AIR POLLUTION (H ZHANG AND Y SUN, SECTION EDITORS)

Evaluating the Impacts of Ground-Level O₃ on Crops in China

Hui Zhao^{1,2,3} · Yuxin Zhang⁴ · Qi Qi¹ · Hongliang Zhang^{1,5}

Accepted: 7 August 2021 / Published online: 11 October 2021 © The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021

Abstract

China is facing increasing ground-level ozone (O_3) along with the reduction of particulate matter since the implementation of the Air Pollution Prevention and Control Action Plan (APPCAP) in 2013. High-level O_3 poses adverse effects to ecosystems by inhibiting the growth of crops and other plants in addition to human health effects. The capture of atmospheric carbon dioxide by plants is also weakened due to O_3 stress effect. In recent years, studies have been conducted to evaluate the potential risk of O_3 in agricultural production in China with different methods and focuses and the results are not consistent for comparison and policy-making. In this paper, we first briefly reviewed the levels of O_3 pollution in China in recent years, and the evaluation indicators for analyzing O_3 impacts on crops as well as their applicability. Then, methods for determining O_3 flux and the progress in dry deposition of O_3 in farmlands were presented. We also introduced some recent advances in evaluating losses of crop yield caused by O_3 exposure. Finally, in view of the shortcomings of current research, prospects for future research were suggested.

Keywords Ground-level $O_3 \cdot Crop \text{ damage } \cdot Flux \cdot Dry \text{ deposition } \cdot Risk assessment$

Introduction

Ozone (O_3) in the stratosphere protects lives by effectively absorbing ultraviolet radiation from the sun, but groundlevel O_3 produced by complex photochemical reactions of precursors such as nitrogen oxides (NO_x), volatile organic

This article is part of the Topical Collection on Air Pollution.

Hongliang Zhang zhanghl@fudan.edu.cn

- ² Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Nanjing 210044, China
- ³ Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640, China
- ⁴ School of Science, Hong Kong University of Science and Technology, Hong Kong 999077, China
- ⁵ Institute of Eco-Chongming (IEC), Shanghai 200062, China

compounds (VOC_S), methane (CH₄), and carbon monoxide (CO) is harmful [1]. It has adverse effects on crops and natural vegetation in addition to human health. In the past few decades, due to the intensification of human activities, the emission of O_3 precursors has increased sharply, resulting in continuous increase of ground-level O_3 at a rate of 0.5-2% per year in the Northern Hemisphere [2]. Based on this upward trend, it is predicted that the average background O_3 concentration may reach 68 ppb by 2050, and even as high as 84 nL L⁻¹ in some areas by the end of this century [3–5]. Thus, it is crucial to evaluate and prevent adverse effects of O_3 using proper methods.

The current severe O_3 pollution in North America, Europe, and Asia is already sufficient to have negative effects on surface vegetation and food crops, including leaf damage, decline in photosynthesis, reduction in growth rate, changes in carbon distribution, closure of stomata, and premature aging [6–9]. If effective measures are not taken to curb the threat of O_3 , it is estimated that the global O_3 -induced yield losses of wheat, maize, and soybean in 2030 were 4.0–26.0%, 2.5–8.7%, and 9.5–19.0%, respectively [10], with total economic losses of \$12–\$35 billion each year. Therefore, an accurate assessment of the potential risks of O_3 to crops is not only the basis for implementation of air pollution prevention and control measures, but also

¹ Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China

an urgent need to improve the adaptability of China's food production to climate change and environmental pollution.

In recent years, with the rapid development of the national economy and the acceleration of industrialization and urbanization, China is facing the problem of regional air pollution characterized by high concentrations of PM2 5 and O₃. In order to improve the current air pollution situation, China's State Council issued the Air Pollution Prevention and Control Action Plan (APPCAP) on September 10, 2013. Recent studies have suggested that the implementation of the APPCAP has significantly reduced the levels of PM_{2.5} in eastern China [11, 12], but ground-level O_3 is becoming more and more serious, and it has replaced PM25 as a new problem of air pollution in some large cities of China [12, 13]. China is a large agricultural country, and agriculture has always been the foundation of economic development. Studies have shown that ground-level O₃ that far exceeds the damage threshold of crops reduces crop growth and yield in China [5], thus seriously threatening food security. However, the evaluation methods are inconsistent and results are uncertain for policy-making to avoid the adverse effects of O3.

Based on the above concerns, this paper focus on reviewing ground-level O_3 pollution and its potential risks to crops in China, and its structure is as follows: the "Overview of Ground-Level O3 Pollution in China" section reviews the state of ground-level O₃ pollution in China; the "Indicators for O₃ Impacts on Crops" section systematically summarizes the development of O₃ risk assessment indices; the "Research Methods of O3 Flux" section briefly introduces the methods of O₃ flux observation and stomatal uptake estimation; the "O₃ Dry Deposition in Farmland Ecosystem" section covers the dry deposition of O₃ in farmland ecosystem; the "Potential Risk Assessment of Ground-Level O₃ Pollution" section gives a detailed review of O₃ effects on crop yield; the "Limitations and Future Research Directions" section points out the shortcomings of the current research and provides suggestions for future researches. This review would provide a theoretical basis for the evaluation and control of O₃ pollution to avoid agricultural losses.

Overview of Ground-Level O₃ Pollution in China

China's air pollution problem caused by rapid economic development and accelerated urbanization has become increasingly severe. China has also been committed to the monitoring and control of air quality over the past few decades. Since the 1980s, the China Meteorological Administration has established seven atmospheric background stations to conduct long-term monitoring of air quality [14], and thus, some early studies on O_3 pollution were limited to station

observations due to the lack of large-scale O_3 data. For instance, ground-level O_3 was found to increase at a rate of 1.13 ppb per year during 2003–2015 at Shangdianzi station in Beijing and 1.80 ppb per year during 1991–2006 at Lin'an station in Zhejiang, respectively [15, 16]. A trend analysis of ground-level O_3 at the Waliguan station in Qinghai from 1994 to 2013 indicated that the growth rates during the daytime and nighttime were approximately 0.24 ± 0.16 ppb per year and 0.28 ± 0.17 ppb per year, respectively [17]. In the Pearl River Delta (PRD) region, Li et al. [18] reported that ground-level O_3 increased significantly from 2006 to 2011, with a mean trend of 0.86 ppb per year.

From January 2013, the Ministry of Ecology and Environmental of the People's Republic of China (MEE, PRC) had begun to publish hourly data of six air pollutants including O_3 in a web platform, which provided the researchers with a rare opportunity to analyze the distribution of O_3 on a regional scale based on observational data [19-21]. Figure 1 shows the spatial distributions of maximum daily 8-h average O₃ concentration (MDA8 O₃) during 2015–2020 in China. Overall, the high-level O₃ pollution was mainly concentrated in North China, Central China, and East China, which may be related to the high population density in these areas and the large amount of O_3 precursor emissions caused by frequent human activities [22]. The O₃ level in South China, Southwest China, and Northeast China was relatively low due to lower anthropogenic emissions and the influence of meteorological conditions [11]. Ground-level O_3 and its precursors like NO_X and VOC_S emissions present a complex non-linear relationship [15], and many previous studies have shown that the generation of O₃ depends on the ratio of VOC_s/NO_x [1, 23, 24]. In general, in regions of high NO_x , reducing VOC_S emissions could inhibit the production of O₃; however, higher NO_x concentrations could also promote the formation of nitrous acid (HONO). HONO is one of the major contributors to the primary OH production in the troposphere. Its photolysis produces hydroxyl radical (OH) during the daytime, which enhances the atmospheric oxidation capacity, thereby increasing HO₂ and RO₂ concentrations leading to elevated O_3 concentrations [25, 26], as shown in reactions (1-11). Several studies have also confirmed that the increase in anthropogenic VOC_S emissions was the main reason for the increase in O₃ concentration in eastern China [12, 14, 20]. Therefore, effective measures must be taken in the future to control VOC_s emissions, thereby reducing ground-level O_3 pollution. In short, the production of O_3 is very complicated, affected by not only the emission of precursors and meteorological factors [14, 15], but also regional transport [11, 14].

$$HONO + hv (\lambda < 400 \text{ nm}) \rightarrow NO + OH$$
(1)

Fig. 1 Spatial distributions of MDA8 O₃ during 2015–2020 across China

 $H_2O_2(\lambda < 555 \text{ nm}) + \text{hv} \rightarrow 2\text{OH}$ (2)

 $O_3 + hv (\lambda < 330 \text{ nm}) \rightarrow O^1 D + O_2$ (3)

