
AIR POLLUTION (H ZHANG AND Y SUN, SECTION EDITORS)

Atmospheric Nitrogen Emission, Deposition, and Air Quality
Impacts in China: an Overview

Xuejun Liu1
& Wen Xu2

& Lei Duan3
& Enzai Du4

& Yuepeng Pan5
& Xiankai Lu6

&

Lin Zhang7 & Zhiyong Wu8
& Xuemei Wang8 & Ying Zhang9 & Jianlin Shen10

&

Ling Song11 & Zhaozhong Feng2 & Xueyan Liu12
& Wei Song12 & Aohan Tang1 &

Yangyang Zhang1 & Xiuying Zhang13 & Jeffrey L. Collett Jr14

Published online: 24 February 2017
# Springer International Publishing AG 2017

Abstract Atmospheric reactive nitrogen (N) has induced
large impacts on air pollution and ecosystem health world-
wide. Atmospheric reactive N emission and deposition have
largely increased in China since 1980 due to rapid agricultural,
industrial, and urban development. But scientific gaps still
remain in the regional and temporal variability in atmospheric
N emissions and deposition. Meanwhile, the environmental
impacts of N pollution and deposition are of great concern
in China. This paper overviews the status of anthropogenic
N emissions and deposition and their linkages to air pollution
in China. The major findings include two aspects: (1) anthro-
pogenic reactive N (e.g., NH3 and NOx) emissions contribute
greatly to secondary inorganic aerosol formation and haze

pollution and (2) dry N deposition is comparable in impor-
tance to wet N deposition, suggesting that both dry and wet
deposition should be quantified simultaneously. Future re-
search challenges on atmospheric N emission and deposition
are discussed as well. China needs to (1) reduce the uncer-
tainties of national emission inventory of various N species,
especially organic N compounds; (2) establish national net-
works for atmospheric N concentration and deposition moni-
toring; and (3) evaluate ecological and environmental impacts
of N pollution and deposition in typical ecosystems. Last but
not least, N deposition modeling tools should be improved
based on localized parameters and further used in future N
regulation.
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Introduction

Atmospheric nitrogen (N) deposition is not only an important
component in the human-accelerated global N cycle [1] but
also an indicator of atmospheric N pollution [2••]. Excess N
deposition has aroused ecological concerns about negative
impacts on ecosystem health and services such as loss of bio-
diversity, forest soil acidification, and increased greenhouse
gas emission [3•, 4, 5]. Rates of N deposition, especially ox-
idized N deposition, have leveled off or decreased in Europe
and the USA since the 1980s or early 1990s with the imple-
mentation of stricter legislation to limit atmospheric pollution
[6–8]. In contrast, emissions of both NH3 and NOx in China
have been increasing continuously since the 1980s mainly due
to growing agricultural and industrial activities [2••]. These
increased reactive N emissions to the atmosphere have
aroused widespread concerns on air pollution and their rela-
tionship with atmospheric N deposition in China [9, 10]. Wet/
bulk and dry N deposition monitoring programs have been
conducted since the 2000s [11•, 12, 13]. The impacts of N
deposition on terrestrial ecosystems have been previously
overviewed globally [3•, 14] and in China [15]. Also, latest
modeling results have shown the spatial distribution of N de-
position and N critical load exceedance in China based on
eutrophication [16]. There are, however, still large gaps in
knowledge of the magnitude of N deposition fluxes and im-
pacts of atmospheric N on air pollution [2••, 17].

In this review, we summarize recent (especially after 2010)
progress on N deposition studies in order to identify: (1) the
spatio-temporal variability of N deposition fluxes, (2) the ma-
jor impacts of atmospheric N on air quality, and (3) some
future research recommendations and regulatory strategies
for mitigation of atmospheric N pollution in China.

Atmospheric Reactive N Emissions

NH3 Emission

NH3 is certainly among the most important pollutants in terms
of contributing to N deposition and particulate matter (PM)
formation [2••, 18]. As one of the world’s most populated
countries, China’s national NH3 emissions have surged from
5 to 7 Tg year−1 in the late 1970s to 10–16 Tg year−1 in 2000s,
accounting for 30–55% of total Asia emissions [19]. Such
large quantity of NH3 released into the atmosphere have en-
hanced ambient NH3 concentrations over China, as confirmed
by a number of field measurements [11•, 15] as well as satel-
lite observations [20•, 21]. Meanwhile, modeling studies

reveal that NH3 emission control is the most cost-effective
strategy to reduce N deposition and PM pollution [17, 22].
Unlike SO2 and NOx, NH3 emissions have not been regulated
in China.

