organic-rich wastes, i.e., containing high 
concentration of organic compounds, are mostly generated 
from industrial activities. One example for industrial activi-
ties that generated high volumes of organic-rich waste is 
the agricultural sector. Most of the pollutants associated 
with agricultural activities can be traced from the long-term 
applications, and sometimes excessive usage, of fertilizers, 
pesticides, and biosolids or manure [10].

Pesticides can be grouped into several types according 
to its targeted use, namely, bactericide, herbicide, fungi-
cide, insecticide, molluscicides, nematicide, and veteri-
nary [11]. For cropping activities, insecticides and herbi-
cides were used because the main problem that decrease 
crop’s yield comes from insects and the weed itself [11]. 
Example for active compound found in insecticide includes 
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organochlorine (OCL), organophosphate, and carbamates 
while herbicide contains paraquats [12]. OCL, for instance, 
have been further classified according to their chemical 
name, toxicity, and their persistence in the environment 
where from the 20 types of OCL listed, 12 were regarded 
as highly persistent with long half-life of up to 10–15 years 
[13]. These include dichlorodiphenyltrichloroethane (DDT), 
1,1-dichloro-2,2 bis (p-chlorophenyl) ethane (DDD), dichlo-
rodiphenyldichloroethane (DDE), dieldrin, methoxychlor, 
chlordane, heptachlor, lindane, isodrin, isobenzan, benzene 
hexachloride, and mirex. OCL have been reported to result in 
various human’s metabolic syndrome, malnutrition, inflam-
mation, hypertension, and cardiovascular disorders [14, 15]. 
Primary route for contact between OCL and human is either 
direct absorption (pre and during applications) or through 
ingestion of poorly washed food produce [13, 15]. Xu et al. 
identified endosulfan, as one of the major components in 
pesticides that may also contribute to cardiovascular dis-
eases [16].

DDT is well documented for its toxicity [17, 18]. 
Due to its lipophilicity, DDT could easily cross the 
blood–brain barrier and accumulate in the brain, hence 
expediting chances on the risk of the development of 
Parkinson disease [19]. Organophosphates that are con-
sidered as week carcinogens [20] may also significantly 
result in the development of non-Hodgkin lymphoma after 
being exposed to their component, malathion [21]. Expo-
sure to organophosphates via breathing also may lead to 
increase of oxidative stress, mitochondrial disruption, and 
upregulation of the executioner caspase, caspase-3 which 
will cause cellular death [22]. In the meantime, dieldrin 
(1,2,3,4,10,10-hexachloro-6,7epoxy1,4,4α,5,6,7,8,8α-o
ctahydro-1,4-endo,exo-5,8-dimethanonaphthalene) has 
been reported to induce toxic effects such as neurotoxic-
ity, reproductive toxicity, carcinogenicity, and immuno-
toxicity [23]. A study by Sarty et al. shows that when the 
embryo of a zebra fish was treated with 0.347–3470 µM 
of dieldrin, it suffers with cardiac edema, tremors, and 
several skeletal distortions [24]. In addition, an agricul-
tural health study found that the exposure to dieldrin may 
result in a 5.6-fold increase on the risk of developing lung 
cancer [25]. A correlation study between toxic OCL pes-
ticides and breast cancer by Eldakroory et al. shows that 
there was significantly higher concentration of methoxy-
chlor in tumor tissue samples compared to the surround-
ing normal tissue [26]. In addition, research by Zeng et al. 
concluded that methoxychlor shows the highest toxicity 
to Daphnia magna where this situation will be a potential 
risk to the ecological system [27]. Methoxychlor capacity 
of subtle toxic effects on body’s hormonal system may 
result in endocrine disorderly property with main effects 
on reproduction [28]. Long-term exposure to carbamate 
could result in the alteration of mitochondrial function 

and T cell activity [20] as well as oxidative stress, altera-
tion in immune and hormone responses and tumor forma-
tion [29]. Paraquat toxicity has been reported to proceed 
through intervention of the intracellular electron transfer 
photosystem notably the reduction of NADP + to NADPH 
[30]. In addition, long-term exposure to paraquat can lead 
to lung, liver, kidney, and brain toxicity in human, and 
also, multiple organ dysfunctions that would lead to acute 
pulmonary fibrosis, cardiogenic shock, renal and hepatic 
failure, and death [30]. Huang et al. studied the effect 
of paraquat on interleukin-6 (IL-6) and tumor necrosis 
factor-α (TNF-α) in macrophages where it was reported 
that the presence of 1 mM of paraquat resulted in sig-
nificant increase in the fluorescence intensity for reactive 
oxygen species (indicating toxicity) as well as increase in 
the expression levels of IL 6 and TNF-α [31].

