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Abstract
Purpose of Review  Predicting, preventing, and minimizing machinery-induced soil compaction are of paramount impor-
tance in forest ecosystems. Understanding the soil’s susceptibility to compaction is crucial in achieving these goals. This 
meta-analysis assessed the relevance of climatic and soil conditions for the susceptibility of forest soils to wood-harvesting-
associated compaction across global climatic zones. We utilized soil bulk density change data (effect sizes; compacted versus 
uncompacted) from 81 forest sites worldwide, and mapped global patterns of the susceptibility of forest soils to compaction 
using climate and soil data.
Recent Findings  Wood-harvesting operations by harvester-forwarder technologies disturb the soil less as compared to skid-
ders and cable yarders. It has been shown that a high number of vehicle passages (> 20 times) lead to maximum soil damage, 
although this contradicts the general belief that major soil disturbance occurs within the first few vehicle passages. Despite 
these important findings, a global compilation of local information on forest soil compaction induced by mechanized wood 
harvesting is currently lacking. A map that illustrates the global pattern of soil susceptibility to compaction is also required 
to identify particularly susceptible forest regions.
Summary  Forest soils in tropical and temperate zones were most susceptible to compaction (48% and 30% bulk density 
increase, respectively), while forest soils in arid and cold zones were less susceptible (15% and 18% bulk density increase, 
respectively). Soils in tropical and temperate forests receive high annual precipitation amounts, are characterized by high 
soil organic carbon content and low bulk density, and are often wet, resulting in high susceptibility to compaction. Since 
tropical and temperate forests are biodiversity hotspots, forest managers and policymakers should pay particular attention to 
mechanized wood-harvesting operations in these zones, as the recovery of compacted forest soils requires decades.
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Introduction

Forests make up around 30% of the terrestrial area of the 
Earth. Forest ecosystems are essential for the survival of 
many organisms and supply numerous important ecosystem 
services such as food, timber, flood prevention, water and 
nutrient cycling, and climate regulation [1, 2]. However, 
human demand for forest products is growing, which can 
impair the delivery of some of these ecosystem services and 
cause environmental and societal problems [3, 4].

Timber and wood are the most desired forest products 
that are exploited for industrial and economic purposes. 
Quick and efficient forest management and wood harvest-
ing, on a large scale, require the use of forestry vehicles such 
as skidders and forwarders. Wood-harvesting-associated 
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vehicle traffic affects 10–70% of the harvested area, show-
ing its enormous risk to damage the forest soil and ecosys-
tem [5, 6]. The efficiency and capacity of wood-harvesting 
equipment have grown in recent years due to an increase 
in power and performance, but the machinery’s increasing 
weights (up to 45 Mg) have elevated the risk of soil com-
paction [7–9]. Soil compaction occurs when mechanical 
stresses from machinery exceed soil strength and result in 
soil structural degradation, which is one of the most strik-
ing unintended consequences of mechanized wood harvest-
ing [10]. Soil compaction leads to the creation of ruts and 
to mixing of upper soil layers, both having negative effects 
on soil physical, chemical, and biological functions, conse-
quently disharmonizing the forest ecosystem [10–13]. Such 
machinery-induced disturbances to soil and forest health can 
persist for decades [14]. Thus, alleviating the impact of soil 
compaction induced by mechanized wood harvesting is nec-
essary for sustainable forest management [15••].

Soil compaction is an increase in soil bulk density [16, 
17]. Soils with low bulk densities are more susceptible to 
compaction [18]. Forest soils have low bulk density due to 
high organic matter contents, particularly in upper soil layers 
[19]. An increase in soil bulk density by wood-harvesting 
vehicles has remarkable negative consequences for the soil 
and forest ecosystem functioning. For instance, machinery-
induced increases in bulk density and associated decreases 
in soil total porosity can lead to dramatic reductions in 
gas and water transport in forest soils [5, 6, 20–22]. Such 
impairments of gas and water exchange between atmosphere 
and soil can restrict the availability of oxygen and water to 
tree roots and soil micro-organisms, damaging forest pro-
ductivity and the delivery of ecosystem services [12, 23, 
24]. Decreased soil porosity due to wood harvesting can 
reduce soil hydraulic conductivity and water infiltration and 
enhance the risk of surface runoff and erosion [25–28].