Agricultural activities dominate China’s NH3 emissions
despite the highly variable emission factors adopted in differ-
ent studies [23–25]. This is particularly true in intensive agri-
cultural areas of the North China Plain (NCP) [26], Sichuan
Basin [27], and Guanzhong Plain [28]. Agricultural NH3

emissions in NCP were estimated to be 3.1 Tg N year−1 in
2004; 54% of them were derived from fertilizer application,
followed by emissions from livestock operations involving
pigs (27%), cattle (7%), sheep/goats (7%), and poultry (5%)
[26]. Recent work indicates that NH3 emissions in China have
decreased due to a phenomenal shrinkage of livestock produc-
tion since 2007 [23]. Using the heat balance method, Xu et al.
[24] also reported an annual emission factor of 1.4 kg NH3

pig−1 year−1 from a typical pig farm in China, only half of that
in northern Europe [29]. But whether or not China has expe-
rienced a turning point of NH3 emissions is still an open ques-
tion to date [30].

Although the overall magnitude of non-agricultural sources
of NH3 might be thought to be small in China, gathering
evidence reveals that non-agricultural NH3 emissions accu-
mulating in urban SO2- and NOx-rich atmospheres will con-
tribute disproportionately to city-scale NH3 budget and sub-
sequent haze pollution caused by fine particle formation [31,
32]. Therefore, there is an on-going hot debate regarding the
origins of ambient NH3 in Chinese megacities like Shanghai
and Beijing. Recent research on stable N isotope measure-
ments has helped quantify sources of NH3/NH4

+ in China
[33–35]. Controversy remains and further research is greatly
needed, but there is growing evidence that on-road traffic is
also an important source of NH3 in urban areas [32, 36, 37].

NOx Emission

Derived mainly from fossil fuel combustion processes includ-
ing power plants, transportation, and industrial activities [38•],
anthropogenic NOx emissions in China have increased from
1.3 Tg N year−1 in 1980 to more than 6.0 Tg N year−1 in 2010
[2••]. The contribution of nitric acid to acid rain is thus grow-
ing in importance due to the stricter control of SO2 emissions,
similar to the trend observed in Europe and the USA in the
early 1980s [39]. The government recently set goals to reduce
NOx emissions by 10% in 2015 relative to 2010 levels (12th
Five-year Plan) (http://news.xinhuanet.com/politics/2011-03/
16/c_121193916.htm). As evidenced by a decline of nitrate
deposition [7, 40, 41], NOx emissions in Europe and the USA
have been reduced substantially during past decades. These
successful implementations of the NOx emission regulations
provide insight into potential strategies and technologies for
China, which is currently an enormous NOx emitter. In the
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near future, NOx emissions in China are expected to be
progressively curbed by stricter national ambient air quality
standards (http://bz.mep.gov.cn/), following the trend in
Europe and the USA.

Organic N Emission

As indicated by global and regional assessments based on
limited monitoring results [42•, 43, 44], organic N contributes
substantially to the atmospheric N cycling. Jickells et al. [42•]
suggested that on a global basis, dissolved organic N (DON)
deposition accounts for approximately 25% of total N depo-
sition. Similarly, Zhang et al. [43] and Du and Liu [44] esti-
mated that DON is approximately 25% of bulk deposition in
China. Atmospheric N has been supposed to be resulted from
direct emissions, adsorption of gases to pre-existing aerosol
particles, and the formation of new particles within the atmo-
sphere [42•]. The evaluation of the diverse sources of atmo-
spheric organic N (including urea, peroxyacyl nitrates (PAN),
amino acids, etc.) is challenging. Kanakidou et al. [45] have
adapted an organic carbon model to create the first global
model of atmospheric organic N. According to their model,
in spite of uncertainties, the total emission of organic N (in-
cluding that formed indirectly in the atmosphere) is
27.4 Tg N year−1, with major contribution from combustion
sources (45%), primary biogenic particles (32%), and ocean
particulate emissions (20%). However, there is still a lack of
national emission inventory of organic N species in China.
The research gaps of organic N emissions require further re-
search efforts.

Monitoring Networks for Atmospheric Reactive N

Ground-Level Monitoring Networks

Measurements of N deposition in China have been conducted
since the early 1980s when the Chinese National Environment
Bureau organized a nationwide campaign for acid rain mea-
surement [46]. Currently, the Chinese Ministry of
Environmental Protection and the National Meteorological
Bureau have been running two independent precipitation
chemistry (also covering ammonium and nitrate) monitoring
networks since the late 1990s [47, 48]. Moreover, four
Chinese cities (Xi’an, Xiamen, Chongqing, and Zhuhai) have
joined the Acid Deposition Network in East Asia (EANET)
(http://www.eanet.asia/site/index.html). Since 2004, China
Agricultural University has organized a Nationwide
Nitrogen Deposition Monitoring Network (NNDMN) [11•,
15]. The Chinese Ecosystem Research Network (CERN) has
also included measurements of wet N deposition [12]. Both
networks contain more than 40 monitoring sites across China,
covering forest, grassland, desert, lake, cropland, and urban
ecosystems. However, most existing monitoring networks

measure only bulk or wet deposition, leaving large gaps in
the estimate of dry deposition in China. The NNDMN has
recently started to include estimation of dry N deposition
based on measured atmospheric N concentrations and simu-
lated deposition velocities (Vd) [11•].