Long-term and uncontrolled applications of fertilizers can 
result in the increase in the accumulation of heavy metals 
in the soil. Most common elements found in contaminated 
soil from long-term application of fertilizers include Cu, Zn, 
and Cd [32] with Cd being the most toxic followed by Zn 
and Cu. Apart from synthetic fertilizers, the application of 
animal manures as natural fertilizers in agricultural activi-
ties is also a well-documented source for heavy metal con-
tamination of soil [33•]. Zhen et al. reported the presence 
of 0.17 mg·kg−1 Cd, 228 mg·kg−1 Zn, and 43.6 mg·kg−1 Cu 
in agricultural plots, where these values are much higher 
compared to agricultural plots added with synthetic fer-
tilizers only [33•]. Cd has been reported to interfere with 
male reproductive systems and semen quality [34] as well 
as substantial harm to the lungs [35]. Cd has been reported 
to cause renal damage on children from damaged proximal 
convoluted tubules due to mitochondrial dysfunction [36]. 
Apart from Cd, Cu had been associated with gastrointestinal 
(GI) side effect such as stomach pain, jaundice, anorexia, 
and vomiting [37•].

Biotransformation/Biomineralization 
of Organic‑Rich Waste in Various Useful 
Processes

Based on its high organic composition, organic-rich waste 
has the potential to be further processed into various use-
ful materials and processes such as activated carbon [38], 
feedstock for biomethanation [39], biohydrogen production 
[40], as growth medium for large-scale production of fungi 
[41], bioelectricity generation [42], algal lipid accumulation 
[43], and bioenergy production [44], as illustrated further in 
Fig. 1. Some specific examples for the biotransformation and 
biomineralization of these organic-rich waste are as given in 
the following sections.
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Biotransformation of Liquid Pineapple 
Waste in Cr Detoxification and Pigment 
Production Processes

Large-scale remediation is a cost-effective and agreeable 
method for the treatment of heavily Cr-contaminated soil 
and recovering metals [45]. One example is the Chrome-
Bac™ system as reported by Ahmad et al. for the biological 
treatment of Cr-containing wastewaters in a 200-L bioreac-
tor [46]. This system involves the use of LPW as a low-cost 
growth medium to remove Cr(VI) from electroplating waste-
water. ChromeBac™ system was developed in a pilot-scale 
bioreactor utilizing Acinetobacter haemolyticus EF369508 
(A. haemolyticus) as the main Cr(VI)-reducing microorgan-
isms with rubberwood sawdust as packing material followed 
by flocculation/coagulation and filtration treatment. Raw 
Cr(VI) wastewater was mixed with LPW (LPW) as a nutrient 
for the growth of A. haemolyticus. With an outflow concen-
tration of less than 0.02 mg Cr(VI) L−1, complete reduction 
to Cr(III) was achieved. Ishak et al. evaluated a combined 
treatment of the ChromeBac™ system and chromate reduc-
tase beads to increase Cr(VI) reduction in wastewater using 
immobilized chromate reductase alginate beads [47]. The 
bioreactor was supplied with a mixture of 10% (v/v) LPW 
and neutralized Cr(VI) solutions (30–60 mg L−1) at a rate of 
0.11 m3 h−1. Approximately 90% of the original Cr(VI) was 
decreased after 24 h of contact inside the bioreactor. Cr(VI) 
residuals were reduced to between 1.0 and 1.5 mg L−1 using 

immobilized chromate reductase alginate beads packed in 
a 10-L flow-through column. The ability of glucose to act 
as the most effective electron donor to increase chromate 
reductase activity from the crude cell-free extract was also 
demonstrated in this work, with a maximum specific activity 
of 9.1 pmol min−1 mg−1 protein (a decrease of 23% Cr(VI)). 
This finding supported the statement from Zakaria et al. that 
LPW with a high glucose/sucrose content is the best carbon 
source for A. haemolyticus growth in the presence of Cr(VI) 
[48].