In a recent meta-analysis with 67 published articles, the 
influence of mechanized wood harvesting on soil microbial 
biomass carbon, bulk density, total porosity, and saturated 
hydraulic conductivity affected by such factors as soil tex-
ture and depth, vehicle weight, vehicle passage number, and 
the time since the compaction event was evaluated [29•]. 
Fine-textured (clayey) forest soils were more susceptible 
to compaction than coarse-textured (sandy) soils, mainly 
because of their higher water-holding capacity that decreases 
frictional forces between soil particles [10, 29, 30]. Forest 
upper soil layers were more susceptible to compaction, 
due to considerable amounts of organic matter, lower bulk 
density, and higher mechanical stresses from vehicles than 
deeper soil layers [19, 29]. Furthermore, the stresses propa-
gate vertically and decrease with soil depth. Hence, upper 
layers susceptibility to compaction for forest soils is a suit-
able indicator for the potential of forest soil compaction. 

Despite these important findings that assist forest managers 
and policymakers in reducing the detrimental impacts of 
soil compaction, a global compilation of local information 
on forest soil compaction induced by mechanized wood har-
vesting is currently lacking. There is a knowledge gap of 
how climate affects the susceptibility of soils to compaction 
across global forest zones through altering the initial soil 
conditions. More importantly, we require a global map that 
illustrates the susceptibility of forest soils to compaction.

Here, using an updated article set of [29•] and new cli-
matic and soil data, we provide a global picture of soil sus-
ceptibility to compaction in forest ecosystems across climatic 
zones and highlight the controlling climatic and soil factors. 
The meta-analysis aimed (i) to investigate the influence of 
climatic and soil conditions on the susceptibility of soils to 
wood-harvesting-associated compaction, and (ii) to identify 
global patterns of compaction susceptibility and the most 
susceptible regions in forest ecosystems worldwide. A map 
that shows the global pattern of soil susceptibility to compac-
tion can help to find particularly susceptible forest regions.

Methods

Publication Search and Selection Criteria

Peer-reviewed studies published between 1983 and 2022 
were identified through the online search engines Web of 
Science and Google Scholar. Keywords used for the search 
were composite terms: “forest,” “soil,” “compaction,” “har-
vest,” “logging,” “skid trail,” and “bulk density.” Three 
major criteria were considered to select the studies: (1) 
Compaction was imposed on soils using wood-harvesting 
vehicles (i.e., we did not consider animal logging and cable 
yarders) in forest ecosystems (i.e., we did not consider labo-
ratory studies); (2) Bulk density was reported in uncom-
pacted (control) and compacted (treatment) forest soils; (3) 
Bulk density was measured in the upper mineral soil layers 
(< 30 cm depth). Certain studies provided measurements of 
bulk density for both the soil unaffected by vehicle passage 
in the harvested area and the soil in a nearby unharvested 
stand. In such instances, we regarded the soil unaffected by 
vehicle passage in the harvested area as the uncompacted 
control.

Data Collection

We reviewed more than 500 articles and detected that only 
70 of them met the three selection criteria [5, 12, 21, 24, 
26, 30–94]. In total, 162 bulk density observations of 81 
forest sites (Fig. 1), related to both uncompacted and com-
pacted treatments (81 × 2 = 162), were extracted from the 
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articles to calculate the effect size (k; BD increase in com-
pacted versus uncompacted soils) for groups of climatic 
and soil conditions. We only considered one data pair per 
site to avoid repeated measurements and the dependence 
of the effect sizes. When a study presented multiple data 
pairs with the same control, involving different soil depths, 
vehicle types, or slopes, we selected only one depth, one 
vehicle type, and one slope for the analysis. In such cases, 
we selected the uppermost measured depth representing the 
upper mineral soil layers (< 30 cm depth), chose the vehi-
cle similar to the ones from most of the studies (e.g., for-
warder), and selected the lowest slope. Note that a few of 
the selected studies investigated more than one forest site, 
resulting in the total number of 81 forest sites. Data pre-
sented in graphs were digitized using WebPlotDigitizer 4.4 
(https://​autom​eris.​io/​WebPl​otDig​itizer). The data on cli-
matic zone and annual precipitation amount were recorded 
wherever available. Also, soil organic carbon content, volu-
metric water content, and initial (i.e., before vehicle traffic) 
bulk density data were collected wherever available.