 $O^{1}D + H_{2}O \rightarrow 2OH \tag{4}$

 $OH + CO \rightarrow H + CO_2$ (5)

 $H + O_2 \rightarrow HO_2 \tag{6}$

 $OH + VOC_S \rightarrow RO_2$ (7)

 $HO_2 + NO \rightarrow NO_2 + OH$ (8)

 $RO_2 + NO \rightarrow NO_2 + RO$ (9)

 $NO_2 + hv \rightarrow O + NO$ (10)

$$\mathbf{O} + \mathbf{O}_2 \to \mathbf{O}_3 \tag{11}$$

According to the method presented by Zhao et al. [11], five representative regions including Beijing-Tianjin-Hebei (BTH), Yangtze River Delta (YRD), Pearl River Delta (PRD), Chengdu-Chongqing (CC), and Fen Wei Plains (FWP) were selected to better understand the annual change characteristics of MDA8 O_3 in different regions, as shown in Fig. 2. On the whole, the annual mean MDA8 O_3 in BTH, YRD, and FWP were significantly higher than that in entire China (All). MDA8 O_3 exhibited an upward trend, from 85.7 µg m⁻³ in 2015 to 95.1 µg m⁻³ in 2017 for All, which may be associated with the decline in PM_{2.5} due to the implementation of APPCAP (2013–2017) [12]. However, it experienced a significant decrease during 2018–2020,

reflecting the effectiveness of the implementation of the "Three-Year Action Plan to Win the Blue Sky Defence War" in China. It is noteworthy that MDA8 O_3 during 2015–2017 increased most rapidly with 31.8% increase from 78.0 to 102.8 µg m⁻³ for FWP, followed by BTH (15.3% increase from 90.8 to 104.7 µg m⁻³) and YRD (13.8% increase from 88.9 to 101.2 µg m⁻³). From 2018 to 2020, CC had the largest MDA8 O_3 reduction (5.7% from 90.5 to 85.3 µg m⁻³), whereas YRD only showed little reductions (1.5% from 99.0 to 97.5 µg m⁻³).

Indicators for O₃ Impacts on Crops

Concentration- and Flux-Based Indices

Previous studies on O₃ impacts on crops are usually based on control experiments such as open-top chambers (OTC) and free air controlled exposure (FACE), both were conducted by setting different gradients of O₃ concentration to investigate the effects of O₃ on crop growth, photosynthesis, and yield. On the basis of these experiments, two indices were proposed to quantify the potential risks of O_3 to crops: concentration- and flux-based indices. Table 1 presents a brief summary of advantages and disadvantages of two metrics. In 1980, the U.S. Environmental Protection Agency (US-EPA) established the National Crop Loss Assessment Network (NCLAN), and researchers used OTC facilities to carry out experiments on the effects of O₃ on the growth and yield of wheat, rice, soybeans, maize, and other crops across the USA [27, 28]. These studies showed that there is a good linear relationship between the increase of O₃ concentration and the decrease of crop yield, and concentration-response relationships of different crops were established [3]. M7 and M12 are the most commonly used concentrationbased exposure indices, which represent the average O₃

lable I	A comparison of	different evaluation	i indices about th	e impacts of g	ground-level O	₃ on crops

Evaluation indices	Types and definitions	Advantages	Disadvantages
Concentration-based indices	M7: the average values of the hourly mean O_3 from 09:00 to 15:59 M12: the average values of the hourly mean O_3 from 08:00 to 19:59 SUM06: the sum of all hourly mean O_3 concentrations above 60 nL L ⁻¹ W126: a cumulative O_3 exposure indices according to sigmoidally weighted daytime O_3 concentra- tions AOT40: the sum of hourly mean O_3 over a threshold of 40 ppb during the daytime	 (a) Quick and simple calculation and easy to understand (b) Less parameters requirements, and more widely used in O₃ risk assessment (c) Only need to involve the O₃ concentration and/or exposure time 	 (a) No physical mechanism (b) Only discuss the impact of O₃ on crops; the key environmental factors of crop growth are not considered (c) Lack biological meaning
Flux-based indices	POD_Y : the accumulated stomatal O_3 uptake flux over a threshold of Y nmol m ⁻² s ⁻¹	Climatic factors such as temperature, radiation, vapor pressure deficit, and soil moisture status that affect the stomatal conductance of crop leaves are considered	(a) Need to input too many parameters(b) Complicated calculation process

concentration for 7 h (09:00–15:59) and 12 h (08:00–19:59) during the growing seasons, respectively. The O_3 concentration–response relationships for crops are obtained by using mathematical statistics methods, and they are regarded as simple empirical relationships based on experiments. The calculation of M7 and M12 is relatively simple. However, these two indicators use O_3 concentration as the only influencing factor to reflect the response of crops to O_3 stress, and ignore the impacts of exposure time and crop growth condition [6], which cannot well reflect the actual damage effect of O_3 on crops.

With the deepening of the research, some researchers have realized that the negative effects of O₃ on crops have a cumulative effect [3]. Therefore, the US-EPA proposed SUM06 and W126 as plant protection standards in 1996. SUM06 refers to the hourly cumulative value of atmospheric O_3 concentration greater than 60 ppb. W126 represents the weighted accumulation of O₃ concentration during the daytime, which is calculated by multiplying the hourly O₃ concentration by weighting index, and then accumulating the value within a certain period of time. European researchers have pointed out that O₃ will cause injury to crops when it is higher than 40 ppb, and the O₃ exposure index AOT40 has a linear relationship with the reduction of crop yield [27]. Therefore, the AOT40 indicator is generally used as the standard for plant protection in Europe. This indicator is obtained by accumulating hourly mean O₃ over a threshold of 40 ppb during the daytime. In general, some cumulative exposure-based indices such as SUM06, W126, and AOT40 take into account not only the influence of O₃ concentration, but also the cumulative effect, and so they are more scientific than M7 and M12 [28].

M7(ppb) =
$$\frac{1}{N} \sum_{i=1}^{N} [O_3]_i$$
 (12)

M12(ppb) =
$$\frac{1}{N} \sum_{i=1}^{N} [O_3]_i$$
 (13)

$$SUM06(ppbh) = \sum_{i=1}^{N} \left[O_3\right]_i \text{ for } \left[O_3\right] \ge 60 \text{ ppb}$$
(14)

W126(ppbh) =
$$\sum_{i=1}^{N} \left[O_3 \right]_i \times W_i$$
(15)

AOT40(ppbh) =
$$\sum_{i=1}^{N} ([O_3]_i - 40)$$
 for $[O_3] \ge 40$ ppb) (16)

where *N* is the number of hours during crop growing seasons and $[O_3]_i$ is the hourly O_3 concentration in ppb. W_i is the weighting index, and its calculation is as follows:

$$W_i = \frac{1}{1 + M \cdot \exp(-A \cdot [O_3]_i / 1000)}$$
(17)

where M = 4403 and A = 126.

Some studies have shown that the impact of O_3 on crops is determined by the amount of O_3 that enters the crop body through the stomata of the leaves to undergo complex biochemical reactions [29–31], which is called the accumulated stomatal flux of O_3 (POD_Y), and its calculation is shown below in Eq. 18. The concentration-based exposure indices like SUM06, W126, and AOT40 ignore the amount of O₃ absorbed by crop leaves through the stomata, and they default that the amount of atmospheric O₃ is equivalent to the amount of O_3 absorbed by the crop and does not involve the effect of stomatal conductance. On the one hand, when O_3 concentration in the ambient atmosphere is high, if the stomata resistance of the crop leaves is large, the O₃ absorption of the crop leaves would be low, and the damage caused by O_3 to crops will be greatly reduced [31]. On the other hand, there are also certain differences in the sensitivity of crops to O₂ under different crops, different growth periods of the same crop, and different environmental conditions. In addition, these indices do not take into account the crop's antioxidant capacity, detoxification capacity, and repair capacity at night, which may overestimate the negative effects of O_3 on crops [32]. Nevertheless, SUM06 and AOT40 are still widely recognized and applied.

$$POD_{Y} = \sum_{i=1}^{N} \max[F_{st} - Y, 0], \Delta t$$
(18)

where F_{st} is the stomatal O₃ uptake flux in nmol O₃ m⁻² s⁻¹, *Y* is the flux threshold, and $\Delta t = 1$ h [31].