Satellite Monitoring Networks

The ground-based measurements can accurately grasp chang-
es of NOx and NH3, while the in situ observation is largely
constrained by the limited number and uneven spatial distri-
bution of measurement sites. Satellite products facilitate the
acquisition of continuous NO2 and NH3 concentrations in the
atmosphere from regional to global coverage.

At present, column NO2 concentrations are measured
by multiple space-based instruments, including the Global
Ozone Monitoring Experiment (GOME), SCanning
Imaging Absorption spectroMeter for Atmospheric
CHartographY (SCIAMACHY), Ozone Monitoring
Instrument (OMI), and Global Ozone Monitoring
Experiment-2 (GOME-2) [49, 50]. These space-borne
sensors provide a long period (from 1996 to present) of
column NO2 concentrations on a global scale, with high
spatial and temporal resolutions (Table 1). In recent years,
the NO2 columns also have been used to estimate the total
N deposition based on statistical models [51, 52] and gas-
eous NO2 deposition from an inferred model [53].
However, there were still gaps in estimating N deposition
with a high prediction accuracy based on a statistical
method.

Compared with NO2 measurements (since 1996), satellite
NH3 measurements have been conducted much later by the
Atmospheric Infrared Sounder (AIRS, 2002-, resolution
13.5 × 13.5 km2), the Infrared Atmospheric Sounding
Interferometer (IASI, 2008-, resolution 12 × 12 km2), and
the Tropospheric Emissions Spectrometer (TES, 2004-, reso-
lution 5 × 8 km2) [54]. The IASI NH3 product has been widely
validated by ground-based measurements [20•], while the
AIRS datasets were first reported by Warner et al. [55] and
need to be validated by more measurements in the future. Van
Damme et al. [21] provided a comprehensive work on the
validation of the IASI NH3 measurements. In their work, the
IASI NH3 columns have been converted to surface concentra-
tions by using model profiles. Over China, the analysis be-
tween the monthly NH3 concentrations from IASI and those in
NNDMN gave a Pearson’s correlation coefficient of 0.39 and
a slope of the regression of 0.21 (n = 1149) [21], suggesting
further investigation is needed to consider the performance of
IASI NH3 measurements, especially as translated to surface
concentration estimates. When the satellite NH3 and NO2 col-
umns are converted to surface concentrations, dry deposition
fluxes of NH3 and NO2 can be estimated according to atmo-
spheric concentrations and simulated Vd of both N species.
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Uncertainty Analysis of Various Monitoring Approaches

To generate a total N deposition flux, one must keep in mind that
atmospheric N is deposited via precipitation (wet deposition) and
as gases and particles (dry deposition). Besides the pathways, it is
critically important to consider various N species (NOy and
NHx). Therefore, it is important to quantify both wet and dry
deposition of NOy and NHx; otherwise, an extrapolation of total
N deposition flux could yield a high underestimation [56].

The clarification of the terminology for N deposition, es-
pecially for wet deposition, bulk deposition, dry deposition, or
total deposition of inorganic and organic N, is therefore cru-
cial, when investigating and estimating the effects of N depo-
sition on ecosystems [57]. Especially, we must clarify two
concepts about wet and bulk deposition. The former refers
strictly to wet-only deposition collected only during rainfall
and snowfall events. The latter refers to rainfall and snowfall
samples collected using traditional rain gauges which are open
permanently. This gives bulk deposition containing wet plus
unquantifiable dry deposition of gases and particles and there-
fore it should be higher than wet deposition but much lower
than total deposition.

For example, wet deposition only contributed 40% (28–57%)
to total inorganic N deposition in northern China [17]. Annual
difference between bulk and wet deposition was 1.3–
9.6 kg N ha−1 in northern Chinese agroecosystems, equivalent
to 5–32% of bulk deposition [58]. This contribution increased to
39% in urban regions [59]. Total N deposition to ecosystemswill
often be several times larger than bulk deposition data. We there-
fore suggest the clarification of the terminology regarding N
deposition, especially for wet deposition, bulk deposition, gas-
eous and particulate dry deposition, or total deposition when
investigating the ecological impacts of N deposition.