The grouping of the climatic and soil conditions was 
performed according to the corresponding data of the 70 
selected articles. Climatic zones were classified as tropi-
cal, arid, temperate, and cold according to the updated 
Köppen-Geiger climate classification system [95]. Annual 
precipitation amounts were grouped as low (< 500 mm), 
moderate (500–1500 mm), and high (> 1500 mm). Soil 
organic carbon contents were grouped as low (< 1%), 
moderate (1–5%), and high (> 5%). Soil volumetric water 
contents were categorized as low (< 20%), moderate 
(20–30%), and high (> 30%). Soil bulk densities before 
compaction were classified as low (< 1.0 g cm−3), moder-
ate (1.0–1.3 g cm−3), and high (> 1.3 g cm−3).

Statistical Analyses

A random-effects model was used in this meta-analysis, 
assuming that the observed treatment effect could vary 
across the studies due to different treatments as well as sam-
pling variability. This meta-analysis is concerned with the 
magnitude of change (the effect size) of bulk density and the 
significance of this change in response to a treatment. The 
natural logarithm of the response ratio (RR) was used to cal-
culate the effect size of bulk density due to wood-harvesting-
associated soil compaction [96]:

where BDU and BDC are the means of bulk density in the 
uncompacted and compacted soils, respectively. The RR can 
be converted to a percentage change by back-transformation 
as (eln(RR) − 1) × 100 [97]. For the effect size, lower and 
upper limits of the confidence intervals (CIs) were estimated 
using bias-corrected bootstrapping with 5000 iterations [2, 
98]. The statistical significance of the effect size was tested 
using the 95% CIs. If the 95% CIs did not overlap the zero 
line, the effect size was considered statistically significant 
at α = 0.05. The group means were considered significantly 
different from each other if their 95% CIs did not overlap.

Meta-regression analyses were implemented to iden-
tify overall effects and effect sizes of the climatic and soil 
moderators (at α = 0.05). Linear mixed effects model was 
applied to detect relations between bulk density change and 
climatic and soil conditions, using study area as a random 
effect to account for spatial variability (at α = 0.05). The 
presence of publication bias was assessed by Spearman’s 

ln (RR) = ln

(

BD
C

BD
U

)

Fig. 1   Global forest coverage. Sampling sites are indicated by blue crosses. Note that not all forest areas are shown at the current resolution

https://automeris.io/WebPlotDigitizer
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rank correlation test (at α = 0.05) and Kendall’s Tau rank 
correlation test (at α = 0.05) correlating the replicate number 
of each study and the effect size [2, 99]. No publication bias 
was diagnosed across the studies based on Spearman’s rank 
(p-value = 0.273, r = − 0.123, n = 81) and Kendall’s Tau 
rank correlation test (p-value = 0.258, r = − 0.089, n = 81). 
The lack of publication bias means that the studies published 
both significant and non-significant results. IBM SPSS Sta-
tistics for Windows, version 28 (IBM Corp., Armonk, NY, 
USA) was used to perform all analyses and to generate bias-
corrected CIs for the effect sizes of the forest plots.

Spatial Mapping of Forest Soil Compaction Potential

A Gaussian process regression model was used to map the 
spatial distribution of forest area that is susceptible to com-
paction based on expected changes in bulk density after traf-
fic. Where available, local information from the 81 sample 
locations (Fig. 1) was used, and the missing observation 
values were imputed from global raster data. Additionally, 
covariates were added based on the latitude and longitude 
pairs. The covariates included environmental variables: 
mean annual precipitation [100], climatic water content 
[101, 102]; elevation, mean annual temperature and radia-
tion [103], bulk density, soil organic carbon content, cat-
ion exchange capacity, and soil pH [104]; and net primary 
productivity [105]. Also, we included clay content and the 
dominant clay minerals kaolinite and smectite [106] due 
to their importance for soil hydro-mechanical properties 
[107]. We also used soil depth as a covariate to model forest 
soil compaction risk at the specific soil depth of 15 cm. All 

covariate layers were at 0.1° resolution for model fitting and 
spatial prediction. The model was trained on all data points 
using scikit-learn 1.2.1 [108]. We used an inhomogeneous 
quadratic kernel to specify the covariance. The model simul-
taneously estimates the mean and standard deviation of the 
target variable (bulk density change after traffic). To mask 
forest area, we used the Copernicus Global Land Service 
land cover of 2019 [109].

