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Abstract
Purpose of Review The continued, rapid development of novel molecular genetic tools is contributing to a better
understanding of forest-associated fungi and their interactive roles within diverse forest ecosystems. This paper
focuses on recent developments of DNA-based diagnostics/detection, phylogenetics, population genetics, genomics,
and metagenomics tools that have been applied to forest-associated fungi to better understand their roles in forest
ecosystems and provide key insights for managing forest health.
Recent Findings With the advent of new molecular technologies, we can better understand the biology of forest fungi by
examining their genetic code. By utilizing genomics, fungal pathogens’ biological functions can be deduced from its genomic
content. Further, high-resolution marker systems allow the determination of a pathogen’s population genetics and genomics,
which provides important insights into its global movement and genetic shifts in local pathogen populations. Such genetic
information has diverse applications for forest management to improve forest health. Lastly, new technologies in metagenomics
will enhance the abilities to detect, describe, and utilize the complex interactions among fungal pathogens/symbionts, host trees,
and associated microbial communities to develop novel management strategies for forest ecosystems.
Summary Continued development and applications of molecular genetic and genomic tools provide insights into the diverse
roles of forest-associated fungi in forest ecosystems, but long-term, wide-scale research is needed to determine how ecological
functions are influenced by complex ecological interactions among microbial communities, other forest ecosystem components,
and the environment. Such approaches may foster a paradigm shift away from single microbial pathogens, decomposers, or
symbionts interacting with a single host or substrate, and provide more holistic approaches toward understanding interactions
among microbial communities that drive forest health processes.
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Introduction

Fungi play diverse roles in forest ecosystems, such as patho-
gens, decomposers, beneficial symbionts, and biocontrol
agents. They interact with each other and other ecosystem
components in complex and multidimensional ways within
forest ecosystems.

Fungal pathogens cause the majority of devastating diseases
of forest trees, such as Armillaria root disease (caused by
Armillaria spp.), white pine blister rust (caused by Cronartium
ribicola), chestnut blight (caused by Cryphonectria parasitica),
and Dutch elm disease (caused by Ophiostoma ulmi, O. novo-
ulmi), and countless other forest diseases, which result in growth
losses, mortality, and/or threats to life, limb, and property. Fungi
are the causal agents of diverse forest diseases, including diseases
of the root/butt, vascular system, outer stem/branches, wood, and
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foliage. Alternatively, fungi also play beneficial symbiotic roles
in promoting forest health, such as ectomycorrhizae, arbuscular
mycorrhizae, biocontrol agents, or endophytes/epiphytes that
may confer resistance/tolerance against environmental stresses
or pests [46•]. Furthermore, fungi are critical to decomposition
and nutrient cycling processes within healthy forest ecosystems.

Because the literature on molecular genetics applications to
forest-associated fungi is much too extensive for an all-
inclusive review, our general goal is to provide a brief summary
and selected examples of widely used approaches in (1) DNA-
based identification and detection; (2) phylogenetics; (3) pop-
ulation genetics/genomics; (4) genomics/transcriptomics; and
(5) metagenomics/metatransciptomics. Althoughmolecular ge-
netic tools are expected to rapidly evolve, this review is
intended to provide a basic framework for understanding their
applications to diverse fungi that are associated with forest
diseases (e.g., foliar diseases, canker diseases, vascular dis-
eases, root diseases, and/or wood rots) and other ecological
roles in widely ranging forest ecosystems.

DNA-Based Identification and Detection

Accurate identification of fungi that are associated with eco-
logical processes in forests, such as disease, symbioses,
decomposition/nutrient cycling, and biological control is es-
sential to understand the ecological roles of these diverse fun-
gi. Fungal identification is sometimes difficult because diverse
forest diseases can display similar symptoms, forest fungi with
disparate ecological roles can display similar morphology, and
obligate forest pathogens cannot be grown in culture.
Determining appropriate disease management strategies are
dependent on accurate identification of the pathogen, and oth-
er forest management strategies are dependent on knowing the
ecological roles of key fungi that are not pathogens.