Quantification of Atmospheric N Deposition

Inorganic N Deposition

Due to the difficulty in measuring dry N deposition, earlier
studies focus on wet or bulk N deposition, calculated as a

product of precipitation-weighted mean N concentration and
annual precipitation [60, 61]. Based on the NNDMN and pub-
lished data, Liu et al. [2••] showed annual bulk N deposition in
China increased from 13.2 kg N ha−1 in the 1980s to
21.1 kg N ha−1 in the 2000s, with an annual increase of
approx. 0.4 kg N ha−1. Jia et al. [62] and Lü and Tian [63•]
reported a similar increasing trend in N deposition in China.
Different from Europe and the USA [6, 8], China’s wet/bulk N
deposition was still at high level and showed increasing trend
[2••, 30]. Compared with NO3

−-N, NH4
+-N was the dominant

form in most reported wet/bulk deposition results in China
[2••, 7•, 12], although the ratio of NH4

+-N/NO3
−-N in precip-

itation decreased since the 1980s [2••]. The main reasons for
the enhanced wet/bulk deposition are the increased energy
consumption and N fertilizer use [2••, 30, 62]. Although the
methods for estimation of the relevant deposition are different
to some extent among the above mentioned studies, their re-
sults are highly comparable, and thus can represent the mag-
nitudes of current wet/bulk deposition in China.

Dry N deposition can be measured directly using micromete-
orological methods [64] or estimated by employing inferential
models that require measurements of deposition velocity (Vd,
from standard surface meteorological and biological parameters)
and ambient concentrations of gaseous- or aerosol-N compounds
[65•]. However, the application of micrometeorological tech-
niques to flux measurements of N species are limited to short-
term or a few species [66, 67], and thus are hard to give reliable
annual dry N deposition fluxes. For these reasons, the most ex-
tensively used method worldwide remains the inferential meth-
od, albeit with considerable uncertainty [65•].

Over the last decade, many studies have successfully quanti-
fied dry N deposition at a local scale [68, 69], or at a regional
scale [12, 70] in China using the inferential method. More re-
cently, Xu et al. [11•] systematically reported average wet/bulk
and dry N deposition to be 19.3 and 20.6 kg N ha−1 year−1 re-
spectively from 43 in situ monitoring sites in the NNDMN dur-
ing 2010–2014. The spatial variability of wet and dry N deposi-
t ion by regions showed: North China>Southern
China>Northeast China>Northwest China>the Tibetan Plateau
(Fig. 1), consistent with the national atmospheric N emission

Table 1 The satellite instruments monitoring column NH3 and NO2 concentrations

Sensor Satellite Period Temporal coverage (days) Overpass time Geometric resolution (km2) NO2 NH3

GOME ERS-2 1996–2003 3 10:30 320 × 40 ✓

SCIAMACHY Aqua 2002–2012 6 10:00 60 × 30 ✓

OMI Aqua 2004- 1 13:45 24 × 13 ✓

GOME-2 Metop-A 2007- 1 9:30 80 × 40 ✓

GOME-2 Metop-B 2013- 1 9:30 80 × 40 ✓

IASI Metop-A 2008- 0.5 9:30 and 21:30 12 × 12 ✓

IASI Metop-B 2013- 0.5 9:30 and 21:30 12 × 12 ✓

AIRS Aqua 2002- 0.5 13:30 13.5 × 13.5 ✓
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intensities [23] as well as the differences in N fertilizer use and
energy consumption [12, 30]. A similar study by Jia et al. [13]
showed that dry N deposition averaged 7.5 Tg N year−1 during
2005–2014 in China and exhibited an increasing trend. It seems
clear that dry N deposition (comparable to wet deposition) con-
tributes to a significant fraction of total N deposition and thus
should be considered when assessing N deposition-induced eco-
logical risks. However, there are still some unresolved issues,
especially related to quantification of NH3 bi-directional ex-
change between atmosphere and biosphere [71, 72].
Incorporation of bi-directional exchange into NH3 dry deposition
modeling frameworks typically reduces net deposition to the
surface.

Organic N Deposition

Organic N deposition, which accounted for about 20–30% of
total N compounds in wet and dry deposition [73], has re-
ceived much less attention than inorganic N compounds due
to in part to the more critical requirements of sampling, stor-
age, transport, and analysis [42•]. Early research mostly con-
centrated onwet deposition in remote marine and coastal areas
[74•], while recent research has expanded to different ecosys-
tems including organic N not only from precipitation but also
from aerosols [75, 76].