Pineapple waste proves to be a valuable substrate with 
considerable promise if the appropriate measures and tech-
nology are used to convert its various components [49]. 
Rosli and Ahmad reported the potential of Acinetobacter 
sp. and Cellulosimicrobium sp. grown in pineapple waste 
for reducing COD in textile wastewater [50]. The pineap-
ple waste was neutralized prior to use due to the presence 
of acetic acid and lactic acid, resulting in a decrease in the 
pH value. Reduction of COD from textile wastewater by 
Acinetobacter sp. and Cellulosimicrobium sp. was more 
than 50% after 5 days of the treatment process. This study 
suggests that pineapple waste provides nutrients for the 
growth and resilience of cultures. Nduka et al. found that 
bio-stimulation of organic wastes such as pineapple, banana, 
and watermelon waste with indigenous bacteria effectively 
reduced cyanide levels [51]. The treatment was successful in 
removing around 98% of cyanide from soil samples contami-
nated with cassava plant wastewater. Numerous biological 

Fig. 1   Some examples for biotransformation and biomineralization of organic-rich waste into various useful materials and processes
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parameter studies indicated that the soil’s original high lev- 
els of cyanide considerably decreased during the bioremedia-
tion process. In another study, the potential of using Aspergillus  
niger (A. niger) fermented LPW as a source of citric acid 
for the removal of chromium (Cr), copper (Cu), lead (Pb),  
nickel (Ni), zinc (Zn) as well as some pathogens from 
anaerobically digested sewage sludge, was successfully 
demonstrated [52]. The concentration of the carbon source 
is critical in A. niger citric acid fermentation. The maximum  
rate of citric acid formation was achieved at 14–22% of sugar  
in the medium.

Another reported application of LPW is for the produc-
tion of microbial secondary metabolites such as pigments. 
Aruldass et al. investigated the possibility of using LPW as 
an alternative growth medium for Chromobacterium viola-
ceum (C. violaceum) UTM5 in violet pigment production 
[53•]. A high violet pigment yield of 5790 ± 10 mg L−1 was 
obtained from the cultivation of C. violaceum UTM5 in 
LPW with the addition of L-tryptophan as supplementation 
to enhance the pigment yield (Fig. 2). L-tryptophan acted as 
a precursor and formed basic structure of violacein. It was 
found that all the carbon, nitrogen, and hydrogen atoms of 
violacein were derived from two molecules of L-tryptophan 
and the oxygen atoms are from oxygenation of indole rings 
of intermediate violacein compound [53•]. Venil et al. have 
also extracted violet pigment for application in textile dye-
ing using the same bacteria culture in LPW [54]. C. vio-
laceum UTM5 was cultivated in a controlled environment 
with LPW and the highest pigment yield was 5800 ± 10 
mg L−1. The use of LPW, a highly nutritious medium, 
would create a “shift-up” condition in which C. violaceum 
UTM5 cells would be anticipated to construct additional 
ribosomes, increasing their capacity for protein synthesis, 
followed by an increase in protein and DNA synthesis, as 
well as reproductive rate [55]. In a similar study on the 
use of pineapple waste as a growth medium to produce a 
violet pigment, Yatim et al. successfully synthesized the 

violet pigment on the nanoscale through an encapsulation 
technique using chitosan-tripolyphosphate nanoparticles 
[56]. Another pigment produced from bacteria grown in 
pineapple waste was also reported by Aruldass et al. [57]. 
The maximum yellowish-orange pigment was produced 
using Chryseobacterium artocarpi CECT 8497 in LPW, 
L-tryptophan, and potassium phosphate (K2PO4).

Aerobic/Anaerobic Microbial 
Biotransformation of Food Processing Waste

Two of the most common types for the treatment of food 
processing waste are aerobic digestion (composting) and 
anaerobic digestion. These approaches would normally 
yield valuable final products that can be utilized in various 
processes [58]. Aerobic digestion, also known as compost-
ing, is an environmentally beneficial treatment process that 
make use of microbial cultures (bacteria, yeast, fungi, or 
archaea) to degrade organic waste in the presence of oxy-
gen. Typical biodegradation process of heterogeneous solid 
organic material takes place in a controlled environment. 
Nevertheless, the application of food waste as a compost-
ing feedstock might not be a straightforward solution due to 
some of its features such as high water content, high elec-
trical conductivity, high ammonia emission, high nitrogen 
emission into compost, high nitrification index, and low 
organic matter which must meet certain conditions in order 
to be used as soil amendment [59, 60]. The Environmental 
Protection Agency recognizes five composting types which 
are on-site, vermicomposting, windrow, static pile, and in-
vessel composting [61]. For households or businesses that 
create small volumes of organic waste, on-site composting 
is perfect. Vermicomposting is another way to use worms 
to break down organic waste while for large-scale compost-
ing operations, windrow composting is the most frequent 
approach. The organic trash is stacked in vast mounds and 
mechanically aerated by big machines. Yard clippings and 
food waste, as well as fats, liquids, and animal by-products, 
can all be composted using this method, which are typi-
cally not acceptable for small-scale compost piles. Windrow 
plants produce a significant volume of leachate that must be 
treated to protect groundwater contamination. Large-scale 
composting facilities also use aerated static pile composting. 
It generates a finished product in 3 to 6 months, significantly 
faster than windrow composting, although it is not suited for 
oil or animal by-products. In-vessel composting is a more 
compact technique that can take in a wide variety of organic 
waste, including meat and biosolids, in a controlled environ-
ment [61, 62]. A plug flow reactor, rotating drum reactor, 
rectangular linked reactor, cylindrical reactor, or batch reac-
tor is used for aerobic digestion [63].