DNA-based identification of fungal pathogens relies on
species-specific sequences of genomic regions, such as inter-
nal transcribed spacer (ITS) of rDNA, which is commonly
used as a fungal barcode for species identification [79].
However, additional genomic regions, such as the small sub-
unit (18S; SSU), large subunit (26S; LSU), and intergenic
spacer (IGS) of rDNA, β-tubulin gene, translation elongation
factor-1α (tef1) gene, ribosomal polymerase II (RPB2), Actin-
1 (actin-1), glyceraldehyde 3-phosphate dehydrogenase
(gpd), or a combination of different housekeeping DNA re-
gions, are often used when the ITS region is inadequate to
distinguish among closely related species. The most effective
sequences for identification vary at the fungal species level,
but are nearly identical at the population level within a species
[79]. The utility of DNA regions for identification is frequent-
ly determined by phylogenetic analyses (see subsequent sec-
tion). With well-studied fungal taxa, cursory identification can
be attempted with sequence comparisons against a sequence

database, such as GenBank (https://www.ncbi.nlm.nih.gov/
genbank/) or others.

Numerous applications of DNA-based identification,
which exemplify the utility with forest fungi, are much too
extensive to cover comprehensively; however, a few examples
demonstrate the diverse utility of DNA-based identification.
After several decades devoted to controlling Ribes as a means
to manage white pine blister rust, McDonald et al. [66] used
ITS sequencing to determine thatC. ribicola can also use non-
Ribes species (Pedicularis sp. and Castilleja sp.) as alternate
hosts to complete their lifecycle in northwestern USA. Stewart
et al. [82, 83] used DNA-based characterization to determine
that Fusarium commune, not Fusarium oxysporum, was the
causal agent of damping-off of Douglas-fir (Pseudotsuga
menziesii) seedlings in conifer nurseries; whereas, a subse-
quent report indicated that F. oxysporum has potential to pro-
tect Douglas-fir seedlings from root disease caused by F.
commune [28]. Mmbaga et al. [68] used ITS sequences to
distinguish between powdery mildew pathogens (e.g.,
Erysiphe pulchra, Phyllactinia guttata) on flowering dog-
wood (Cornus florida), and provided evidence that an emerg-
ing powdery mildew pathogen in the USAmay have originat-
ed in Asia.

DNA-based identification can also be used to determine
species diversity and global movement. These methods have
played an essential role in identifying the myrtle rust patho-
gen, Austropuccinia psidii (formerly Puccinia psidii), and
monitor pathogen spread and/or disease emergence in areas
such as Hawaii, USA [89], Japan [47], Australia [14], South
Africa [75], Indonesia [67], and Singapore [27]. Similarly,
sequences of IGS, ITS, or tef1 are routinely used to identify
Armillaria species from mycelial and/or rhizomorph samples
(e.g., [4, 11, 41, 48, 49, 51–53, 58, 59, 69, 78]). This identi-
fication is critical to understanding the natural distribution of
Armillaria species because many look morphologically simi-
lar in culture. Furthermore, DNA-based identification has
been used to document areas where exotic Armillaria species
were introduced to an area (e.g., [19, 20]). Lastly, DNA se-
quences were used as evidence that Heterobasidion sp. (sub-
sequently named H. irregulare; [96]) from North America
were introduced to Italy [35–37].

In contrast, rapid and sensitive detection methods are also
needed to determine if a known pathogen is present in sam-
ples. Early detection is especially critical for invasive patho-
gens to prevent their establishment in new geographic areas.
DNA-based identification can serve as a valuable tool for
early detection of forest pathogens, and many tools have been
developed for the detection of fungal pathogens of forest trees.
Tzean et al. [88] developed an eight-oligonucleotide, micro-
array platform to simultaneously detect 17 Phellinus spp.,
including the invasive P. noxius, in field samples, such as
roots, wood, and soil. Lamarche et al. [57•] used several dif-
ferent species-specific DNA sequences and real-time PCR to
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detect 10 different alien forest pathogens that represent an
invasive threat to Canada. Also, real-time PCR methods also
were developed for early detection of A. psidii, the invasive
myrtle rust pathogen [7].