Ground-level O₃ enters the terrestrial ecosystem through dry deposition, and then affects crop growth in the form of stomata absorption and non-stomata deposition. The stomata on the surface of crop leaves are the main channel for gas exchange with the outside world, which controls the photosynthesis and transpiration of crops. When the stomata are open during the daytime, O_3 enters the crop body through the stomata pathway. During the nighttime, the stomata are almost completely closed, and the amount of O₃ entering the crop body will be greatly reduced, or even close to zero. Studies have shown that the differences in the sensitivity of different types of crops to O_3 are determined by differences in stomata [33], so stomata play a very important role in the impact of O_3 on crops. Stomatal conductance indicates the degree of opening of stomata, and its size is related to the regulating effect of stomata. When the stomata resistance of the crop leaves is small and the stomata conductance is large, the amount of O_3 entering the crop will increase. Not only that, O₃ also affects the stomatal conductance, and many studies have found that O₃ can inhibits stomatal conductance, leading to an increase in stomatal resistance, thereby reducing stomatal O_3 flux [34]. The stomatal conductance model involves environmental factors such as phenological period, temperature, light intensity, water vapor pressure difference, and soil moisture content, and its simulation is often based on the Jarvis model and the Ball-Berry model [35-37]. Stomatal O₃ absorption flux is determined by the stomatal conductance and O₃ concentration, and therefore, the relationship between them has become an important issue in this field.

Determination of Damage Thresholds for O₃

A few studies have shown that crops have certain defense and detoxification capabilities against O₃ stress. The antioxidants such as ascorbate in the cell wall can remove a small part of O_3 that enters the body of the crop [29]. Therefore, both concentration-based indices and flux-based indices have a damage threshold, which is an empirical value reflecting the negative effects of O₃ on crops, meaning that the impact below this empirical value is negligible. For example, 60 ppb, 40 ppb, and Y represent the threshold values of SUM06, AOT40, and POD_v, respectively [38]. In fact, the threshold Y in POD_y varies with crop types, growth periods, crop varieties, and environmental factors. So far, there is no model that can completely describe the dynamic process of Y; the only way to determine the threshold Y is to establish the relationship between POD_{y} and crop yield loss. The calculated cumulative stomatal O₃ absorption flux had the highest correlation with the relative yields of wheat and potato in European when the threshold Y is set to be 6 nmol m⁻² s⁻¹ [29]. A flux threshold of 2 nmol m⁻² s⁻¹ was judged as a reasonable for an O₃ flux-based response relationship for rice in the Pearl River Delta of South China [39]. Feng et al. [40] proposed that the strongest relationship was found by using the O₃ uptake threshold of 12 nmol $m^{-2} s^{-1}$ for winter wheat in subtropical China. Wu et al. [31] found that POD₄₀ (the accumulated stomatal O₃ flux over a threshold of 4.0 nmol $m^{-2} s^{-1}$) had the best linear correlation with the relative yield of winter wheat in the Yangtze River Delta, which was consistent with the results of Tong et al. [41], but lower than those reported in European studies [29, 35]. Zhang et al. [42] reported that the O₃ absorption flux threshold of 9.6 nmol $m^{-2} s^{-1}$ was most reasonable for soybean flux-response relationship in Northeast China.

To sum up, the threshold used for crop yield loss assessment using flux-based indices was set as a constant in the previous studies. Therefore, taking the detoxification effect of crops into account in the O_3 risk assessment model can provide a strong basis for accurately predicting crop yield losses.

Applicability of Different Evaluation Indices

A large number of experiments on the effects of O_3 on crops showed that flux-based exposure indices provided stronger relationships with the damage effect of crops than concentration-based exposure indices such as AOT40 [5]. An experiment conducted in Europe showed the relative yields of wheat and potato had a stronger correlation with the stomatal O_3 flux indices than with AOT40 indices [43]. The study of Karlsson et al. [44] also confirmed that the stomatal O_3 flux was more closely correlated with visible foliar O_3 injury in Southern European forests than AOT40.

Goumenaki et al. [45] suggested that the performance of stomatal O₃ flux as a descriptor of O₃ risk to lettuce was better than the performance of AOT40 in Europe. Mills et al. [30] collected and analyzed studies on the potential ecological risks of O₃ in 17 European countries in the past 20 years and concluded that stomatal O₃ flux was better than AOT40 as an index of O₃ risk assessment for vegetation. In China, Feng et al. [40] developed and parameterized Jarvis-type stomatal conductance model for winter wheat and used it to establish the relationship between stomatal O₃ flux and yield loss. A rice experiment conducted in the Pearl River Delta region of China indicated that the accumulated stomatal O₃ uptake flux had a strong negative linear relationship with the relative yield, and its correlation coefficient was higher than that of the AOT40 index [39], whereas in wheat experiments of the North China Plain, both AOT40 and stomatal O₃ uptake flux were found to have a good relationship with relative yield [41], which was similar to the study by Gonzalez-Fernandez et al. [46].

Research Methods of O₃ Flux

As mentioned above, O_3 flux-based index is the future research directions as it can better describe the impact mechanism of O_3 on crops than O_3 concentration-based index, and thus, the observation and simulation of O_3 flux in farmland ecosystems are a prerequisite for accurately implementing O_3 risk assessment for agricultural crops. The following introduces some research methods of O_3 flux.

Flux Chamber Method

The flux box method is regarded as a traditional method to directly measure the gas exchange of plants. There are two types of flux chambers: static (closed, passive) and dynamic (flow-through, active) [47]. Among them, the static chamber method is the most widely used experimental measurement method. During the measurement process, a chamber is used to cover the measured crop, and the contact port between the chamber and the base is sealed with water to ensure that the air in the chamber does not have any exchange with the outside world. The gas concentrations in the chamber are measured at a certain time interval, and then, the following formula is used to calculate the gas exchange flux:

$$F_{g} = h_{c} \times \frac{M_{g} \times P}{R \times T} \times \frac{\partial_{c}}{\partial_{t}}$$
(19)

where F_g is the gas flux (mg m⁻² h⁻¹), h_c is the height of the chamber (m), M_g is the molar mass of the gas (g mol⁻¹), P is the air pressure (Pa), R is the universal gas constant (R = 8.3144 Pa m³ mol⁻¹ K⁻¹), T is the temperature (K), c is the gas volume fraction in the chamber $(\times 10^{-9})$, and *t* is the time for the chamber to cover the measured crop (s). The static chamber method has the advantages of simple principle, easy operation, and low cost, but its disadvantages are that the natural turbulent state of the air on the surface of the measured crop is changed, which affects the measurement of exchange flux to a certain extent [48].

The dynamic chamber is an open system, its working principle is that the opposite sides of the chamber are opened so that a certain flow of air can pass through the chamber, and then, the gas exchange flux can be obtained by measuring the inlet and outlet concentration of the gas. The calculation method is as follows:

$$F_{\rm g} = Q \times \rho_{\rm g} \times \frac{C_1 - C_2}{A} \tag{20}$$

where Q is the flow rate of the gas in the chamber (m³ h⁻¹), ρ_g is the gas density (g m⁻³), and C_1 and C_2 are the outlet and inlet concentrations of the gas, respectively (mL L⁻¹). A is the basal area of the chamber (m²). When this method is used to measure the gas exchange flux, it is necessary to minimize the difference of air pressures between inside and outside of the chamber to avoid the gas flowing into or out of the chamber through the gap, which can affect the accuracy of the measurement results. In general, it is very accurate and reliable to use the dynamic chamber method to measure gas exchange flux. However, the equipment required to perform the measurements is expensive and the operation is more complicated. Although the static box method has certain drawbacks, it can realize continuous monitoring and is very easy to operate, so it has been widely used so far.