Fig. 2   Pigment production in various concentrations of LPW; results 
are expressed as mean ± standard deviation (n = 3). ap < 0.05, bp < 0.01, 
cp < 0.001 compared to control concentration, t-test [47]
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Agitation, forced aeration, and rotating are the three 
most important characteristics in aerobic composting 
treatment. For improved treatment, these factors are 
combined, such as agitation with tumbling and stirring, 
followed by forced aeration, in which air is allowed to 
infiltrate the composting mass in all directions. This 
promotes microbial growth equilibrium, which benefits 
the many stages of food waste composting, including the 
lag, log, stationary, and mature phases. Microbes accli-
mate to their new environment in the lag phase, and then 
multiply in the log phase. Furthermore, in the station-
ary phase, these bacteria are allowed to breakdown the 
organic materials without causing any harm. Finally, the 
mature compost is removed as a valued end product in the 
last phase. If these conversion operations are carried out 
in a well-planned manner, organic waste can be success-
fully converted into a hygienic value-added product such 
as mature compost that can be employed as an organic 
fertilizer source, enhancing ecological agriculture that is 
also cost-effective [62]. The aerobic digestion of differ-
ent types of food wastes by mixed microbial cultures is 
shown in Table 1.

Anaerobic digestion of organic food waste and com-
posting were found to be comparable in their global 
warming, acidification/eutrophication, and carcinogenic 
impacts. Due to its potential to produce biogas and biosol-
ids, which may be utilized as a soil amendment, anaerobic 
digestion has been a more favorable technique of treat-
ment than composting, despite its long start-up time, 
particular start-up conditions, and high cost. Anaerobic 
digestion creates a mixture of methane and carbon dioxide 
from the microbial degradation of organic waste in the 
lack of oxygen, similar to landfill gas collection. Biogas 
from anaerobic digestion, like landfill gas, contains pol-
lutants including water vapor and hydrogen sulfide. This 
gas can be cleaned and used for a variety of purposes, 
including heating and power generation. Thermophilic 
and mesophilic temperatures are the two settings in 
which anaerobic digestion can take place. The digester 
is kept between 122 and 140 °F in thermophilic condi-
tions. These higher temperatures are necessary for disease 
eradication and the production of “class A” biosolids. The 
EPA has certified these biosolids as appropriate for use 
on farm fields and household gardens with no restrictions. 
The temperature of mesophilic digesters is kept between 
86 and 100 °F. They are simpler to operate, but the bio-
solids generated are subject to more stringent rules due to 
their inferior quality. As the diversion of food waste from 
landfills grows more important, anaerobic digestion is 
seen as a viable option among alternative waste disposal 
strategies [62]. Table 2 shows the microorganisms present 
in anaerobic digestion of food waste.