Concentrations of DON concentrations in precipitation in
China ranged from 13.2 to 190.3 μmol L−1, with averaged value
of 70.5 μmol L−1, while DON concentrations in other regions
ranged from 0.01 to 69.3 μmol L−1, with average value of
15.6 μmol L−1 (Fig. 2a). Fractions of DON in total dissolved N
(TDN) (DON/TDN value) from precipitation in China ranged
0.07 to 0.67, with an average value of 0.28, while DON/TDN
values in other regions ranged from 0.02 to 0.58, with an average
value of 0.19 (Fig. 2b). DON concentrations from aerosols were
also measured worldwide, with higher concentrations (65 to
204 nmol m−3) in China [77] than in other regions (1.3 to
15.8 nmolm−3) in other regions [78, 79]. Although available data
of DON deposition in China were mainly collected in

agricultural ecosystems (only few data from other ecosystems)
[43, 80], they were substantially higher than the values in other
regions [42•], which could be explained by thewidespread heavy
nitrogenous species emission and deposition over China [2••,
15]. DON/TDN values from precipitations in China were also
significantly higher than that in other regions, but both the two
group values were located in reasonable range [81], and the
relationship between higher DON concentration and higher
DON/TDN was poorly understood. Taking the annual precipita-
tion amount into account, organic N from wet deposition in
China averaged 7 kg N ha−1 year−1 [43].

Source Analysis of N Deposition

The analysis of N sources in deposition has long been critical
for constructing emission-deposition relationships. Compared
with modeling methods, stable isotopes of reactive N in depo-
sition can provide fingerprint information on major sources
and transportation of different N species in deposition [82].
Particularly, new methods such as the conversion of nitrate to
nitrous oxide for N and oxygen isotope analysis [83] have
greatly improved the sample stability and reduced the require-
ments of sample sizes. Based on the sensitive denitrifier
methods, the δ15N techniques were developed for source anal-
ysis on NH4

+, NO3
−, and DON in wet deposition [84, 85].

However, it remains challenging to achieve accurate and
quantitative apportionment of N deposition only by the δ15N
technique.

Atmospheric δ15N studies in China have mostly concen-
trated on NH4

+ and NO3
− in precipitation [86, 87], with very

few studies on aerosols [34•] and gaseous N species [88]. Due
to the difficulties in direct δ15N analysis of DON [89], its
origins remain very uncertain, although the variable δ15N
values reported for marine-to-terrestrial precipitation DON
suggested the potential of δ15N in DON source differentiation
[90•]. Moreover, complex N emissions and gas-to-particulate
transformation or precipitation washout may produce more
variable and overlapped δ15N values in N deposition, which
requires more lab and field evidence on isotopic fractionations
of N before deposition because substantial isotope effects
could confound δ15N signals between dry and wet deposition
[91], between terrestrial and marine N sources [92]. Future
efforts on these questions would allow us to better quantify
contributions from multiple sources and to achieve regional
δ15N observations of N deposition in China.

Modeling Wet and Dry N Deposition

Recent Development of Atmospheric Deposition Simulation

Global and regional chemical transport models (CTMs),
which are capable of modeling the physical and chemical
processes of atmospheric N pollution, have been applied to
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simulate the dry and wet N deposition over China [93, 94].
Simple statistical models (e.g., Gu et al. [95]) are also
established to calculate N deposition as a function of energy
consumption, fertilizer use, and precipitation amount, al-
though they may be subject to great uncertainties by not con-
sidering various N emission sources and atmospheric process-
es. CTMs generally parameterize wet deposition as a function
of precipitation activity and scavenging efficiency for differ-
ent air pollutant species, and deploy the Wesley standard
resistance-in-serious scheme [96] to derive Vd for gaseous
pollutants. Wu et al. [97] developed a new gaseous dry depo-
sition parameterization, namely Naoh-GEM, and showed that
Naoh-GEM model calculated Vd for ozone, PAN, and NOy

agreed well with the field measurements [98].

Modeling N Deposition in China

Simulations of N deposition at the global scale indicated that
China has become one of the hotspots of N deposition in the
world [99]. Regional CTMs at higher resolutions (5–36 km) now
better characterize the spatial and temporal patterns and the bud-
gets of N deposition in China [93, 94]. Zheng et al. [93] modeled
the N deposition in China for the year of 2010 using the WRF/
CMAQ modeling system. Their modeling results showed that
national averaged total N deposition flux was estimated to be
only 7.9 kg N ha−1 year−1, with the higher deposition occurring
in the east region than the west. Dry deposition (mainly via NH3

andHNO3) was the dominant form, contributing 62% to the total
deposition. The reduced N deposition was about twice of the
oxidized N deposition. Combining site-level monitoring gridded
precipitation data and atmospheric transport modeling results, Lu
and Tian [63•] reported China’s bulk N deposition increased
f rom 12.64 kg N ha− 1 yea r− 1 in the 1960s , to
15.89 kg N ha−1 year−1 in the 1980s and further to
20.07 kg N ha−1 year−1 in the 2000s, similar to summarized