Model Simulation Method

Previous studies on O_3 flux using flux chamber method are mostly based on controlled and semi-controlled experiments, and are limited to specific study areas, which consumes a lot of manpower and material resources. The model simulation method can overcome the above shortcomings very well and can be used to describe the entire change process, but this method is mainly applied to the stomata O_3 absorption flux on the leaf scale. There are many models that can estimate the stomata O_3 flux, among which the Jarvis-type multiplicative stomatal conductance model is the most commonly used [38], which is calculated by multiplying the leaf stomatal conductance and the O_3 concentration [29]:

$$g_{\text{sto}} = g_{\text{max}} \times \min(f_{\text{phen}}, f_{\text{O}_3}) \times f_{\text{PAR}} \times \max\left[f_{\text{min}}, (f_{\text{temp}}f_{\text{VPD}})\right]$$
(21)

where g_{sto} is the calculated value of stomatal conductance of O₃ (mmol m⁻² s⁻¹), g_{max} is the maximum value obtained from a large number of observations of stomatal conductance (mmol m⁻² s⁻¹), f_{min} is the minimum relative stomatal conductance, the factors f_{phen} , f_{O_3} , f_{PAR} , f_{temp} , and f_{VPD} are expressed as the adjustment coefficients of phenology, O₃, radiation, temperature, and VPD (vapor pressure deficit) to g_{max} , and their values are between 0 and 1. The continuous stomatal conductance can be calculated by using the observed hourly climate and environmental factor data, and finally, the following formulas can be used to estimate the stomatal O₃ absorption flux:

$$F_{st} = \frac{\left[O_{3}\right]}{r_{b} + r_{c}} \times \frac{g_{sto}}{g_{sto} + g_{ext}}$$
(22)

$$r_{\rm b} = \frac{1}{g_{\rm b}} = \frac{1}{0.125 \cdot \left(\sqrt{\frac{u}{w}}\right) \times 1000}$$
(23)

$$r_{\rm c} = \frac{1}{g_{\rm sto}} \tag{24}$$

where F_{st} is the leaf stomata O₃ flux (nmol m⁻² s⁻¹), [O₃] is O₃ concentration, g_b is the leaf boundary layer conductance (mmol m⁻² s⁻¹), g_{ext} is usually set to be 16.4 mmol m⁻² s⁻¹, u is the wind speed at canopy height (m), and w is the maximum width of leaf (m). It is necessary to determine the parameter values in the stomatal conductance model before calculating the stomatal O₃ absorption flux. The model simulation method can predict the stomatal O₃ uptake flux of crop leaves in different regions, and thus, further research is needed to combine atmospheric models or satellite remote sensing methods to extend it to the regional scale.

Micrometeorological Method

The gradient method and the eddy correlation method are micrometeorological methods for observing the O_3 flux in the terrestrial ecosystem. When using the gradient method to measure O_3 flux, two (or multiple) layers' observations of O_3 concentration, wind speed, and temperature should be implemented, and then, the near-surface turbulent flux is calculated by flux-profile relationship [9]:

$$F_{\rm o} = K_{\rm o} \times \frac{\partial \rho_{\rm o}}{\partial z} \tag{25}$$

where K_0 is the turbulent exchange coefficient for O_3 (m s⁻¹), and its calculations refer to the study of Wu et al. [48]. $\partial \rho_0 / \partial z$ is the vertical gradient of O_3 concentration with height z (µg m⁻³). Since the absolute concentration of O_3 is very low and the concentration gradient is relatively small, the calculation of O_3 flux by this method requires high-precision instruments and suitable meteorological conditions.

It should be noted that the eddy correlation method is regarded as an advanced method for measuring the atmospheric O_3 flux over terrestrial ecosystems in recent years, and it has been applied in the observation of CO_2 and water vapor flux [49]. However, it is almost still in a blank state in the application of O_3 flux. The calculation formula of O_3 flux is as follows [38]:

$$F_{o} = -\overline{\rho_{o}} \times V_{d} = \rho_{o} \times \frac{\overline{w'S'_{o}}}{\overline{S_{o}}}$$
(26)

where V_d is deposition velocity, ρ_o is the absolute concentration of O₃ observed by the slow-response O₃ analyzer, w is the vertical wind speed (m s⁻¹), S_o is the the signal output of the fast response O₃ analyzer, the upper horizontal line represents the time average, and the apostrophe represents the pulsation of the variable. Similar to the calculation of eddy covariance fluxes of CO₂ and water vapor, the observed O₃ flux also undergoes a series of corrections (coordinate rotation correction, spectrum correction, the Webb-Pearman-Leuning correction, etc.) and quality control [38].

O₃ Dry Deposition in Farmland Ecosystem

Processes and Its Influencing Factors

The terrestrial ecosystem is one of the important sinks of ground-level O₃. Because O₃ is difficult to dissolve in water, it enters the terrestrial ecosystem through dry deposition [50]. In recent years, a large number of studies have been conducted on the dry deposition characteristics of groundlevel O_3 in forests, crops, and grasslands [51–57]. In general, $V_{\rm d}$ is used to study the deposition law of O₃ in different ecosystems. The change of V_d is largely controlled by the physiological activity of vegetation and meteorological factors, and the $V_{\rm d}$ of different underlying surfaces is very different. The dry deposition of O_3 is affected by environmental factors such as wind speed, temperature, humidity, solar radiation, and soil moisture content. Under moderate or strong solar radiation, when the soil moisture is higher and the water vapor pressure difference is lower, the V_d is greater [57]. Studies have pointed out that the threshold value of soil moisture is 12–13%, and V_d will be reduced when it is lower than this threshold [58–60]. Thus, the value of V_d is greater in the rainy season and humid conditions, which is because the soil water use efficiency is greater during this period [61–63]. Kurpius et al. [64] showed that VPD is the most important factor affecting V_d , and has a negative correlation with $V_{\rm d}$. Zhu et al. [65] reported that the dry deposition process of O₃ is most significantly affected by solar radiation and relative humidity, and is positively correlated with relative humidity [66]. In addition, wind speed, atmospheric

stability, and friction velocity also have a strong correlation with $V_{\rm d}$, indicating that the dry deposition process of O₃ is largely controlled by dynamics [67].

Due to the influence of meteorological conditions, $V_{\rm d}$ presents the obvious diurnal variation characteristics. For farmland ecosystems, V_{d} during the day is higher than that at night [54]. For example, Zhu et al. [65] used the eddy correlation method to observe the V_d over a summer maize field in Northwestern Shandong Plain of China and found that the average $V_{\rm d}$ during daytime and nighttime were 0.29 cm s⁻¹ and 0.09 cm s^{-1} , respectively, and the maximum value of $V_{\rm d}$ was 0.81 cm s⁻¹ at 12:30. In the $V_{\rm d}$ observations over winter wheat fields based on the gradient method in Nanjing, Li et al. [68] reported that the average values of V_d during the entire observation period were 0.71 cm s^{-1} during daytime and 0.40 cm s⁻¹ during nighttime. $V_{\rm d}$ is related to the activity of photosynthesis, because the stomatal conductance is higher when the activity of photosynthesis is stronger. An observation experiment based on the eddy correlation method over a bare soil in Nanjing area in autumn showed that during the observation period, V_{d} began to rise at about 03:00, reached the maximum at about 08:00, and then gradually decreased [69]. It should be noted that V_d also changes with the advancement of crop growing period. Generally, V_{d} reaches the maximum during the period from the flowering stage to the filling stage of wheat [70]. Because photosynthesis is the strongest during this period, when the stomata are opened for photosynthesis, O_3 is also easy to enter the stomata, and then, V_d gradually decreases due to the senescence of leaves [64, 71, 72].

Distinction of Total O₃ Flux

Several studies have shown that O_3 deposition can be divided into stomata absorption and non-stomatal deposition pathways, and the non-stomatal deposition includes soil and cuticular depositions. It must be pointed out that the chemical reaction of O₃ with NO and VOC₈ derived from the soil and leaves is another channel for O_3 deposition [73]. Currently, it is difficult to continuously observe stomatal O₃ absorption flux due to the difficulty of monitoring, and thus, it is usually estimated by stomatal resistance model. In addition, non-stomatal deposition cannot be directly observed, and research on it is mainly based on model methods. There are differences in the proportion of stomatal absorption in the total O₃ flux in different growth periods of crops. In China, this proportion during the peak growth period of winter wheat is less than 50-60%, and it gradually decreases during the aging process of wheat leaves [74], which is consistent with the observations of wheat, barley, and onion in Italy [75, 76], whereas in the vigorous growth period of potatoes, it is about 85%, and it decreases to about 20% during the maturity stage. Zhao et al. [77] observed O₃ flux in rice fields using the eddy correlation method and used the revised Jarvis stomatal conductance model to distinguish its contribution to different deposition channels and found that the proportions of stomatal O₃ absorption and non-stomatal flux to total O₃ flux were 34.0% and 66.0%, respectively, and the proportions during the daytime were 49.0% and 51.0%, respectively. A comparison of V_d during the daytime and the nighttime by Zhu et al. [65] indicated that stomatal O₃ absorption during the daytime was the main sink of atmospheric O₃ over maize field.