High‑performance Biofilm Reactor 
Technologies for Organic Nitrogen Removal

Organic nitrogen is derived from not only municipal but 
also industrial wastewaters. Nitrogen source is comprised 
of protein, amino acids, and amino sugars mainly in food-
processing, textile, explosive, slaughterhouse, livestock, 
and refinery industries. The choice of treatment technolo-
gies depends on wastewater compositions targeted. For 
treatment of wastewater with a COD/N ratio higher than 
12.5, the amount of which nitrogen is assimilated into 
a bacterial cell, i.e., 8% of nitrogen incorporated into a 
microbial cell [64], the bioreactor configuration consisting 
of merely an anaerobic process is not sufficient to remove 
nitrogen from wastewaters. Therefore, biological nitro-
gen removal for organic nitrogen-containing wastewaters 
is essential to avoid nitrogen discharge into water bodies, 
eventually causing eutrophication. For nitrogen removal 
from these industrial wastewaters with nitrogen concen-
trations ranging from 20 to c.a. 3000 mg-N L−1 [65•], a 
choice of a bioreactor type should be carefully made. An 
activated sludge system has been broadly implemented 
over the years to remove organic carbon and nitrogen in 
industrial wastewaters. A biofilm system, where multi-
ple layers of bacterial cell aggregates and their excreted 
polymers are either self-immobilized or grown onto a sub-
stratum, is another choice to strengthen high-performance 
nitrogen removal. Currently, novel biofilm systems, i.e., an 
aerobic granular sludge and a membrane-aerated biofilm 
reactor, have been broadly implemented [66, 67]. For bio-
logical nitrogen removal, there are several options such as 
the conventional nitrification–denitrification or the partial 
nitritation-anaerobic ammonia oxidation, anammox (PNA) 
[68]. To accomplish these nitrogen-removing processes, 
establishing anaerobic and aerobic conditions is impera-
tive. Such distinct redox conditions can be created in a 
temporal and/or spatial manner (Fig. 3).

To temporarily create distinct redox conditions, a 
sequencing batch reactor (SBR) with intermittent aera-
tion has been implemented for nitrogen removal from 
industrial wastewaters. SBR-based technologies employ 
a fill-and-draw mode where organic nitrogen-containing 
wastewater is intermittently supplied, followed by mixing 
for an anoxic condition, aeration for an aerobic condition, 
and decanting. An SBR is suitable for facilities periodi-
cally discharging wastewater and brings benefits because 
it only requires a single reactor vessel, therefore ensuring 
a small footprint. In contrast, anaerobic and aerobic con-
ditions can be created by two independent reactor vessels 
and spatial distribution within bacterial aggregates, e.g., 
granules and biofilms. The dedicated reactors for nitrifica-
tion and denitrification, and PNA allow the independent 
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control of the reactors, ensuring robust reactor perfor-
mances [69, 70•] and faster startup for nitrogen removal 
from municipal wastewater [70•]. However, setting two 
separate reactors necessitates a relatively large footprint 
and capital expenditures. Another choice to create spatial 
distribution in a single reactor vessel is granular sludge 
and biofilm onto a substratum. By using a steep gradient 
of dissolved oxygen concentration within such dense bac-
terial aggregates, redox zonation can be herewith estab-
lished. Bacteria responsible for nitrification, denitrifica-
tion, and anammox would be spatially distributed in favor 
of preferable redox conditions. The system can be compact 
and does not require a large footprint. Usually, biofilms 
are grown, decayed, and detached depending on substrate, 
environmental, and shear conditions [71, 72]. Controlling 
biofilm thickness and architecture, i.e., a key to control 
redox zonation and resultant reactor performances, is a 
long-standing challenge [66].

Aerobic granular sludge is a powerful and promising  
biofilm-based technology to achieve a smaller footprint [71]. 
Dense self-aggregate provides an ultra-fast sedimentation, 
making it easy to separate biomass and treated water. More 
importantly, the very dense architecture allows steep redox 
gradients, resulting in high-performance organic carbon 
and nitrogen removals. Granulation requires a feast-famine 
condition; hence, most SBR technologies are preferably 
employed, whereas a few continuous reactors also exist 

[72–74]. The technology can be extended not only to nitri-
fication and denitrification but also to PNA [75]. A technol-
ogy harnessing aerobic granule sludge, i.e., Nereda®, has 
been commercialized [76] and implemented in more than 
70 full-scale municipal wastewater treatment facilities [77]. 
Broad dissemination to nitrogen removal from industrial 
wastewaters is highly expected. A membrane-aerated bio-
film (MABR) reactor is an innovative technology to achieve 
energy-efficient nitrogen removal. The reactor consists of a 
cassette of hollow-fiber bundles or flat-sheet gas-permeable 
membrane, soaked into a reactor. A gas-permeable mem-
brane achieves bubbleless aeration to the other side where 
a biofilm is grown, allowing the direct oxygen supply to the 
biofilm especially for nitrification [78] and partial nitrifica-
tion [79]. Direct oxygen delivery accomplishes much higher 
oxygen utilization efficiency than a conventional aeration 
system, improving aeration efficiency. The excellent oxy-
gen delivery by a gas-permeable membrane was achieved at 
10 g-O2 kWh−1 in a pilot-scale MABR [80], approximately 
five times larger than conventional aeration. Because of this 
merit, an MABR is currently being commercialized as an 
energy-saving and cost-effective organic carbon and nitrogen 
removal technology. Benchmarking of an MABR is ongoing 
[81]. Another trait of an MABR lies in a counter-current 
substrate diffusion geometry where oxygen is supplied from 
the biofilm bottom whereas contaminants from the biofilm 
surface. This is entirely distinct from a co-current substrate 