monitoring results across China [2••]. More recently, total inor-
ganic N deposi t ion fluxes were simulated to be
16.4 kg N ha−1 year−1 on average of 2008–2012 over China,
with 62% (10.2 Tg N year−1) from reduced N (NHx) and 38%
(6.2 Tg N year−1) from oxidized N (NOy) [16]. The modeled N
deposition results showed substantially higher in intensively ag-
ricultural or economically developed areas than in the national
average. For example, the regional averaged deposition was es-
timated to be 47 kg N ha−1 year−1 in the NCP in 2008 by [100]
and 31 kgN ha−1 year−1 in the Pearl River Delta (PRD) region of
Southern China in 2006 by Huang et al. [94]. In both NCP and
PRD, reduced N compounds were the major deposited N com-
ponents, comprising 63 and 77% of the total N deposition, re-
spectively [94, 100]. Zhao et al. [101] found that N deposition
will increase across most of China from 2005 to 2020, withmore
than 40% rise in south-central and eastern China under the pro-
jection of a business-as-usual scenario.

The increasing N deposition input to the marginal seas
nearby the mainland of China has also been paid much
attention recently [102]. Using the GEOS-Chem nested
model over Asia, Zhao et al. [103] showed that atmospheric
N deposition to the Yellow Sea and the South China Sea
ranged from 0.8–20 kg N ha−1 year−1, which declines quick-
ly downwind of the Asian continent. Present atmospheric N
deposition is comparable to riverine N inputs, and thus has
become an important contributor to the total N inputs to the
marginal seas of China [104]. Total deposited N over the
eastern China seas, including the Bohai Sea, Yellow Sea,
and East China Sea, corresponds to about 3% of the N
emission in China and would result in up to 4% increase
of new productivity over that sea area [105]. The source
attribution analysis using an adjoint model indicated that N
emission over mainland China contributed about 90 and
70% of N deposition to the Yellow Sea and South China
Sea, respectively [103].
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Contribution of Atmospheric Reactive N to Air Pollution

Contribution to PM2.5 Pollution

NOx and NH3 are important precursors for the formation fine
particles in the atmosphere. As a dominant alkaline gas, am-
monia (NH3) can react with acidic compounds such as sulfuric
acid (H2SO4) and nitric acid (HNO3) to form particulate am-
monium (NH4

+) [106]. Due to the high emission intensities of
NOx and NH3 in China [2••], the emissions of NOx and NH3

have been found to contribute to the formation of a large
quantity of secondary inorganic aerosols (SIA, such as
NH4NO3, NH4HSO4, and (NH4)2SO4), which account for
~20–60% of PM2.5 mass concentration [107]. For example,
Huang et al. [108••] found that total mass concentrations of
SIA during the high pollution events in Beijing, Shanghai,
Guangzhou, and Xi’an ranged from 28.5 to 66.9 μg m−3,
which accounted for 19.4–41.3% of the total PM2.5 mass con-
centration. Xu et al. [37] also found high annual mean con-
centrations of SIA (35.9 to 49.6 μg m−3) in PM2.5 at four rural
and urban sites in the North China Plain, accounting for 29–
39% of the total PM2.5 mass concentration.

In many urban areas of China, such as Beijing, a higher
proportion of SIA relative to SOA (secondary organic aero-
sols) has been observed during haze episodes, suggesting a
greater importance of SIA in haze pollution chemistry [36].
From an extreme haze pollution event during early 2013,
NH4

+ and related SIA (including NO3
−) contributed 7.2 and

22.2% of PM2.5 on clean days. These numbers increased to
10.4 and 36.2% at heavy polluted days [109]. On an annual
basis, NH4

+ and SIA contributed 9.2 and 35.0% of PM2.5,
respectively. The percentages of NH4

+ in PM2.5 mass ranged
from 7.4–12.4%, with highest values in spring and the lowest
in autumn. Contributions of SIA to PM2.5 mass decreased as
follows: spring (42.6%) > winter (33.7%) > autumn
(32.8%) > summer (31.1%) [110]. On the national scale, the
percentages of NH4

+ and SIA in PM2.5 mass ranged from 1.1–
10.6% and 7.1–57%, respectively. At both urban and rural
sites in the eastern region, the NH4

+ and SIA typically consti-
tuted much higher fractions (6.5–10.6% and 40–57%) of
PM2.5 mass, indicating more local formation/production and
regional transport of SIA [110, 111].

