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Abstract Seeking an optimal operational regime under dif-
ferent management environments has been one of the main
concerns of forest managers. Traditionally, the main opera-
tional regime includes planting density or regeneration
scheme, thinning time/intensity, and optimal time to harvest
over the given time horizon. Deterministic approaches to tack-
le this type of optimization problem with different controls
have dominated the solution techniques in forestry literature.
We present in this paper an overview of the methodologies
used in stand-level optimization, in which we show the
strengths and weaknesses of these methodologies as well as
provide comments on the effectiveness of the methodology.
We then propose a new dynamic programing approach for
generalizing solution specification and techniques.

Keywords Non-linear programming . Heuristics . Dynamic
programming . Dynamic optimization . Forest stand-level
planning

Introduction

Gone are the dayswhen public forest landsweremanaged solely
for timber. Today, public forest lands are managed for a wide
range of services that include timber, habitat quality, carbon, and
water quality. There has been a paradigm shift from economic
criteria based on timber production to one that is based on eco-
system services. Most public land management organizations
make it a requirement that forest management plans provide
for sustainable management of forest resources and other values.
This complicates the decision-making environment of the re-
source manager, economically, socially, and environmentally
as there are too many important societal needs to consider. If
these societal needs can be quantified using decision variables,
then optimization techniques can be employed to sort through all
the management alternatives available to the resource manager.

Most of the decisions in forest management are carried out
at either the stand level or at the forest level. A typical stand-
level management problem deals with determining the time
and intensity to implement each treatment in order to optimize
the management objective [1]. The ability to evaluate alterna-
tive treatments for a forest stand is a fundamental step in forest
management planning. Stand-level optimization is important
for sorting through the alternative treatment options available
to the resource manager and assisting the manager in the
decision-making process. Decisions made at the stand level
can be useful for the development of alternatives for forest
level plans. At the forest level, the goal is to seek the best
combinations of these development paths for the stands that
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make up the forest, taking into account the constraints and
objectives for the forest as a whole.

The objective of stand-level optimization may be to produce
the best management plan for each forest stand, independent of
other stands in the forest. The planning process involves analyz-
ing a number of intermediate treatments (e.g., thinning) as well
as a final harvest decision. The planning process also involves
finding the best timing and intensity of the silvicultural activities
or finding the best stand structure that should remain after the
activities. Although decisions made at the stand level can be
useful for the development of alternatives for forest level prob-
lems, the decisions are not impacted by decisions assigned to
other stands, nor by the condition of the surrounding forests [2].
This is because combining an optimal solution from each forest
stand may not be optimal under the consideration of forest level
constraints. But it is important to note that some inferior solutions
at the stand level could improve the solution at the forest level.

A number of techniques have been proposed or applied to
solve stand-level optimization problems. These techniques can
come in handy when a forest manager is faced with a large
number of choices for which a manual decision is impossible.
The emergence of operations research and computer science in
the past few decades have provided powerful tools for solving
stand-level optimization problems. The first known application of
operations research technique in forest stand-level planning was
the work byArimizu [3], with input from the founders of dynam-
ic programing (DP), Bellman and Dreyfus. Since the publication
of his work appeared in the 1957 issue of Journal of Operations
Research Society of Japan, his accomplishment was overlooked
for several years by many in the scientific community.

In this paper, we present an overview of the methodologies
used in stand-level optimization.We analyze the strengths and
weaknesses of these methodologies as well as provide com-
ments on the effectiveness of the methodology under consid-
eration. We then dig deeper into dynamic programing ap-
proach for generalizing solution specification and techniques.

Review of Methodologies

A classic stand-level optimization problem in forest economics
involves the use of Bderivatives^ to determine the harvest age
for an even-aged forest stand which maximizes the net present
value of an infinite series of timber regeneration, growth, and
harvest cycles. Faustmann [4] is usually attributed with the first
appropriate solution to this problem when only timber values
are considered given that there is no stochasticity in all ele-
ments. Samuelson [5] provides a more formal mathematical
specification of the problem. Hartman [6] extends the model
to include values associated with standing trees (e.g., wildlife
habitat) as well as the extractive value of timber harvest. With
stochasticity, however, the Faustmann formulation could lead to
a false optimal solution [7, 8]. Additionally, the ceasing or

giving-up phenomena of the management activities cannot be
captured by the Faustmann formulation due to the underlying
assumptions of sustainability, i.e., assumption of a continuous
plantation-harvest behavior over time. When considering these
phenomena, stochastic control modeling approach such as sto-
chastic dynamic programming plays an important role in solv-
ing the management problem [9].