Phylogenetics

DNA-based phylogenetics of forest fungi examines evolution-
ary relationships within and among species. Such phylogenet-
ic analyses typically rely on DNA regions similar to those
used for identification, but more robust analyses can rely on
more extensive genomic comparisons (phylogenomics).
Phylogenetic approaches are also critical for recognizing cryp-
tic species that are morphologically indistinguishable but ge-
netically distinct, which is often reflected by an inability to
mate in nature. Diverse mathematical inference methods are
available to meet the demands of phylogenetic analyses, but
these analyses typically result in a phylogenetic tree that al-
lows evolutionary relationships to be visualized. Such analy-
ses are a cornerstone of the phylogenetic species concept, on
which fungal taxonomy is based.

Phylogenetic analyses are critical for determining evolu-
tionary relationships among species and defining an organ-
ism’s taxonomic placement. Phylogenetic analyses were crit-
ical to the finding of an undescribed Armillaria species in
Mexico [31, 32, 54•] (Fig. 1; [54•]). Recently, two exannulate
Armillaria species (A. tabescens and A. ectypa) were assigned
to the genusDesarmillaria, which was newly described on the
basis of phylogenetic analyses of six genetic loci [55••]. The
myrtle rust pathogen (formerly known as Puccinia psidii) was
reassigned to the cryptic genus Austropuccinia, which was
newly described on the basis of LSU-SSU-based phylogenetic
analyses [5]. Two Japanese Heterobasidion species,
H. annosum sensu lato and an undetermined Heterobasidion
sp., were revealed based on phylogenetic analyses of three
gene loci, tef1, gpd, and heat shock protein [72].
Subsequently, this undetermined but phylogenetically distinct
Heterobasidion sp. was newly described as H. ecrustosum,
based on both cultures and dried specimens [87].

New species recognition is especially important when the
ecology/biology (e.g., virulence, host range, climatic condi-
tions) of the newly identified species varies from other species
in the genus. Stewart et al. [82] revealed that damping-off in
conifer nurseries is caused by F. commune, rather than
F. oxysporum. Fusarium commune is difficult to morpholog-
ically distinguish from F. oxysporum. Although a few mor-
phological characteristics (e.g., formation of polyphialides)
can sometimes be used to separate F. commune and
F. oxysporum, these characteristics are very subtle and occur
only sporadically under specialized culture conditions.
However, F. commune and F. oxysporum are distinct phyloge-
netically on the basis of three genetic loci (ITS, mtSSU, and

tef1) [81, 82] and their ecological behavior (e.g., virulence)
differs in forest nursery conditions [83]. Alamouti et al. [2]
also used phylogenetics of 15 faster evolving genetic loci to
discern a cryptic species, “Gs,” closely related toGrosmannia
clavigera, a tree pathogen vectored by bark beetles
(Dendroctonus spp.). The authors found host preference
where G. clavigera was associated with Pinus ponderosa
and Pinus jefferyi; whereas, Gs was associated primarily with
Pinus contorta.

The emergence of next-generation sequencing provides an
enormous DNA sequencing capacity for phylogenetics. For
example, restriction-sited associated DNA sequencing
(RAD-Seq) or genotype-by-sequencing (GBS) tools can pro-
vide hundreds of thousands of short anonymous sequence data
that potentially add more depth of phylogenetic trees. In spite
of a few obstacles (e.g., alignment, standardization of se-
quencing data, linked loci, and unavailable reference genome
sequence), RAD-Seq has proven useful for phylogenetic stud-
ies in some plant species including California white oaks
(Quercus section Quercus) [30•, 33••, 43]. Fitz-Gibbon et al.
[33••] demonstrated that both reference-aligned and de novo
assembly pipelines produce a reliable phylogenetic inference
of California white oaks using RAD-Seq data. Although phy-
logenetic analyses of RAD-Seq datasets have not yet been
reported for forest-associated fungi, this approach offers great
potential for high-resolution analyses to infer phylogenetic
relationships among forest-associated fungi.