Field and laboratory studies have shown that NOx acts as a
catalyst and can promote the conversion of SO2 to sulfate on the
surfaces of mineral oxides [112, 113]. Moreover, the formed
nitrate species can enhance the hygroscopicity of mineral oxides
[114] and the uptake of liquid water, which accelerates SO2 and
NOx gas–liquid–solid reactions and further increases the hygro-
scopicity of the particles [113]. In a recent study, measured ni-
trate to sulfate ratios in Beijing are higher than those reported a
decade ago, coinciding with the increasing trend in NOx emis-
sions [115]. Thus, an effective strategy to control PM2.5 and haze
pollution over North China should emphasize the future control

of NOx emissions. Based on these findings, Pan et al. [34•]
proposed Bthe NOx hypothesis^ that NOx mitigation will not
only reduce nitrate itself but also decrease secondary inorganic
and organic aerosol formation [37, 112].Wang et al. [116] found
that nitrate aerosol concentration was more sensitive to NOx

emissions in the NCP and YRD, but it is equally or even more
sensitive to NH3 emissions in the PRD. Meanwhile, organic
nitrate (e.g., PAN) also contributes to aerosol mass concentration
in China [108••]. The reduction in NOx emissions should also
mitigate organic nitrate-induced secondary aerosols.

Recent work in the USA also reveals the importance of NH3

in influencing the success of sulfate reduction strategies [117].
Especially in winter when oxidant concentrations are limited,
enhanced levels of NH3 which raise the pH of atmospheric
condensed water can increase aqueous phase sulfate production
by enhancing the importance of ozone as an oxidant. One con-
sequence of this chemistry is that wintertime efforts to reduce
sulfate pollution can be thwarted by abundant NH3, since in-
creases in sulfate conversion efficiency increase while SO2

emission are reduced, due to increases in pH. This is an impor-
tant lesson for China to consider as it moves to reduce SO2

emissions with the goal of reducing haze and its associated
health and visibility impacts. In terms of the impact on PM2.5

pollution, NOx and NH3 influence aerosol acidity in different
ways. NOx that eventually formed nitrate increases aerosol acid-
ity, but NH3 actually decreases the aerosol acidity. NOx might
enhance the aqueous oxidation of dissolved SO2 if atmospheric
NH3 elevates pH value of liquid water content in aerosol/cloud
to a large extent [118].

Based on on-line and off-line aerosol measurements in ur-
ban Beijing for both clean and haze conditions, Pan et al. [34•]
demonstrate that the absolute and relative concentrations of
nitrate increased with visibility degradation (relative humidi-
ty), whereas the variations of organics tracked the patterns of
mixing-layer height and temperature. The increasing trend of
nitrate (and also sulfate) but decreasing trends of organics
during haze development, together with the increase of the
NO2/SO2 molar ratio with increasing proximity to downtown
Beijing and with visibility degradation, provide regional fea-
tures of NOx-induced haze pollution in China. Such studies
may provide insight into the formation of critical nuclei or the
subsequent growth of freshly nucleated particles and advance
our understanding of the role of nitrate in new particle forma-
tion and PM2.5 pollution.

Contribution to O3 Pollution

Reactive N is also an important driver for ozone (O3) forma-
tion, since O3 is a secondary air pollutant that is formed in the
troposphere via photochemical oxidation of NOx and volatile
organic compounds (VOC) in the presence of sunlight. At a
global scale, significant increasing trends of tropospheric O3

have been derived from a synthesis of in situ observation and
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remote sensing [119]. Also, elevated surface O3 concentra-
tions from local to regional scales, induced by large and wide-
spread emission sources of O3 precursors (i.e., NOx and
VOC), have been reported in China [120, 121]. In general,
photochemical O3 can be reduced by controlling emissions
of its precursors, but NOx and VOC have a non-linear rela-
tionship with O3 formation. Namely, there are NOx- or VOC-
limited O3 formation. The regimes are dominated by VOC/
NOx ratios, VOC reactivity, biogenic emissions, photochemi-
cal aging, and meteorological conditions. For example, VOC
relative to NOx appears to dominate the O3 production effi-
ciency in Central Eastern China and the Pearl River Region,
whereas summer O3 formation in the plains and mountainous
areas in Northern China was sensitive to VOC and NOx, re-
spectively [122]. Recent research showed that O3 formation is
VOC limited in most city clusters in the NCP, YRD, and PRD
regions [123, 124]. In other words, atmospheric NOx in
China’s megacities exerted a titration effect on ozone forma-
tion. Unfortunately, such valuable information is still scarce,
which limits our understanding of O3 formation at a broad
perspective. Therefore, O3-VOC-NOx chemistry over China
needs to be improved through more observational and model-
ing studies, which is undoubtedly benefit to develop effective
policies for O3 pollution control.

Implications of N Emission Mitigation for Air Quality
Improvement

Air pollution, especially PM2.5 pollution, has captured the
interest of scientists and the public alike since the worst pho-
tochemical smog in history occurred in China [108••]. As
important components of PM2.5, NH4

+, and NO3
− concentra-

tions in PM2.5 (precursors of NH3 and NOx) dependmainly on
emission reduction.