Results

Impact of Climatic Conditions on the Susceptibility 
of Forest Soils to Compaction

Wood-harvesting operations significantly compacted forest 
soils across climatic zones (Fig. 2). Forest soils in tropi-
cal and temperate zones were more susceptible to compac-
tion (48% and 30% increase in bulk density, respectively) 
compared with forest soils in arid and cold zones (15% and 
18% increase in bulk density, respectively) (Fig. 2). Annual 
precipitation had a significant effect on the susceptibility 
of forest soils to compaction (overall effect size = 28%; 
Fig. 3a). Climatic zones with high (> 1500 mm) and mod-
erate (500–1500 mm) annual precipitation amounts had the 
most susceptible soil conditions to compaction (36% and 
26% increase in bulk density, respectively), whereas soils 
of climatic zones with low (< 500 mm) annual precipita-
tion amounts were less susceptible (11% increase in bulk 
density) (Fig. 2).

Fig. 2   Changes of soil bulk density (compaction) due to wood-har-
vesting operations by heavy machinery in forests, affected by climatic 
zone and annual precipitation amount. Results are presented as mean 
effect sizes ± 95% confidence intervals. Groups with confidence 
intervals not overlapping the dashed reference line indicate a statisti-

cally significant change in soil bulk density due to compaction at α = 
0.05. Groups with confidence intervals overlapping each other are not 
significantly different at α = 0.05. k, number of effect sizes or forest 
sites; LL, lower limit confidence interval; UL, upper limit confidence 
interval
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Impact of Soil Conditions on the Susceptibility 
of Forest Soils to Compaction

Soil organic carbon significantly affected the susceptibil-
ity of forest soils to compaction (overall effect size = 26%; 
Fig. 3b). Wood-harvesting operations increased the bulk 
density of soils with high (> 5%) and moderate (1–5%) 
organic carbon contents by 30% and 21%, whereas soils with 
low (< 1%) organic carbon contents were not significantly 

affected (Fig. 4). Soil water content significantly impacted 
on the susceptibility of forest soils compaction (overall 
effect size = 35%; Fig. 5a). Increases in the bulk density of 
soils with high (> 30%), moderate (20–30%), and low (< 
20%) water contents were 44%, 39%, and 17%, respectively 
(Fig. 4). Soil initial bulk density also had a significant influ-
ence on the susceptibility of soils to compaction (Fig. 5b). 
Soils with low (< 1 g cm−3) initial bulk density (i.e., before 
vehicle traffic) were most susceptible to compaction (32% 

Fig. 3   Meta-regression bubble plots of changes of soil bulk density 
(compaction) due to wood-harvesting operations by heavy machin-
ery in forests, affected by annual precipitation amount (a) and soil 
organic carbon (b). The bubble size represents the weight of each 
study, which is inversely proportional to the variance of the estimated 
treatment effect. Bubbles overlapping with the dashed zero line dem-

onstrate non-significant effects. A p-value smaller than 0.05 indicates 
an overall significant effect. Grey areas around the meta-regression 
prediction line are 95% confidence intervals. H2 = 1 indicates perfect 
homogeneity. k, number of effect sizes or forest sites. Among the var-
ious studies analyzed, graphic (a) shows an average low heterogene-
ity, while graphic (b) shows an average high heterogeneity

Fig. 4   Changes of soil bulk density (compaction) due to wood-har-
vesting operations by heavy machinery in forests, affected by soil 
organic carbon (SOC), volumetric water content (WC), and initial 
(i.e., before vehicle traffic) bulk density (BD). Results are presented 
as mean effect sizes ± 95% confidence intervals. Groups with confi-
dence intervals not overlapping the dashed reference line indicate a 

statistically significant change in soil bulk density due to compaction 
at α = 0.05. Groups with confidence intervals overlapping each other 
are not significantly different at α = 0.05. k, number of effect sizes 
or forest sites; LL, lower limit confidence interval; UL, upper limit 
confidence interval
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increase in bulk density), while soils with high (> 1.3 g 
cm−3) and moderate (1–1.3 g cm−3) initial bulk density were 
less susceptible (11% and 19% increase in bulk density, 
respectively) (Fig. 4).