Potential Risk Assessment of Ground-Level O₃ Pollution

Ground-level O₃ pollution and its potential risks to crops have received extensive attention in recent years. Although many studies have evaluated the impact of O_3 pollution on crop growth and yield in China, exposure-response relationships used in these studies are mainly based on experiments conducted in Europe and the USA due to the lack of field experiments. In view of differences in climatic conditions and crop varieties, the response of crops to O₃ stress in different regions may also be significantly different [78], and thus, there may be some possible limitations when applying external exposure-response relationships to analyze the impact of O₃ on crops in China. In order to improve the accuracy of the evaluation results, some researchers have carried out experiments on the effects of elevated atmospheric O₃ concentration on crops using OTC and FACE facilities in China [31, 42, 79, 80], and established the relationship between the relative yields of different crops and O_3 risk assessment indicators (Table 2), which provides an excellent opportunity for researchers to quantify the local and regional effects of ground-level O₃ on crop yields under past, current, and future.

In China, previous studies on crop yield reduction caused by ground-level O₃ pollution are usually based on O₃ data from a limited number of monitoring sites, satellite data, and model simulation results [85–88]. At the site scale, the O₃-induced yield losses of wheat and rice in Chongqing during 1990–1995 were 0.2–9.8% and 1.1–5.8%, respectively, using the AOT40 and M12 metrics, and those in 2020 were 12.0% and 10.8%, respectively [89]. In the Northwest Shandong Plain of China, the high level of ground-level O₃ was estimated to induce the yield loss of 12.9% for winter wheat based on AOT40 index [90]. Due to the lack of observational data, previous studies on regional-scale O₃ risk assessment mainly relied on simulated O₃ concentrations from atmospheric chemistry models or satellite data [91]. On the basis of the WRF/Chem-CHASER model, the O₃-induced yield loss for wheat ranged from 6 to 15% for the whole China [88], whereas in 2014, ground-level O_3 was

Crop	Cultivars	Sites	Facility	Years	Dose-response	References
Wheat	Jingdong 6	Dingxing	OTC	1999	RY = 1 - 0.0130AOT40	[79]
	Yangmai 185, Jia 002	Jiaxing	OTC	2004-2008	RY = 1 - 0.0228AOT40	[80]
	Yannong 19, Yangmai 16, Yangmai 15, Yangfumai 2	Jiangdu	FACE	2006–2009	$\begin{aligned} RY &= 0.961 - 0.0250 \text{AOT40} \\ RY &= 0.994 - 0.2030 \text{POD12} \end{aligned}$	[40]
	Beinong 9549	Changping	OTC	2010	$\begin{aligned} RY &= 1 - 0.0170SUM06 \\ RY &= 1 - 0.0220AOT40 \\ RY &= 1 - 0.0370POD4 \end{aligned}$	[41]
Rice	Zhongzuo 9321	Dingxing	OTC	1999	RY = 1 - 0.0053AOT40	[79]
	Jiahua 1	Dingxing	OTC	2004	RY = 1 - 0.00526AOT40	[81]
	Jiahua 2, Fan 3694	Jiaxing	OTC	2004-2008	RY = 1 - 0.0095AOT40	[80]
	Shanyou 63, Wuyujing 003	Jiangdu	FACE	2007	RY = 1 - 0.0160AOT40	[82]
	Wuyunjing 15, Yangdao 6, Shanyou 63, Liangyou- peijiu	Jiangdu	FACE	2007–2009	RY = 0.969 - 0.022AOT40 $RY = 0.998 - 0.078POD11$	[83]
	Yuejingsimiao 2	Dongguan	OTC	2009	RY = 1 - 0.0240SUM06RY = 1 - 0.0390AOT40RY = 1 - 0.0230POD2	[39]
Maize	Zhengdan 958	Yanqing	OTC	2018	RY = 1 - 0.00577AOT40 RY = 1 - 0.0426POD6	[84]
Soybean	Hefeng 55, Heinong 35, Heinong 37, Suinong 22	Harbin	OTC	2013–2014	$\begin{split} RY &= 1 - 0.0074W126 \\ RY &= 1 - 0.0066SUM06 \\ RY &= 1 - 0.0120AOT40 \\ RY &= 1 - 0.0540POD9.6 \end{split}$	[42]

Table 2 A summary on the response relationship between crop yield and O_3 evaluation index in China

projected to cause the yield losses of 8.5-14.0%, 2.2-5.5%, and 3.9-15.0% for winter wheat, maize, and rice, respectively [92]. In the future projection, Tang et al. [93] used the CTM model to simulate the spatial distribution of AOT40 and stomatal O₃ flux for rice across China, and concluded that the O₃ risk for single rice, double-early rice, and double-late rice increased by 162-412% from 2000 to 2020. The crop yield losses due to O₃ exposure for the year 2030 were also estimated to be 19.7-25.7% for wheat and 5.8-7.9% for maize according to CTM model simulation [10].

In recent years, the MEE, PRC has established ambient air quality monitoring sites in almost all cities in China. The measured O_3 data can not only truly reflect the status of O_3 pollution, but also improve the accuracy of O_3 risk assessment [87]. Therefore, evaluating regional-scale O₃ agricultural risks based on observational O₃ data has already been used in some recent studies. In the Yangtze River Delta of China, ground-level O₃ in 2015 was estimated to induce the yield losses of 9.9-36.1% for wheat and 7.3–23.9% for rice [78], whereas in the study by Ren et al. [94], the yield losses of wheat and rice during 2014–2019 were 4.9–11.4% and 9.4–19.3%, respectively. In the southern region of China, the O₃ concentration in 2015 caused an estimated yield loss in rice of 1.2–10.4% [95]. In the North China Plain, the O₃-induced yield losses during 2014-2017 ranged from 6.4 to 38.2% for wheat and from 8.2 to 13.4% for maize [96, 97]. At a national scale, the yield losses of wheat and rice due to O_3 in 2015 were projected to be 6.0% and 8.0%, respectively [91]. Zhao et al. [22] recently projected that ground-level O₃ during 2015–2018 caused the yield losses of 20.1–33.3% for winter wheat, 5.0-6.3% for maize, and 3.9-8.8% for rice. It should be pointed out here that different yield losses for the same crop may be calculated among different studies, which mainly depends on the definition of the accumulation period and the selection of O_3 exposure indicators and corresponding response functions [78]. In recent years, the stomatal O₃ flux is regarded as the best indicator for quantifying the potential risks of O₃ to crops, mainly because it involves not only O₃ concentration but also environmental factors such as temperature, radiation, water vapor pressure difference, and soil moisture content [5]. However, due to the lack of large-scale meteorological observation data, there are relatively few studies on regional-scale O₃ risk assessment based on the stomatal O₃ flux, and only a few studies are carried out by atmospheric chemistry models and satellite remote sensing methods [37, 86, 88]. To date, only two studies have evaluated crop yield losses caused by O₃ exposure in China using concentration- and flux-based indices. A comparison between these two indices indicated that ground-level O₃ reduced wheat yields losses of 6.4-7.2% and 10.3-14.9% in 2000 across China based on AOT40 and stomatal O₃ flux, respectively [88], whereas in the study by Feng et al. [98], estimates of O₃-induced wheat yield reductions for the whole China based on AOT40 were significantly higher than those based on the stomatal O_3 flux. This discrepancy could be explained by the source of data and the choice of dose–response functions [22].

Limitations and Future Research Directions

Since the 1990s, although a lot of studies on the effects of O_3 on crops have been carried out in China, there are still many shortcomings needed to be improved. Therefore, in order to scientifically assess the potential risks of ground-level O_3 pollution to crops and provide more valuable information for decision-makers, more in-depth research is needed in the following aspects in the future.

Firstly, previous studies on regional-scale O₃ agricultural risk assessment using observational data are usually based on a few monitoring sites, which may affect the accuracy and reliability of the assessment results. Starting from 2013, China has successively established a large number of air quality monitoring stations in almost all cities, and thus, it is possible for researchers to evaluate nationwide O₃-induced agricultural losses. It should be noted that although China currently has more than 2000 O₃ monitoring stations, their spatial distribution is uneven, and most of the stations are located in urban areas. Studies have shown that the O₃ concentration in suburban areas was generally higher than that in urban areas [78]. If O_3 in a certain city is used to describe the O₃ situation in the planting area of this city, the stress effect of O_3 on crops will be underestimated. We should consider building more stations in suburban areas to reduce this uncertainty.