During the Beijing Olympic Games, the daily emission of
NOx was 47% lower the emission level on June 2008 [125].
By reducing the emissions of NOx and SO2 from vehicles as
well as coal combustion, a 69% reduction of PM2.5 concen-
tration and a 53% reduction of SIA (sum of SO4

2−, NO3
−, and

NH4
+) concentrations had been witnessed in Beijing during

the 2008 Beijing Olympic period [126]. Also, by strict emis-
sion controls, SIA concentrations decreased significantly at
the ground site and 260 m height during the first APEC epi-
sode [32]. To memorize the end of WorldWar II and the Sino-
Japanese War, a 70th anniversary victory parade was held in
Beijing on 3 September 2015. During the Parade Blue period
(from 20 August to 3 September 2015, with strict pollutant
emission controls in Beijing and surrounding areas), reduc-
tions of 12–35% for NH3 and 33–59% for NO2 in different
areas of Beijing city during the emission control period were
observed compared with measurements in the pre- and post-
Parade Blue periods without emission controls [37]. As a re-
sult of reduction of NH3 and NO2, NH4

+ and NO3
−

concentrations in PM2.5 were also significantly decreased dur-
ing the emission control period. However, these short-term
emission control effects on air quality improvement disap-
peared shortly after cancelation of those emission control
measures [37, 127].

BShifting from coal to natural gas^ at Urumqi in Xinjiang
provided an opportunity to examine the long-term emission
reduction effects. PM2.5 and its NH4

+ and NO3
− concentra-

tions decreased by more than 60% (p < 0.01) in January
2013 and 2014 (heating with natural gas) compared with those
in January 2011 and 2012 (heating with coal) [124]. The
change of energy consumption structure at Urumqi suggests
that air quality improvement needs long-term pollutant emis-
sion control measures, including the co-mitigation of NH3,
NOx, SO2, and VOC emissions.

Conclusions and Outlook

In general, we have tried our best to overview progress on N
emissions, deposition, and air quality impacts in China, based on
relevant publications especially after 2010. China’s national at-
mospheric N emissions, mainly from agricultural activities and
fossil fuel combustion, are very high and likely to further increase
in the future in order to meet the requirement by the increased
population. Meanwhile, the Chinese government has been mak-
ing a great effort to protect the environment through the adjust-
ment of the energy structure in urban regions and/or releasing
new policies in rural regions such as zero increase plan for chem-
ical fertilizer use by 2020 [30]. With stricter control measures of
atmospheric N emissions by the government, we expect the turn-
ing point of N emissions and deposition will come soon in the
near future, similar to that of North America and Europe. In
conclusion, dry and wet N deposition fluxes are comparable
and show equal importance in China. Atmospheric N deposition
has to some extent become an important indicator of anthropo-
genic N emissions induced by the expanding Chinese economy.
Both monitoring and modeling results reveal that the central-
eastern regions of China (e.g., northern, southeast, and southwest
China) are N deposition hotspots worldwide. Elevated N depo-
sition has produced detrimental effects on the environment espe-
cially air quality (e.g., PM2.5 and O3 pollution) over China.

In the future, strong research needs are required to reduce
the uncertainties of N emission inventories and the N
emission-deposition relationship, using combined monitoring
and modeling approaches. Studies on revealing condition-
dependent and localized emission factors of NH3, NOx as well
as atmospheric organic N species would significantly reduce
the uncertainties in N emission inventories in China. It is cru-
cial to reduce knowledge gaps between modeled and mea-
sured results by improving the understanding of atmospheric
N emission, transport, and deposition processes (e.g., by op-
timizing model parameters), based on considering main fac-
tors (such as meteorological factors and landuse types) that
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control those processes. It is also important for China to es-
tablish open-accessed national N deposition monitoring net-
works covering both wet and dry deposition using uniform
monitoring methods, similar to the National Atmospheric
Deposition Program of the United States (http://nadp.sws.
uiuc.edu) or the Acid Deposition Network in East Asia
(http://www.eanet.asia/site/index.html). Cross-site N addition
experiments along with various forests, grasslands, deserts,
and aquatic ecosystems are required in order to provide sys-
tematic information on the impact of elevated N deposition on
both terrestrial and aquatic ecosystems against the background
of climate change. The negative impacts of atmospheric N
pollution on human health should be paid increasingly more
attention in the future with increased premature deaths due to
air pollution in China and globally. We appeal for wider inter-
national collaboration on N deposition measurements, model-
ing, and environmental effect evaluation. Nitrogen regulation
tools and strategies should be recommended and taken into
account when policy-makers consider the mitigation of an-
thropogenic Nr emissions and the benefits of human and eco-
system health from the mitigation.
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