Population Genetics/Genomics

DNA sequences provide the foundation for examining genetic
variation within and among populations of forest fungi.
Population genetic studies can identify populations that may
respond similarly, monitor gene flow among populations, de-
termine if fungal pathogens were introduced, examine the
global movement of forest pathogens, and identify genetic
shifts in local fungal populations. Current examples of
DNA-based markers used for population genetic studies in-
clude microsatellites (simple sequence repeats; SSRs), ampli-
fied fragment length polymorphisms (AFLPs), RAD-Seq or
GBS, single nucleotide polymorphisms (SNPs), and other
DNA sequence-based methods. Each type of DNA-based
marker has strengths and weaknesses that should be consid-
ered when addressing specific issues and situations associated
with a proposed study. Diverse and numerous studies in pop-
ulation genetics have significantly influenced our understand-
ing of fungal pathogen interactions within forest ecosystems,
but only few examples can be presented here.

Using AFLPs with C. ribicola derived from diverse host
populations with white pine blister rust in the western USA,
Richardson et al. [73] found considerable genetic diversity
despite the rust pathogen having been introduced ca. 100 years
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before. Furthermore, little population differentiation was ap-
parent among six geographic locations (Idaho, Oregon,

Colorado, and California, USA) with diverse aecial hosts
[western white pine (Pinus monticola), whitebark pine
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(P. albicaulis), limber pine (P. flexilis), foxtail pine
(P. balfouriana), bristlecone pine (P. aristata), and sugar pine
(P. lambertiana)], except in a sugar pine plantation that was
screened for major gene resistance (Cr1). That study indicated
that the type of host resistance placed the strongest selection
on the rust pathogen population, despite the diversity in aecial
hosts, available telial hosts, and environment. A subsequent
SNP-based analysis confirmed a strong differentiation be-
tween eastern and western populations of C. ribicola in
North America, which reflects separate introduction processes
[9•]. It was also found that locally distinct population struc-
tures were likely influenced by host connectivity, landscape
features, and anthropogenic movement of this invasive path-
ogen [9•].

Microsatellite analyses of the myrtle rust pathogen (A.
psidii, reported as P. psidii) demonstrated the existence of at
least two distinct biotypes in Brazil, one associated with guava
(Psidium spp.) and another associated with eucalypts
(Eucalyptus spp.) and rose apple (Syzygium jambos) [38].
Furthermore, coalescence analyses indicated that the
eucalypt-infecting A. psidii biotype in Brazil did not originate
via host jump from guava following the introduction of euca-
lypts to Brazil, as was long-believed. Thus, the source of the
eucalypt-infecting A. psidii biotype in Brazil remains un-
known. Continued analyses on A. psidii populations in
Australia, New Caledonia, China—Hainan, and Indonesia
showed little variation among the microsatellite-based geno-
types [63, 67, 77], whereas, a unique A. psidii genotype was
associated with myrtle rust emergence in South Africa [76].
Subsequent microsatellite analyses have determined that a
“pandemic” A. psidii biotype occurs in Costa Rica, Jamaica,
Mexico, Puerto Rico, USA—Hawaii, and USA—Florida
[84•], which contains the genotype that is found in Australia,
New Caledonia, and Indonesia [63, 67] (Fig. 2, [84•]).
Furthermore, bioclimatic modeling indicated that A. psidii
biotypes were associated with a different predicted suitable
climate space, which likely reflects distinct invasive threats
to some geographic regions [84•].

SNP-based analyses have been utilized to elucidate spread
of invasive, introduced, and emerging pathogens. In studies of
the ambrosia beetle (Platypus koryoensis)-vectored fungus
(Raffaelea quercus-mongolicae) associated mortality of
Mongolian oak (Quercus mongolica) in South Korea, Kim
et al. [50•] used RAD-Seq to examine the population structure
of the putative pathogen. Their analyses revealed low hetero-
zygosity and no apparent population structure, which are

consistent with the hypothesis that this putative pathogen
was introduced to South Korea. Further, the population struc-
ture of the invasive ash dieback pathogen (Hymenoscyphus
fraxineus) indicated that the pathogen can infect bark and
survive saprophytically, and showed no differentiation be-
tween epidemic and post-epidemic populations and genetic
diversity within the founding population in northeastern
Europe was largely maintained in the front of the disease
epidemic [12•].