Secondly, the response relationship between crop yield and O₃ evaluation index in China established by most of the previous studies is based on OTC experiments. However, climatic factors such as temperature, relative humidity, light, soil moisture, and wind in the OTC chamber are significantly different from the external environmental conditions, which leads to different responses of crops to O₃ stress. However, the FACE experiment is regarded as the most appropriate method to investigate the yield responses of crops to elevated O_3 [5], because the energy and gas exchange of crop canopy will not be disturbed by the FACE systems. A recent study showed that the sensitivity of wheat and rice to O_3 under the OTC experiment was lower than that under the FACE experiment, while it was the opposite for soybeans [99]. Therefore, the results from the OTC experiment cannot be fully applied to the regional O₃ risk assessment of natural ecosystems, and experimental research based on the O₃-FACE platform should be increased in the future. Meanwhile, different varieties of the same crop have different responses to O₃ stress [37, 40, 78]. Future research should consider the impact of varieties and establish the relationship between different varieties of crops and evaluation indicators, which is beneficial to cultivate crop varieties resistant to O_3 and prevent the adverse effects of O_3 on crops.

Thirdly, the damage effect of O₃ on crops was determined by O₃ flux. As a traditional O₃ flux observation, the flux chamber method has been widely used due to its simple operation and low cost, while this method changes the growth environment of the crop body and may bring certain errors to the experimental results. The micrometeorological method is an advanced method for measuring the O₃ flux of the ecosystem in recent years. This method has already been applied in Europe and America, but it is still relatively few in China, and further research is still needed. In addition, the regional-scale O₃ agricultural risk assessments in previous studies were mainly based on the concentration-based indices, because their calculations are quite simple and only use the hourly O₃ concentrations. However, the impacts of climate factors have played an important role in the whole crop growth in fact, and the reduced relative yield was the combination of O₃ and climate factors. Therefore, the fluxbased index, especially the stomatal O₃ flux, is regarded as the most scientific indicator. It must be pointed out that the flux-based index depends on too much parameters, and it is difficult to calculate it by using actual observational data. The current air quality models (e.g., WRF-CMAQ) can solve this issue and provide the hourly simulated climate factors and O_3 concentration data. In future research, we should consider combining atmospheric chemistry models and satellite remote sensing methods to estimate the distribution of the flux-based indices, which provides an important basis for scientifically quantifying the risk of O_3 to crops on a regional scale.

Finally, crop has a certain defensive ability against O_3 damage, which will be affected by factors such as crop species, growth period, and environmental conditions. Previous studies only set it as a threshold when calculating the absorption flux of stomata O_3 and did not consider its dynamic changes. Therefore, combining the O_3 absorption flux model to simulate the detoxification effect of crops is an inevitable trend in future research.

Funding This work was supported by the China Postdoctoral Science Foundation (2020M681157), the National Natural Science Fund (Nos. 42077194, 42061134008), the Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (KHK2003), and the Guangdong Foundation for Program of Science and Technology Research (2020B1212060053).

Declarations

Conflict of interest The author declares that he has no conflict of interest.

Human and Animal Rights This article does not contain any studies with human or animal subjects performed by any of the authors.

References

- 1. Sicard P, Serra R, Rossello P. Spatiotemporal trends in groundlevel ozone concentrations and metrics in France over the time period 1999–2012. Environ Res. 2016;149:122–44.
- Vingarzan R. A review of surface ozone background levels and trends. Atmos Environ. 2014;38:3431–42.
- 3. Paoletti E. Impact of ozone on Mediterranean forests: a review. Environ Pollut. 2006;144(2):463–74.
- Zhao H, Zheng Y, Li T, Wei L, Guan Q. Temporal and spatial variation in, and population exposure to, summertime ground-level ozone in Beijing. Int J Environ Res Public Health. 2018;15:628.
- Feng Z, Tang H, Uddling J, Pleijel H, Kobayashi K, Zhu J, et al. A stomatal ozone flux–response relationship to assess ozoneinduced yield loss of winter wheat in subtropical China. Environ Pollut. 2012;164:16–23.
- 6. Ainsworth EA. Rice production in a changing climate: a metaanalysis of responses to elevated carbon dioxide and elevated ozone concentration. Glob Chang Biol. 2008;14:1642–50.
- Lombardozzi D, Levis S, Bonan G, Hess PG, Sparks JP. The Influence of chronic ozone exposure on global carbon and water cycles. J Clim. 2015;28(1):292–305.
- Screpanti A, De Marco A. Corrosion on cultural heritage buildings in Italy: a role for ozone? Environ Pollut. 2009;157(5):1513–20.
- Fares S, McKay M, Holzinger R, Goldstein AH. Ozone fluxes in a *Pinus ponderosa* ecosystem are dominated by non-stomatal processes: evidence from long-term continuous measurements. Agric For Meteorol. 2010;150:420–31.
- Avnery S, Mauzerall DL, Liu J, Horowitz LW. Global crop yield reductions due to surface ozone exposure: 2. Year 2030 potential crop production losses and economic damage under two scenarios of O3 pollution. Atmos Environ. 2011;45(13):2297–309.
- Zhao H, Chen K, Liu Z, Zhang Y, Shao T, Zhang H. Coordinated control of PM_{2.5} and O₃ is urgently needed in China after implementation of the "Air pollution prevention and control action plan." Chemosphere. 2021;270:129441.
- Li K, Jacob DJ, Liao H, Shen L, Zhang Q, Bates KH. Anthropogenic drivers of 2013–2017 trends in summer surface ozone in China. Proc Natl Acad Sci USA. 2019;116:422–7.
- Tan Z, Hofzumahaus A, Lu K, Brown SS, Holland F, Huey LG, et al. No evidence for a significant impact of heterogeneous chemistry on radical concentrations in the North China Plain in summer 2014. Environ Sci Technol. 2020;54:5973–9.
- Cai S, Wang Y, Zhao B, Wang S, Chang X, Hao J. The impact of the "Air Pollution Prevention and Control Action Plan" on PM_{2.5} concentrations in Jing-Jin-Ji region during 2012–2020. Sci Total Environ. 2017;580:197–209.
- Ma Z, Xu J, Quan W, Zhang Z, Lin W, Xu X. Significant increase of surface ozone at a rural site, north of eastern China. Atmos Chem Phys. 2016;16:3969–77.
- Xu X, Lin W, Wang T, Yan P, Tang J, Meng Z, et al. Long-term trend of surface ozone at a regional background station in eastern China 1991–2006: enhanced variability. Atmos Chem Phys. 2008;8:2595–607.
- Xu W, Lin W, Xu X, Tang J, Huang J, Wu H, et al. Long-term trends of surface ozone and its influencing factors at the Mt Waliguan GAW station, China- part 1: overall trends and characteristics. Atmos Chem Phys. 2016;16(10):6191–205.
- Li J, Lu K, Lv W, Li J, Zhong L, Ou Y, et al. Fast increasing of surface ozone concentrations in Pearl River Delta characterized by a regional air quality monitoring network during 2006–2011. J Environ Sci. 2014;26(1):23–36.
- Song C, He J, Wu L, Jin T, Chen X, Li R, et al. Health burden attributable to ambient PM_{2.5} in China. Environ Pollut. 2017;223:575–86.