Relation Between Climatic and Soil Conditions

There was a significant positive linear relation between soil 
organic carbon content and annual precipitation amount 
(Fig. 6a) and a significant negative linear relation between 
initial bulk density (i.e., before vehicle traffic) and soil 

organic carbon content (Fig. 6b). Soil water content had a 
significant positive linear relation with soil organic carbon 
content and annual precipitation (Fig. 7a, b).

Global Pattern of Forest Soil Susceptibility 
to Compaction

The predicted mean of the bulk density changes after wood-
harvesting operations by heavy machinery is high in tropical 
regions of Africa, India, South America, and Southeast Asia 
(Fig. 8a). The estimates have high uncertainty in northern 

Fig. 5   Meta-regression bubble plots of changes of soil bulk density 
(compaction) due to wood-harvesting operations by heavy machinery 
in forests, affected by soil volumetric water content (a) and soil initial 
(i.e., before vehicle traffic) bulk density (b). The bubble size repre-
sents the weight of each study, which is inversely proportional to the 
variance of the estimated treatment effect. Bubbles overlapping with 
the dashed zero line demonstrate non-significant effects. A p-value 

smaller than 0.05 indicates an overall significant effect. Grey areas 
around the meta-regression prediction line are 95% confidence inter-
vals. H2 = 1 indicates perfect homogeneity. k: number of effect sizes 
or forest sites. Among the various studies analyzed, graphic (a) shows 
an average high heterogeneity, while graphic (b) shows an average 
low heterogeneity

Fig. 6   Linear relation between soil organic carbon content and annual 
precipitation amount (a) and between initial (i.e., before vehicle traf-
fic) soil bulk density and soil organic carbon content (b), tested by 
linear mixed effects model using study area as a random effect (at α 

= 0.05). p-values smaller than 0.05 indicate a significant relation. Red 
dashed lines show 95% confidence intervals. R2, coefficient of deter-
mination; n, number of data points
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latitudes, the Andes, and Indonesia (Fig. 8b). Globally, most 
tropical forests soils are susceptible to compaction while a 
broader response distribution is observed for cold and tem-
perate forests (Fig. 8c). The multivariate Gaussian process 
regression model was in good agreement with observations 
resulting in R2 values of 0.69 and root mean squared error 
of 10% (Fig. 8d).

Discussion

There are several interconnected mechanisms through which 
climate affects soil conditions and the soil susceptibility to 
external disturbances. Here, the focus is on discussing the 
alteration of soil organic carbon and water contents by cli-
mate, and how this may influence the soil susceptibility to 
wood-harvesting-associated compaction.

Our analyses reveal that climatic zones with high annual 
precipitation amounts (i.e., tropical and temperate) have 
higher soil organic carbon input compared to climatic zones 
with low annual precipitation amounts (e.g., arid and cold). 
This is likely because of a greater net primary biomass pro-
duction, higher plant inputs to soils, more dissolved organic 
matter input from aboveground, and enhanced mineral-asso-
ciated organic matter formation [110–113]. Moreover, soils 
of high-precipitation climatic zones are more likely to be sat-
urated for a relatively long time which creates anoxic condi-
tions and restricts soil organic matter mineralization, leading 
to net soil organic carbon accumulation particularly in colder 
regions [114]. In the investigated forest sites of this meta-
analysis, soil organic carbon content linearly increased with 
increasing annual precipitation amount (Fig. 6a). Higher 

soil organic carbon content was associated with lower bulk 
density (Fig. 6b) through enhanced aggregation and lower 
soil particle density resulting in a more porous soil struc-
ture which makes the soil more susceptible to compaction 
(Fig. 3b and Fig. 4b). The present meta-analysis suggests 
that high soil organic carbon content is an important factor 
for the high susceptibility of forest soils to compaction in 
high-precipitation tropical and temperate zones. Thus, for-
est managers should carefully assess the impact of heavy 
machinery for wood harvesting on soils with high organic 
matter content.

Higher annual precipitation amounts and high soil organic 
carbon contents lead to high soil water contents (Fig. 7a, b) 
in forests of tropical and temperate zones, and our analyses 
show that forest soils with high water contents were more 
susceptible to compaction (Fig. 4 and Fig. 5a). At higher 
water contents, soil cohesion is reduced, which decreases 
soil strength and increases soil susceptibility to compaction 
[29, 30]. Thus, wetter soils of tropical and temperate forests 
are more susceptible to compaction than the soils of arid 
and cold forests. Our findings highlight the importance of 
cautiously selecting the best time windows for mechanized 
wood-harvesting operations based on low soil water content 
and high bearing capacity to resist mechanical stresses from 
forestry vehicles.