Using a combination of microsatellite and SNP-based anal-
yses, the dissemination, population structure, and evolution of
the brown root rot pathogen, Phellinus noxius, has been elu-
cidated. Chung et al. [17] examined mechanisms of P. noxius
spread in Taiwan using microsatellites. Their study showed
that tree-to-tree spread of P. noxius is largely clonal, but
basidiospore-derived spread has resulted in little differentia-
tion among populations in Taiwan. A similar approach has
been applied for P. noxius populations in Japan, and it was
found that P. noxius populations are genetically distinct on the
Ryukyu and Ogaswawara islands of Japan [1]. These results
suggest that P. noxius on the two island chains had different
origins. Further sequencing at the whole genome level found
that P. noxius in Asia Pacific is comprised of two lineages,
both of which are extremely genetically diverse [18•].

Genomics

Sequencing of the complete genome (whole genome sequenc-
ing) determines the DNA sequences contained in the nuclear
(chromosomal) and mitochondrial DNA of a fungal isolate.
The availability of genome sequences for forest fungi has
increased rapidly with the continued improvement in sequenc-
ing technologies [3]. As more fungal genomes are available,
researchers can more easily determine the possible biology of
pathogens by determining the function of genes found within
each genome.

The genomic sequence of Phanerochaete chrysosporium, a
lignocellulose-degrading, wood-rot fungus, was an early ex-
ample of genomic sequencing of a forest-associated fungus,
which provided baseline data for subsequent sequencing of
filamentous basidiomycetous fungi [65]. Since then, the ge-
nomic sequencing of wood-degrading fungi has rapidly in-
creased [70], which has allowed large-scale genome compar-
isons with diverse applications, such as bioenergy production
and bioremediation, and defines the genetic mechanisms be-
hind different modes of wood decay (e.g., [34]). In addition,
genomic sequencing has been completed for diverse other
forest-associated fungi, including Grosmannia clavigera
[25], Melampsora larici-populina [29, 40], Heterobasidion
spp. [16, 71], Armillaria spp. (e.g., [21, 80]), Dothistroma
septosporum (Mycosphaerella pini) [23•], Diplodia pinea
[6], Ophiostoma novo-ulmi [22],Mycosphaerella populorum/

�Fig. 1 Consensus phylogeny of coalescence-based Bayesian analyses
estimated in Evolutionary Analysis by Sampling Trees (BEAST) under
the strict clock with a GTR model of substitution on partial translation
elongation factor 1-α consensus (50% strict) sequences of 43 phylogenic
groups representing 242 Armillaria spp. isolates. Posterior support values
> 0.5 are indicated at the nodes. Reprinted with permission from
Klopfenstein et al. ([54•] Mycologia 109:75–91)
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M. populicola [24••], and others. Aims of the genomic se-
quencing of forest fungi are ultimately related to forest man-
agement and risk assessment through understanding pathoge-
nicity/symbiosis, adaptability, fungus-host/substrate interac-
tions, etc. A few more detailed examples are presented below.

A poplar (Populus spp.) leaf rust pathogen (Melampsora
larici-populina) provided the first available genomic sequence
for a tree pathogen, and genomic sequencing was conducted
by a whole genome shotgun method [29]. The genome anal-
ysis of this pathogen identified genes related to obligate
biotrophy and host infection, and subsequent analyses identi-
fied genes encoding candidate effectors in the rust pathogen
[39]. Insights into the ectomycorrhizal symbiosis of Laccaria
bicolor were obtained by genomic sequencing, which identi-
fied gene sets involved in rhizosphere colonization, symbio-
sis, and nutrient cycling, but noting the absence of genes
encoding enzymes to degrade polysaccharides contained in
plant cell walls [64]. It is suggested that the genome compar-
ison of symbiotic (L. bicolor) and pathogenic (M. larici-
populina) basidiomycota fungi interacting with poplar can
provide insights into pathogenicity/symbiosis mechanisms in
evolutionary processes.

When the genome of a poplar canker pathogen
(Mycosphaerella populorum) was compared to a closely re-
lated poplar leaf pathogen (M. populicola), relatively few ge-
nomic changes were found [24••]. Especially noteworthy is

that changes in gene expression were associated with different
disease etiology. It was further proposed that M. populorum
gained the capacity to infect woody tissue via horizontal gene
transfer and changes in gene dosage, which could have
changed an innocuous, coevolved pathogen into a destructive
pathogen of poplar plantations.