- Wang T, Xue L, Brimblecombe P, Lam YF, Li L, Zhang L. Ozone pollution in China: a review of concentrations, meteorological influences, chemical precursors, and effects. Sci Total Environ. 2017;575:1582–96.
- Xu L, Batterman S, Chen F, Li J, Zhong X, Feng Y, et al. Spatiotemporal characteristics of PM_{2.5} and PM10 at urban and corresponding background sites in 23 cities in China. Sci Total Environ. 2017;599–600:2074–84.
- Zhao H, Zheng Y, Zhang Y, Li T. Evaluating the effects of surface O₃ on three main food crops across China during 2015– 2018. Environ Pollut. 2020;258:113794.
- 23. Tie X, Geng F, Guenther A, Cao J, Greenberg J, Zhang R, et al. Megacity impacts on regional ozone formation: observations and WRF-Chem modeling for the MIRAGE-Shanghai field campaign. Atmos Chem Phys. 2013;13:5655–69.
- 24. Tang G, Wang Y, Li X, Ji D, Hsu S, Gao X. Spatial-temporal variations in surface ozone in Northern China as observed during 2009–2010 and possible implications for future air quality control strategies. Atmos Chem Phys. 2012;12:2757–76.
- Gligorovski S, Strekowski R, Barbati S, Vione D. Environmental implications of hydroxyl radicals (•OH). Chem Rev. 2015;115(24):13051–92.
- 26. Zhang J, An J, Qu Y, Liu X, Chen Y. Impacts of potential HONO sources on the concentrations of oxidants and secondary organic aerosols in the Beijing-Tianjin-Hebei region of China. Sci Total Environ. 2019;647:836–52.
- Piikki K, Temmerman LD, Pleijel H. The open-top chamber impact on vapour pressure deficit and its consequences for stomatal ozone uptake. Atmos Environ. 2008;42(26):6513–22.
- Pleijel H, Broberg MC, Uddling J. Ozone impact on wheat in Europe, Asia and North America-a comparison. Sci Total Environ. 2019;664:908–14.
- Pleijel H, Danielsson H, Emberson L, Ashmore MR, Mills G. Ozone risk assessment for agricultural crops in Europe: further development of stomatal flux and flux-response relationships for European wheat and potato. Atmos Environ. 2007;41(14):3022–40.
- Mills G, Pleijel H, Braun S, Büker P, Bermejo V, Calvo E, et al. New stomatal flux-based critical levels for ozone effects on vegetation. Atmos Environ. 2011;45(28):5064–8.
- Wu R, Zheng Y, Hu C. Evaluation of the chronic effects of ozone on biomass loss of winter wheat based on ozone fluxresponse relationship with dynamical flux thresholds. Atmos Environ. 2016;142:93–103.
- 32. Gerosa G, Marzuoli R, Desotgiu R, Bussotti F, Ballarin-Denti A. Visible leaf injury in young trees of *Fagus sylvatica* L. and *Quercus robur* L. in relation to ozone uptake and ozone exposure. An open-top chambers experiment in South Alpine environmental conditions. Environ Pollut. 2008;152(2):274–84.
- Emberson LD, Büker P, Ashmore MR, Mills G, Jackson LS, Agrawal M, et al. A comparison of North American and Asian exposure response data or ozone effects on crop yields. Atmos Environ. 2009;43(12):1945–53.
- 34. Ghosh A, Agrawal M, Agrawal SB. Effect of water deficit stress on an Indian wheat cultivar (*Triticum aestivum* L. HD 2967) under ambient and elevated level of ozone. Sci Total Environ. 2020;714:136837.
- 35. Danielsson H, Karlsson GP, Karlsson PE, Pleijel H. Ozone uptake modelling and flux-response relationships—an assessment of ozone-induced yield loss in spring wheat. Atmos Environ. 2003;37(4):475–85.
- Hoshika Y, Katata G, Deushi M, Watanabe M, Koike T, Paoletti E. Ozoneinduced stomatal sluggishness changes carbon and water balance of temperate deciduous forests. Sci Rep. 2015;5:9871.

- Mills G, Sharps K, Simpson D, Pleijel H, Broberg M, Uddling J, et al. Ozone pollution will compromise efforts to increase global wheat production. Glob Chang Biol. 2018;24:3560–74.
- Zhu ZL, Sun XM, Yu GR, Wen XF. A review of research on ozone flux observation and stomatal uptake estimation over terrestrial ecosystems. Acta Ecol Sin. 2014;34(31):6029–38 (in Chinese).
- 39. Tong L, Wang XK, Sudebilige, Wang Q, Geng CM, Wang W, et al. Stomatal ozone uptake modeling and comparative analysis of flux-response relationships of rice. J Agro-Environ. 2011;30(10):1930–8 (in Chinese).
- Feng Z, Tang H, Uddling J, Pleijel H, Kobayashi K, Zhu J, et al. A stomatal ozone flux–response relationship to assess ozoneinduced yield loss of winter wheat in subtropical China. Environ Pollut. 2012;164(1):16–23.
- 41. Tong L, Feng ZW, Sudebilige, Wang Q, Geng CM, Lu F, et al. Stomatal ozone uptake modeling and comparative analysis of flux-response relationships of winter wheat. Acta Ecol Sin. 2012;32(9):2890–9 (in Chinese).
- Zhang W, Feng Z, Wang X, Liu X, Hu E. Quantification of ozone exposure-and stomatal uptake- yield response relationships for soybean in Northeast China. Sci Total Environ. 2017;599–600:710–20.
- Pleijel H, Danielsson H, Ojanperä K, Temmerman LD, Högy P, Badiani M, et al. Relationships between ozone exposure and yield loss in European wheat and potato—a comparison of concentration- and flux-based exposure indices. Atmos Environ. 2004;38(15):2259–69.
- Karlsson P, Braun S, Broadmeadow M, Elvira S, Emberson L, Gimeno BS, et al. Risk assessments for forest trees: the performance of the ozone flux versus the AOT concepts. Environ Pollut. 2007;146(3):608–16.
- Goumenaki E, Fernandez IG, Papanikolaou A, Papadopoulou A, Askianakis C, Kouvarakis G, et al. Derivation of ozone flux-yield relationships for lettuce: a key horticultural crop. Environ Pollut. 2007;146(3):699–706.
- 46. Gonzalez-Fernandez I, Kaminska A, Dodmani M, Goumenaki E, Quarrie S, Barnes JD. Establishing ozone flux–response relationships for winter wheat: analysis of uncertainties based on data for UK and Polish genotypes. Atmos Environ. 2010;44(5):621–30.
- 47. Breuninger C, Oswald R, Kesselmeier J, Meixner FX. The dynamic chamber method: trace gas exchange fluxes (NO, NO₂, O₃) between plants and the atmosphere in the laboratory and in the field. Atmos Meas Tech. 2012;5:955–89.
- Wu ZY, Zhang L, Wang XM, Munger JW. A modified micrometeorological gradient method for estimating O₃ dry depositions over a forest canopy. Atmos Chem Phys. 2015;15:7487–96.
- Fares S, McKay M, Holzinger R, Goldstein AH. Ozone fluxes in a Pinus ponderosa ecosystem are dominated by non-stomatal processes: evidence from long-term continuous measurements. Agric For Meteorol. 2010;150(3):420–31.
- Fowler D, Pilegaard K, Sutton MA, Ambus P, Raivonen M, Duyzer J, et al. Atmospheric composition change: ecosystems– atmosphere interactions. Atmos Environ. 2009;43(33):5193–267.
- Altimir N, Tuovinen JP, Vesala T, Kulmala M, Hari P. Measurements of ozone removal by Scots pine shoots: calibration of a stomatal uptake model including the non-stomatal component. Atmos Environ. 2004;38(15):2387–98.
- Altimir N, Kolari P, Tuovinen JP, Vesala T, Bäck J, Suni T, et al. Foliage surface ozone deposition: a role for surface moisture? Biogeosciences. 2006;2:209–28.
- Launiainen S, Katul GG, Grönholm T, Vesala T. Partitioning ozone fluxes between canopy and forest floor by measurements and a multi-layer model. Agric For Meteorol. 2013;173:85–99.
- Coyle M, Nemitz E, Storeton-West R, Fowler D, Cape JN. Measurements of ozone deposition to a potato canopy. Agric For Meteorol. 2009;149:655–66.