Several authors have also used optimal control theory in
stand-level optimization. This approach has been shown by
Heaps [10] to converge to the Faustmann model in the steady
state. Some of these papers directly address the incorporation of
Faustmann models into market analyses (e.g., [11, 12]).
Anderson [13] developed an optimal control approach to a tim-
ber management problem that included the opportunity cost of
forested land. His generalized steady-state control solution was
shown to be identical to the Faustmann rotation model. Optimal
control theory is used to derive a set of necessary conditions for
control in Hamiltonian under maximum (or minimum) principle
by relying on differentiability of the problem setting. The ap-
proach can differ from the classical calculus of variationswhen it
uses control variables to optimize the function.

Optimal control theory may be the most appropriate to
formulate the stand-level planning problem from the view-
point of mathematical economics in order to provide insights
of economic or practical conditions for optimal solution.
However, because of the growing complexity in stand-level
optimization problems, many other practical methods which
specify planning regime over time have been proposed. These
optimum seeking methods are major applications of mathe-
matical programming techniques in the field of operations
research. Table 1 shows a chronological list of researchers
who have used mathematical programming techniques in for-
est stand-level planning. Among the different derivative-free
solution techniques used in stand-level optimization, non-
linear programming (NLP) methods have been employed the
most. This is primarily due to the attribute of the growth
models and the discrete nature of the dynamics. These
derivative-free solution techniques have been grouped into
several broad categories by various authors. Valsta [14] clas-
sified stand-level optimization solution techniques into deter-
ministic and stochastic methods. He defined the deterministic
methods to include the following: DP, optimal control theory,
NLP, and random search. The definition was based on the fact
that the decision variables and constraints do not contain
stochasticity. He then grouped the stochastic methods into
the following: adaptation and anticipation methods, stochastic
DP and optimal stopping, and stochastic non-linear program-
ming. Bettinger et al. [15] grouped the solution techniques
into four broad categories: Hooke and Jeeves [16], heuristics
and meta models, NLP, and DP. Later in 2010, Bettinger et al.
[2] further reclassified these solution techniques into three
broad categories: Hooke and Jeeves (NLP), heuristics or meta
models, and DP.
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Table 1 Change in optimization approach over years

Years DP NLP Heuristic Growth model Distance type Stand type

1950s Arimizu (1958) Whole Independent Even-aged
1960s Amidon & Akin (1968) Whole Independent Even-aged

Kilkki & Väisänen (1969) Whole Independent Even-aged
1970s Schreuder (1971) Whole Independent Even-aged

Adams & Ek (1974) Age/stage structured
models

Independent Uneven-
aged

Brodie et al. (1978) Whole Independent Even-aged
Brodie & Kao (1979) Whole Independent Even-aged
Kao & Brodie (1979) Whole Independent Even-aged

1980s Chen et al. (1980) Whole Independent Even-aged
Kao & Brodie (1980) Whole Independent Even-aged

Kluyver et al. (1980) Whole Independent Even-aged
Martin & Ek (1981) Individual Independent Even-aged
Riitters et al. (1982) Age/stage structured

models
Independent Even-aged

Brodie & Haight (1985) Whole Independent Even-aged
Bullard et al. (1985) Age/stage structured

models
Independent Even-aged

Haight (1985) Age/stage structured
models

Independent Uneven-
aged

Haight et al. (1985)b Individual Independent Uneven-
aged

Haight et al. (1985)a Whole Independent Even-aged
Roise (1986)a Whole Independent Even-aged
Roise (1986)b Individual Independent Even-aged
Haight (1987) Age/stage structured

models
Independent Uneven-

aged
Paredes & Brodie (1987) Whole Independent Even-aged
Valsta & Brodie (1987) Distribution template

model
Independent Even-aged

Arthaud & Klemperer (1988) Individual Independent Even-aged
Valsta (1988) Whole Independent Even-aged

Yoshimoto et al. (1988) Individual Independent Even-aged
1990s Valsta (1990) Valsta (1990) Whole Independent Even-aged