In the light of a changing climate towards warmer and 
wetter winter and spring with higher precipitation in North-
ern, Eastern, and Central Europe, Northern America, and 
China [115, 116], the time windows with dry and frozen soil 
to prevent soil compaction are expected to become fewer and 
shorter. This may have drastic consequences for the forest 
management in the near future because the logging periods 

Fig. 7   Linear relation between soil volumetric water content and 
annual precipitation amount (a) and between soil volumetric water 
content and soil organic carbon content (b), tested by linear mixed 
effects model using study area as a random effect (at α = 0.05). p-val-

ues smaller than 0.05 indicate a significant relation. Red dashed lines 
show 95% confidence intervals. R2, coefficient of determination; n, 
number of data points
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of least susceptibility (dry soil) could become periods of 
highest susceptibility (wet soil). A temporal shift from 
spring and winter logging to performing logging operations 
during summer and autumn, when soils are generally drier 
and less susceptible to compaction, will have to be balanced 
by heavier loads. However, the timing requires careful plan-
ning as the water content of timber is higher in summer, 
amounting to heavier loads and undesirable properties of 
the wood.

The modelled bulk density changes fitted well with the 
observed changes (Fig. 8d), indicating the efficiency of the 
Gaussian process regression model in producing global 
spatial maps. The model provides a conservative estimate 
of potential bulk density change after compaction. We rec-
ommend the use of the non-parametric model to map soil 
compaction susceptibility and the estimated uncertainty also 
for agricultural and grassland ecosystems in future studies. 
The model results show that tropical forests are particularly 

Fig. 8   Modelled soil compaction at 15 cm depth due to traffic by forestry vehicles. a Global map of forest soil bulk density change. b Uncer-
tainty (standard deviation) of the estimates. c Affected area for each climate type. d Performance of the Gaussian process regression model
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susceptible to compaction (Fig. 8a), in line with the results 
of the present meta-analysis (Fig. 2). This is partly because 
of high annual precipitation amounts, high soil organic 
carbon contents, and low initial bulk density of soils in 
these zones, which fits well with the existing global maps 
of precipitation, soil organic carbon, and soil bulk density. 
In particular, clay soils are most susceptible to compaction 
[10, 29] and soil clay content and clay mineral type [107] 
could also influence the global soil susceptibility pattern. 
The overlap of high precipitation amounts and high soil clay 
contents in tropical and temperate forests can lead to very 
high soil water contents and unfavorable hydro-mechanical 
soil properties that exacerbate the soil compaction problem 
in forests of these climate zones.

Tropical and temperate forests are hotspots of soil faunal 
and plant diversity [117]. Our study shows that the soils 
of these ecosystems have enhanced levels of susceptibility 
to compaction. We urgently recommend that mechanized 
wood-harvesting operations are performed with maxi-
mum care to minimize soil compaction and its long-lasting 
impairment of soil functions. While this recommendation 
applies to all forests, we find a particular need to protect the 
sensitive ecosystems of tropical and temperate forests that 
are highly susceptible to compaction.

Conclusions

In this meta-analysis, we investigated how climatic condi-
tions and soil properties affect the forest soil susceptibility to 
wood-harvesting-associated compaction across global forest 
ecosystems. Wood-harvesting operations resulted in signifi-
cant soil compaction in all climatic zones. Tropical and tem-
perate forests were most susceptible to compaction, due to 
their high soil organic carbon contents, low bulk densities, and 
high soil water contents at the time of vehicle traffic, which 
are related to considerable amounts of annual precipitation in 
these zones. Mechanized wood-harvesting operations should 
be avoided during wet soil conditions and only be done during 
periods when soils are dry enough, so that mechanical stresses 
from forestry vehicles do not exceed soil bearing capacity. 
Overall, our results emphasize the key role of climate in shap-
ing soil conditions and controlling susceptibility to compac-
tion. Forest managers and policymakers should pay special 
attention to the timing of mechanized wood-harvesting opera-
tions in cold regions that may undergo changes in seasonal 
patterns, and to conserving the soils of tropical and temperate 
forests that are hotspots of biodiversity.
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