- 55. Gerosa G, Finco A, Mereu S, Vitale M, Manes F, Denti AB. Comparison of seasonal variations of ozone exposure and fluxes in a Mediterranean Holm oak forest between the exceptionally dry 2003 and the following year. Environ Pollut. 2009;157(5):1737–44.
- Zhang L, Vet R, Brook JR, Legge AH. Factors affecting stomatal uptake of ozone by different canopies and a comparison between dose and exposure. Sci Total Environ. 2006;370(1):117–32.
- Liu Z, Pan Y, Song T, Hu B, Wang L, Wang Y. Eddy covariance measurements of ozone flux above and below a southern subtropical forest canopy. Sci Total Environ. 2021;791:148338.
- 58. Vitale M, Gerosa G, Ballarin-Denti A, Manes F. Ozone uptake by an evergreen Mediterranean forest (*Quercus ilex* L.) in Italypart II: flux modelling. Upscaling leaf to canopy ozone uptake by a process-based model. Atmos Environ. 2005;39:3267–78.
- 59. Matsuda K, Watanabe I, Wingpud V, Theramongkol P, Ohizumi T. Deposition velocity of O_3 and SO_2 in the dry and wet season above a tropical forest in northern Thailand. Atmos Environ. 2006;40:7557–64.
- Zhang L, Brook JR, Vet R. On ozone dry deposition-with emphasis on non-stomatal uptake and wet canopies. Atmos Environ. 2002;36:4787–99.
- 61. Matsuda K, Watanabe I, Wingpud V, Theramongkol P, Ohizumi T. Deposition velocity of O_3 and SO_2 in the dry and wet season above a tropical forest in northern Thailand. Atmos Environ. 2006;40(39):7557–64.
- Sorimachi A, Sakamoto K, Ishihara H, Fukuyama T, Utiyama M, Liu H, et al. Measurements of sulfur dioxide and ozone dry deposition over short vegetation in northern China-a preliminary study. Atmos Environ. 2003;37:3157–66.
- 63. Lamaud E, Carrara A, Brunet Y, Lopez A, Druilhet A. Ozone fluxes above and within a pine forest canopy in dry and wet conditions. Atmos Environ. 2002;36(1):77–88.
- Kurpius MR, McKay M, Goldstein AH. Annual ozone deposition to a Sierra Nevada ponderosa pine plantation. Atmos Environ. 2002;36:4503–15.
- Zhu ZL, Sun XM, Dong YS, Zhao FH, Meixner FX. Diurnal variation of ozone flux over corn field in Northwestern Shandong Plain of China. Sci China Earth Sci. 2014;57:503–11.
- 66. Rannik Ü, Altimir N, Mammarella I, Bäck J, Rinne J, Ruuskanen TM, et al. Ozone deposition into a boreal forest over a decade of observations: evaluating deposition partitioning and driving variables. Atmos Chem Phys. 2012;12:12165–82.
- 67. Pan XL, Wang ZF, Wang XQ, Dong HB, Xie FY, Guo YH. An observation study of ozone dry deposition over grassland in the suburban area of Beijing. Atmos Sci. 2010;34(1):1200–2130 (in Chinese).
- Li S, Zheng YF, Wu RJ, Yin JF, Xu JX, Zhao H, Sun J. Observation of ozone dry deposition in the field of winter wheat. Chin J Appl Ecol. 2016;27(6):1811–9 (in Chinese).
- 69. Huang JQ, Zheng YF, Xu JX, Zhao H, Yuan Y, Chu ZF. O₃ dry deposition flux observation and soil resistance modeling over a bare soil in Nanjing area in autumn. Chin J Appl Ecol. 2016;27(10):3196–204 (in Chinese).
- Zhao H, Zheng YF, Li S, Yuan Y, Huang JQ, Liu J, Cao JC. Observation and simulation of CO₂ and O₃ fluxes in the winter wheat field based on micrometeorological method. China Environ Sci. 2020;40(3):1038–48.
- Lamaud E, Loubet B, Irvine M, Stella P, Personne E, Cellier P. Partitioning of ozone deposition over a developed maize crop between stomatal and non-stomatal uptakes, using eddy-covariance flux measurements and modelling. Agric For Meteorol. 2009;149:1385–96.
- 72. Stella P, Personne E, Lamaud E, Loubet B, Trebs I, Cellier P. Assessment of the total, stomatal, cuticular, and soil 2 year

ozone budgets of an agricultural field with winter wheat and maize crops. JGR Biogeosci. 2013;118:1–13.

- Stella P, Personne E, Loubet B, Lamaud E, Cellier P, Beziat P, et al. Predicting and partitioning ozone fluxes to maize crops from sowing to harvest: the Surfatm-O₃ model. Biogeosciences. 2011;8:2869–86.
- Xu JX, Zheng YF, Zhao H, Chu ZF, Huang JQ, Yuan Y. Ozone deposition and risk assessment for a winter wheat field: partitioning between stomatal and non-stomatal pathways. Environ Sci. 2017;38(10):4427–37 (in Chinese).
- 75. Cieslik S. Ozone fluxes over various plant ecosystems in Italy: a review. Environ Pollut. 2009;157(5):1487–96.
- 76. Gerosa G, Marzuoli R, Cieslik S, Ballarin-Denti A. Stomatal ozone fluxes over a barley field in Italy. "Effective exposure" as a possible link between exposure- and flux-based approaches. Atmos Environ. 2004;38(15):2421–32.
- Zhao H, Wang SY, Zhang YX, Liu Z, Zheng YF. Ozone dry deposition characteristics and its contribution to stomatal absorption in a paddy ecosystem. China Environ Sci. 2021;41(7):3298 (in Chinese).
- Zhao H, Zheng Y, Wu X. Assessment of yield and economic losses for wheat and rice due to ground-level O₃ exposure in the Yangtze River Delta. China Atmos Environ. 2018;191:241–8.
- Feng Z, Jin M, Zhang F, Huang Y. Effects of ground-level ozone (O₃) pollution on the yields of rice and winter wheat in the Yangtze River Delta. J Environ Sci. 2003;15(3):360–2.
- Wang X, Zhang Q, Zheng F, Zheng Q, Yao F, Chen Z, et al. Effects of elevated O₃ concentration on winter wheat and rice yields in the Yangtze River Delta. China Environ Pollut. 2012;171(1):118–25.
- Xie JQ, Zheng QW, Wang XK, Zhang BJ. Effect of ozone on photosynthesis of rice leaves, ear character and yield component in situe. Acta Agric Boreali-Occident Sin. 2006;15(3):27–30.
- Pang J, Kobayashi K, Zhu JG. Yield and photosynthetic characteristics of flag leaves in Chinese rice (*Oryza sativa* L.) varieties subjected to free-air release of ozone. Agric Ecosyst Environ. 2009;132(3–4):203–11.
- Zhang JS, Tang HY, Liu G, Zhu JG. Stomatal ozone fluxresponse relationships of rice (*Oryza sativa* L.) in subtropical area. J Agro-Environ Sci. 2016;35(10):1857–66.
- Peng J, Shang B, Xu Y, Feng Z, Pleijel H, Calatayud V. Ozone exposure- and flux-yield response relationships for maize. Environ Pollut. 2019;252:1–7.
- Van Dingenen R, Dentener FJ, Raes F, Krol MC, Emberson L, Cofala J. The global impact of ozone on agricultural crop yields under current and future air quality legislation. Atmos Environ. 2009;43:604–18.
- 86. Fishman J, Creilson JK, Parker PA, Ainsworth EA, Vining GG, Szarka J, et al. An investigation of widespread ozone damage to the soybean crop in the upper Midwest determined from ground-based and satellite measurements. Atmos Environ. 2010;44(18):2248–56.

- 87. Li P, Marco AD, Feng ZZ, Anav A, Zhou D, Paoletti E. Nationwide groundlevel ozone measurements in China suggest serious risks to forests. Environ Pollut. 2018;237:803–13.
- Tang H, Takigawa M, Liu G, Zhu J, Kobayashi K. A projection of ozone-induced wheat production loss in China and India for the years 2000 and 2020 with exposure-based and flux-based approaches. Glob Change Biol. 2013;19(9):2739–52.
- Liu F, Wang X, Zhu Y. Assessing current and future ozoneinduced yield reductions for rice and winter wheat in Chongqing and the Yangtze River Delta of China. Environ Pollut. 2009;157(2):707–9.
- Zhu Z, Sun X, Zhao F, Meixner FX. Ozone concentrations, flux and potential effect on yield during wheat growth in the Northwest-Shandong plain of China. J Environ Sci. 2015;34(8):1–9.
- Feng Z, De Marco A, Anav A, Gualtieri M, Sicard P, Tian H, et al. Economic losses due to ozone impacts on human health, forest productivity and crop yield across China. Environ Int. 2019;131:104966.
- Lin Y, Jiang F, Zhao J, Zhu G, He X, Ma X, et al. Impacts of O₃ on premature mortality and crop yield loss across China. Atmos Environ. 2018;194:41–7.
- 93. Tang H, Pang J, Zhang G, Takigawa M, Liu G, Zhu J. Mapping ozone risks for rice in China for years 2000 and 2020 with fluxbased and exposure-based doses. Atmos Environ. 2014;86:74–83.
- Ren X, Shang B, Feng Z, Calatayud V. Yield and economic losses of winter wheat and rice due to ozone in the Yangtze River Delta during 2014–2019. Sci Total Environ. 2020;745:140847.
- 95. Cao J, Wang X, Zhao H, Ma M, Chang M. Evaluating the effects of ground-level O₃ on rice yield and economic losses in Southern China. Environ Pollut. 2020;267:115694.
- 96. Hu T, Liu S, Xu Y, Feng Z, Calatayud V. Assessment of O_3 -induced yield and economic losses for wheat in the North China Plain from 2014 to 2017. China Environ Pollut. 2020;258:113828.
- 97. Feng Z, Hu T, Tai APK, Calatayud V. Yield and economic losses in maize caused by ambient ozone in the North China Plain (2014–2017). Sci Total Environ. 2020;722:137958.
- Feng Z, Kobayashi K, Li P, Xu Y, Tang H, Guo A, et al. Impacts of current ozone pollution on wheat yield in China as estimated with observed ozone, meteorology and day of flowering. Atmos Environ. 2017;217:116945.
- 99. Feng Z, Uddling J, Tang H, Zhu J, Kobayashi K. Comparison of crop yield sensitivity to ozone between open-top chamber and free-air experiments. Glob Chang Biol. 2018;24:2231–8.

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.