Haight (1990) Age/stage structured
models

Independent Uneven-
aged

Haight & Monserud (1990) Individual Independent Even-aged
Torres & Brodie(1990) Whole Independent Even-aged
Yoshimoto et al. (1990) Individual Independent Even-aged
Filius & Dul (1992) Whole Independent Even-aged

Haight et al. (1992) Whole Independent Even-aged
Valsta (1992) Individual Independent Even-aged
Valsta (1993) Individual Independent Even-aged

Anderson & Bare (1994) Individual Independent Uneven-
aged

Eriksson (1994) Eriksson (1994) Whole Independent Even-aged
Ståhl et al. (1994) Whole Independent Even-aged

Miina (1996) Individual Dependent Even-aged
Brukas & Brodie (1999) Whole Independent Even-aged

Vettenranta & Miina (1999) Individual Dependent Even-aged
2000s Miina & Pukkala (2000) Individual Dependent Even-aged

Möykkynen et al. (2000) Individual Dependent Even-aged
Rautiainen et al. (2000) Individual Independent Even-aged
Wikström & Eriksson (2000) Individual Dependent Even-aged

Wikström (2001) Individual Dependent Mixed
Hyytiäinen & Tahvonen (2002) Whole Dependent Even-aged
Palahía & Pukkala (2003) Individual Independent Even-aged
Hyytiäinen et al.(2004) Individual Independent Even-aged
Trasobares and Pukkala (2004) Individual Independent Uneven-

aged
Bettinger et al. (2005) Individual Independent Uneven-

aged
Hyytiäinen et al. (2005) Individual Independent Even-aged
Pukkala & Miina (2005) Individual Independent Even-aged
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In this paper, the focus is on deterministic techniques
for forest stand-level planning as shown by the summa-
rized literature in Table 1. For stochastic techniques, we
would like to refer the readers of this paper to Bettinger
[17] who investigated stochastic techniques related to
wildfire and forest planning. We would also like to direct
interested readers to Yousefpour et al. [9] who reviewed
techniques for modeling climate change under the scheme
of adaptive forest management. Other papers that ad-
dressed stochasticity or risk and uncertainty, in a DP
framework include the following: Gunn [18], Díaz-
balteiro and Rodriguez [19], Zhou and Buongiorno [20];
Ferreira et al. [21] and Ferreira et al. [22]; Yoshimoto and
Shoji [23]; Yoshimoto [24]. In this study, we use deter-
ministic solution techniques to describe a situation where
the future state of a forest stand can be predicted exactly
from knowledge of the present and all inputs and events
are assumed to be known with certainty. The rest of the
BReview of Methodologies^ section describes the differ-
ent approaches for solving forest stand-level optimization
problems. We analyze the strengths and weakness of these
approaches, as well as reveal the conditions under which
one approach would be preferred over the other.
Generally, there is no one single algorithm that is suitable
for all optimization problems. However, in the BGeneral

Formulation of Forest Stand-Level Planning Problem^
section of this manuscript, we will propose the most ap-
propriate approach for any given problem, within the DP
framework.

Non-linear Programming (NLP) Approach

Non-linear programming (NLP) is a method used to optimize
a problem with a non-linear objective function subject to non-
linear constraints. Since most growth and yield models are
constructed in a non-linear framework, NLP may be ideal
for solving problems of forest stand-level planning. A wide
variety of NLP techniques have been proposed in operations
research field. Among them, a derivative-free method is suit-
able for forestry problems due to discreteness and non-
differentiability of growthmodels with respect tomanagement
activities including thinning and harvesting. The Hooke and
Jeeves method is the one most often applied in forest stand-
level planning. This technique is very popular because it is
easy to use and can perform well with discreteness of growth
models on the expected concavity of the response surface. The
Hooke and Jeeves method is described as a Bdirect search
method^, which involves a sequential examination of the
changes that occur when a problem is solved and the results
are compared to the Bbest^ solution among the derived

Table 1 (continued)

Years DP NLP Heuristic Growth model Distance type Stand type

Diaz-Balteiro & Rodriguez
(2006)

Individual Independent Even-aged

Hyytiäinen et al. (2006) Individual Independent Even-aged
Graetz et al. (2007) Individual Independent Even-aged

Koskela et al. (2007)a Individual Independent Even-aged
Koskela et al. (2007)b Individual Independent Even-aged
Pasalodos-Tato & Pukkala

(2007)
Whole Independent Even-aged

Yoshimoto & Marušák (2007) Whole Independent Even-aged
Pukkala (2009) Individual Independent Even-aged