Table 2   Microorganism present in anaerobic digestion of food waste

Food waste Microorganism present Treatment condition References

Vegetable waste Bacteroidetes and Firmicutes Effluent recirculation [109]
Food waste Methanosaeta, Syntrophomonas, Proteiniphilum acetatigenes Biological co-treatment [110–112]
Food waste Methanosaeta, Methanosarcina Microwave pretreatment [113]
Food wastewater Petrotoga (assigned to phylum Thermotogae), Petrimonas (assigned 

to phylum Bacteroidetes)
Thermophilic and mesophilic 

anaerobic digestion
[114]

Fig. 3   Nitrification–denitrification 
process in a biofilm system; a redox 
zonation in space and b redox zona-
tion in time
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diffusion geometry, i.e., a conventional biofilm where 
oxygen and contaminants are supplied from the exterior 
[82]. The counter-current substrate diffusion geometry can 
achieve more efficient nitrogen removal than co-current sub-
strate diffusion geometry when applied to organic nitrogen-
containing wastewater with a low COD/N ratio [83, 84]. The 
higher nitrogen removal efficiency is ascribed to a hotspot 
for nitrification, located at a deeper region of a biofilm where 
DO concentration is high and organic carbon concentration 
is low. The conceptual model and simulation revealed that an 
MABR could be advantageous for PNA [85, 86] and experi-
mental validations [87–89]. Furthermore, a counter-current 
biofilm geometry used as an MABR emits far less nitrous 
oxide (N2O) [83, 90], known as a highly potent greenhouse 
and ozone-depleting gas [91]. One of the major challenges 
for the broad dissemination of MABR technologies lies in 
biofilm control [92]. A thicker biofilm increases the distance 
of ammonia diffused from the bulk liquid to a hotspot adja-
cent to the biofilm bottom, where oxygen is supplied from 
the ammonia from the bulk to the active zone. Several tri-
als, e.g., scouring gas or imposing high-velocity liquid, have 
been implemented; however, generally acceptable strategies 
await more thorough investigations for implementation in 
practice.

Conclusions and Future Outlook

In conclusion, organic-rich waste emanating from mostly 
agricultural activities can become a valuable source for raw 
materials that can be utilized in various useful processes. 
This presents a very good opportunity to be explored fur-
ther notably for agricultural-based countries such as those 
located in the Asian, South American, Latin American, 
Africa, and some parts of the Northern American regions. 
Nevertheless, accelerated processing of natural resources at 
the levels of over-exploitation implies a negative impact on 
the environment affecting the availability and cost of these 
natural resources. Therefore, it is easy to understand why 
the concept and purpose of a circular economy is taking 
hold around the world, mainly because it offers new ways 
to create a more sustainable economic growth model. In 
view of this, organic-rich waste offers excellent opportu-
nity for scientific exploration, innovation, and technologi-
cal development, mainly due to the need for its reduction 
and treatment, or where appropriate the use as valuable 
source for raw materials that can be utilized in various use-
ful processes. This is envisaged to indirectly influence the 
overall economic scenario of a country where advancement 
in technology, knowledge in workers, agricultural prac-
tices, and management would promote the shifts in labor to 
higher productivity sectors which in turn resulted in higher 
overall household incomes. Full-scale implementation of a 

well-structured approach in the management of organic-rich 
waste would present immediate and long-term benefits. For 
instance, besides promising to be a cheaper alternative for 
natural resources, proper management of these organic-rich 
waste would also reduce hazards posed from the presence 
of non-biodegradable, highly oxidizing, or toxic compounds 
present, notably from long-term applications of pesticide 
and fertilizers. Another important focus in sustainable agri-
culture revolves on the increase in efficiency of biological 
processes that is integrated with livestock, nutrients, soil, 
water, and crops. This could directly assist in better nutri-
ent recycling and improved biological nitrogen which would 
ultimately reduce the amount of organic materials present in 
our water system. Nevertheless, more studies need to be car-
ried out at the demonstration-scale level prior to full utiliza-
tion of the organic-rich waste as feed in industrial processes. 
On the other hand, sustainable agricultural practice also 
deserves a more serious attention from various stakehold-
ers to ensure minimum impact from agricultural activities to 
resources, human health, and the environment.
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