The genome of Grosmannia clavigera, an ascomycetous
fungus associated with blue stain of conifers, was sequenced
by combining data derived from different sequencingmethods
[25]. First insights into potential infection mechanisms of a
pathogen associated with Armillaria root disease (A. mellea)
was obtained through genomic and proteomic analysis [21].
This research found that A. mellea has a broad suite of
carbohydrate-degrading enzymes, similar to both basidiomy-
cete and ascomycete glycodegrative arsenals. The genome of
Dothistroma septosporum (Mycosphaerella pini), the cause of
red band needle blight of pines, was sequenced and compared
to a closely related fungus to examine genes related to lifestyle
adaptations and genes of common ancestry [23•, 42].
Genomic sequencing of the tip blight pathogen of pines
(Diplodia pinea) provided the basis for a study of the MAT
genes in pathogen populations [6]. Results suggested that D.
pinea, which was previously considered exclusively asexual,
may have a cryptic, heterothallic sexual cycle.

The myrtle rust pathogen (A. psidii) was found to contain
sequences associated with transposable elements within ca.
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Fig. 2 Minimum-spanning network of Austropuccinia psidii
microsatellite multilocus genotypes (MLGs) sampled from Brazil (BR),
Costa Rica (CR), Jamaica (JM), Mexico (MX), Puerto Rico (PR),
Uruguay (UR), and Florida (FL) USA, and Hawaii (HI) USA on 18
hosts. MLGs are represented by BAPS genetic clusters: C1 represents
MLGs from Costa Rica on crimson bottlebrush (Callistemon
lanceolatus), Jamaica, Mexico, Puerto Rico on rose apple (Syzygium
jambos), and Hawaii, USA on ko olau eugenia (Eugenia koolauensis),
broad-leaved paperbark (Melaleuca quinquenervia), pōhutukawa
(Metrosideros excelsa), ōhi a lehua (M. polymorpha), common myrtle
(Myrtus communis), rose myrtle (Rhodomyrtus tomentosa), Java plum
(S. cumini), rose apple, and Malay rose apple (S. malaccense); C2
represents MLGs collected from Brazil on eucalypts (Eucalyptus spp.)
and rose apple and from Uruguay on eucalypts (Eucalyptus grandis and
E. globulus); C3 represents one MLG collected from Brazil on eucalypts;

C4 represents MLGs collected from Florida, USA on broad-leaved
paperbark, twin berry (Myrcianthes fragrans), rose myrtle, and rose
apple; C5 represents one MLG collected in Brazil on Java plum; C6
represents one MLG collected in Brazil on guava (Psidium guajava)
and Brazilian guava (P. guineenese); C7 represents one MLG collected
in Brazil on pitanga (E. uniflora); C8 represents MLGs collected from
Jamaica on allspice (Pimenta dioica) and Uruguay on sweet flower
(Myrrhinium atropurpureum); and C9 represents one MLG collected
from Brazil on jabuticaba (Myrciaria cauliflora). Sizes of circles are
proportional to MLG frequency. Connections are labeled with Bruvo
genetic distances if different from 0.04, which corresponds to 1
mutational step at one locus. Broken lines connect MLGs that are
separated by distances greater than 0.20. Reprinted with permission
from Stewart et al. ([84•]. Forest Pathology, 48:e12378)
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27% of its genome, which may enhance its ability to generate
genetic variability associated with adaptation to new hosts and
environments [86]. The associated phylogenetic analyses of
three DNA regions placed A. psidii within a separate branch
with the Pucciniaceae lineage. Lastly, insights into the patho-
genicity of the elm bark beetle-vectored Dutch elm disease
pathogen were obtained by the annotation of the ascomyce-
tous Ophiostoma novo-ulmi genome, which identified 1731
genes encoding proteins that were potentially involved in
pathogenicity and diverse other genes related to carbohydrate
utilization, electron transfer/detoxification, metabolism,
growth/reproduction, signaling/plant defense relationships,
etc. [22].

Transcriptome

The transcriptome of a forest fungus is the set of all expressed
genes (transcribed as mRNA) associated with the fungal sam-
ple that reflects a specific time, tissue, developmental stage,
abiotic/biotic environment, and other conditions under which
the sample was collected. Brief examples of transcriptome
sequencing of forest-associated fungi are presented below.

Root-Associated Fungi

Root disease pathogens are among the most actively investi-
gated forest fungal pathogens using transcriptomic approach
to examine diverse functions, such as pathogenicity and
pathogen-host interactions. Transcribed genes in an active
mycelial fan of Armillaria solidipes in association with grand
fir (Abies grandis) were sequenced, which provided insights
into putative signal peptides and genes with functions in path-
ogenesis, such as those encoding plant cell wall-degrading
enzymes and responses to post-infection host environment,
and other genes related to forest root/butt diseases (Fig. 3;
[74]). Transcriptomes of invasive, vegetative, and reproduc-
tive developmental stages of A. ostoyae were compared,
which provided detailed information on the regulation of
pathogenicity-related genes, and evolutionary relationships
of genes involved in wood-decay, morphogenesis, and com-
plex multicellularity [80]. Gene expression studies of the lam-
inated root-rot pathogen, Phellinus sulphurascens, revealed
differential expression of genes encoding potential virulence
factors, putatively secreted proteins, and many other enzymes
[92]. Early studies on expressed genes of Heterobasidium
annosum during infection of Scots pine (Pinus sylvestris)
identified genes that were differentially expressed and genes
with unknown function, which identified the need for geno-
mic sequences of this and other forest fungi [45]. Genomic
sequencing and transcript profiling of H. irregulare, a
root/butt-rot pathogen of coniferous trees, was used to exam-
ine the differentially expressed genes associated with

mechanisms for wood decay and parasitism [71]. Genes
encoding putative ligninolytic enzymes in H. irregulare were
shown to be differentially regulated in a substrate-specific
manner [93]. Gene expression of Norway spruce (Picea abies)
inoculated with H. annosum s.s. [62•] identified expression of
several pathogen genes, including genes associated with viru-
lence, in addition to a multitude of host genes.

Wood-Associated Fungi

Analysis of the genome and transcriptome of a wood-rot fun-
gus, Phlebiopsis gigantea, that is capable of colonizing fresh-
ly cut conifer stumps, revealed potential gene-based mecha-
nisms that allow tolerance for resinous compounds while
degrading complex polymers of wood [44]. Genome and tran-
scriptome sequencing was performed on Grosmannia
clavigera, the fungal symbiont of mountain pine beetle
(Dendroctonus ponderosae) and causal agent of blue stain
disease of lodgepole pine (Pinus contorta), which provided
insights into how this pathogen tolerates conifer-defense
chemicals during tree colonization [26].

Foliage/Branch/Stem-Associated Fungi

Transcriptome analyses of the white pine blister rust pathogen
predicted the secretome, candidate effectors, other pathoge-
nicity determinants, and genes that were differentially regulat-
ed during different life-cycle stages [61]. Differential gene
expression of Dothistroma septosporum, a needle endophyte
and pathogen of radiata pine (Pinus radiata), was examined at
different stages of infection [8••]. Genes encoding wall-
modifying enzymes and signaling proteins appeared upregu-
lated in the initial biotrophic stage and genes encoding en-
zymes associated with secondary metabolism were upregulat-
ed in later necrotrophic stages. Recent genomics and tran-
scriptomics studies ofMarssonina brunnea infection of poplar
leaves examined changes in gene expression of the pathogen
and host, which demonstrated differential regulation of path-
ogen virulence genes in association with differential regula-
tion of host resistance genes, which exemplified the complex
host-pathogen interactions that occur during the infection pro-
cess [15, 94].

Metagenomics/Metatransciptomics

Metagenomic and metatranscriptomic studies elucidate the
bacterial and fungal (and other) organisms within microbial
communities and the function of those organisms within en-
vironmental samples through DNA and RNA sequencing.
These approaches can determine the phytobiome (microbes
associated with plants) within or associated with forest fo-
liage, branches/stems, wood, roots, or rhizosphere using
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DNA barcoding, e.g., tagged amplicon sequencing of the ITS
region, or shotgun (whole community) sequencing. The utility
of metagenomic studies to help understand ecological interac-
tions within forest ecosystems is greatly increased by the col-
lection of environmental metadata (e.g., temperature, mois-
ture, biotic environment, soil physical and chemical proper-
ties, and site history) and a well-designed study with suitable
sampling [60••]. Such studies can determine the identity and
role of microbes in forest ecosystems processes, such as dis-
ease, decomposition, and symbiosis. An early metagenomic
study on forest soils found a high diversity of fungal species in
six different forest soils, with the majority of species belong-
ing to Ascomycota and Basidiomycota [10], and DNA
barcoding was used to identify diverse fungal taxa associated
with wood decay in tropical forests [91•]. Forest harvesting
was associated with a reduction in genes associated with bio-
mass decomposition [13]. Uroz et al. [90••] examined rela-
tionships among bacteria and fungi in temperate and boreal
forests in association with nutrient recycling and other ecolog-
ical functions. Štursová et al. [85••] showed that death of
Norway spruce (Picea abies) forests caused by bark beetle
(Ips typographus) resulted in profound changes in the fungal
communities in the soil with decreased biomass and reduced
fungal symbionts of tree roots, and relative increases of sap-
rophytic taxa. Recently, Žifčáková et al. [95] used
metagenomic and metatranscriptomics approaches to examine
soil and litter microbes, including fungi, and ecological func-
tions in coniferous forest soil, which were substantially differ-
ent during summer and winter, especially in the soil. That
study also showed reduced activities of ectomycorrhizal fungi
in winter, an indication that photosynthetic output is a driver
of changes in microbial function of soil microbes in conifer-
ous forests. Metagenomic approaches have also been used to
examine wood decomposition. For example, studies by
Kubartová et al. [56] revealed different patterns in fungal com-
munities within decaying logs. Such approaches are essential
to understand intricate microbial interactions and successional
processes in complex ecological activities in forests, such as
decomposition and nutrient cycling.

The clear trend from research on microbial communities
within forest ecosystems and in other systems as well is that
ecological processes are much more complex and networked
than was previously recognized. Metagenomics studies are
radically transforming traditional forest pathology paradigms
by demonstrating that ecological functions, such as
root/canker diseases, wood rots, and symbioses, are the result

of complex interactions among microbial communities, and
not the direct result of a single microbial pathogen, decom-
poser, or symbiont interacting with a single host or substrate.
Though in its infancy, the field of metagenomics shows great
promise for helping researchers understand complex interac-
tions among forest fungi (e.g., pathogens, symbionts, decom-
posers, and biocontrol agents), hosts, and associated microbial
communities that will aid in the development of novel tools
for forest management in the future.

Conclusions

This review is a brief summary with selected examples of
widely used approaches in (1) DNA-based identification and
detection; (2) phylogenetics; (3) population genetics/
genomics; (4) genomics/transcriptomics; and (5)
metagenomics/metatransciptomics. The selection of suitable
genetic/genomic approaches for application to forest-
associated fungi is situation specific and depends on various
parameters (i.e., research objective, quality/quantity of avail-
able DNA, supporting genetic information for the fungus, cost
considerations, available labor skills and equipment, etc.).
Genetic and genomic technologies continue to become more
powerful and affordable, which allows new and expanded
applications to forest-associated fungi, and these applications
will likely continue to grow in a manner that reflects advances
in next-generation sequencing technologies, computational
power, and bioinformatics. Such genetic and genomic ap-
proaches will expand our understanding of ecological process-
es in forest ecosystems by determining the diverse roles of
microbial communities in processes such as pathogenesis, bi-
ological control, symbiosis, decomposition, or other critical
processes in relation to forest-associated fungi and the envi-
ronment. This highlights the significance of genetic and geno-
mic approaches which could foster a paradigm shift away
from single microbial pathogens, decomposers, or symbionts
interacting with a single host or substrate and provide more
holistic approaches toward understanding interactions among
microbial communities that drive forest health processes.
Diverse molecular genetic approaches offer the potential to
better understand the ecological interactions of forest fungi
with biotic/abiotic components within forest ecosystems, and
this information can be used to foster forest health, productiv-
ity (carbon sequestration), sustainability, and resilience.
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