2010s Pukkala et al. (2010) Individual Independent Uneven-
aged

Tahvonen et al. (2010) Individual Independent Uneven-
aged

Asante et al. (2011) Whole Independent Even-aged
Chikumbo & Nicholas

(2011)
Whole Independent Even-aged

Tahvonen (2011) Individual Independent Uneven-
aged

Pukkala et al. (2012) Individual Independent Uneven-
aged

Ribeiro et al. (2012) Individual Dependent Even-aged
Bayat et al. (2013) Individual Independent Uneven-

aged
de-Miguel et al. (2014) Individual Independent Even-aged
Pukkala et al. (2014) Individual Independent Even-aged
Rämö & Tahvonen (2014) Individual Independent Even-aged

Moriguchi et al. (2015) Whole Independent Even-aged
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candidate solutions, together with a strategy for determining
the next trial solution, based on previously obtained results.
This solution technique is very similar to modern day heuristic
techniques, except that many heuristics contain provisions that
allow the search process to deviate in a negative direction
from the best solution stored in memory, with the purpose of
exploring larger areas of the solution space.

The Hooke and Jeeves method has a long history in forestry
[25–33]. Generally, the Hooke-Jeeves algorithm consists of two
major phases: an Bexploratory search^ around the base point
and a Bpattern search^ in a direction selected for optimization
(minimization or maximization) [16]. The exploratory move is
performed in the vicinity of the current point systematically to
find the best point around the current point. Thereafter, two
points are used to make a pattern move. It is important to note
that if the gradient information is available, a gradient-based
method may be another option worth considering.

The Hooke and Jeeves method is comparable to other tech-
niques in terms of solution time. Roise [34] made a compari-
son of three different NLP techniques and discrete DP. He
measured relative efficiency in finding a solution in terms of
the amount of central processing unit and concluded that the
Hooke and Jeeves method is not significantly superior to DP.
In a similar study, Pukkala [35] concluded that the Hooke and
Jeeves method is faster in terms of computing time than any of
the population-based methods considered in his study.
However, Yoshimoto et al. [36] pointed out that the main
shortcoming of NLP techniques such as the Hooke and
Jeeves method, for determination of the optimal is the non-
concave production or response surface derived from the tar-
get growth model with respect to the decision variable to seek
a final solution. The result of this is the inability to find a
Bglobal^ optimum. In other words, searching results could
end in the vicinity of local optima due to local concavity of
the growth model behavior. NLP methods can be efficient and
effective if the response surface to seek an optimal solution
has the property of concavity for maximization or convexity
for minimization. Note that during the search process by NLP
methods, it would be difficult to investigate how the response
surface is formed. In other words, a set of derived candidate
solutions as well as intermediate solutions is not enough to
investigate if the response surface is concave.

NLP has also been used in uneven-aged management.
Tahvonen et al. [37] used data from long-term experiments
of uneven-aged forest to develop a transition matrix growth
model [38] for a Norway spruce stand and formulated a NLP
problem searching for the optimal management. Tahvonen
[39] extended the study by Tahvonen et al. [37] and applied
a more detailed single tree growth model rather than transition
matrix model to an uneven-aged Norway spruce stand.
Pukkala et al. [40] optimized a mixed forest stand with pine,
spruce, and birch in Finland using the Hooke and Jeevesmeth-
od without specific optimization formulation.

Heuristics Technique or Meta Models

There are many stand-level problems or growth models that
are too complex to be solved by the existing optimization
techniques within a reasonable timeframe, even with the help
of modern computers. These types of problems are most often
handled by using heuristic techniques in forestry. Note that
heuristics have been traditionally employed in forest planning
at the forest level, when the decision variables are binary.With
the exception of genetic algorithms, most heuristics follow a
local improvement methodology. The solution is improved
gradually by changing it locally.

Bullard et al. [41] may be the first to develop the heuristic
random search algorithm to simultaneously estimate optimal
thinning and the final harvest age. The model was formulated
using a stand-table projection growth model in a non-linear-
integer programming framework, to predict mixed-species
growth and stand structure. After the introduction of the major
heuristic algorithms such as simulated annealing [42] and tabu
search [43] in the 1980s, several researchers have incorporated
these algorithms into forest stand-level optimization prob-
lems, though most of the application have been found in
forest-level harvest scheduling optimization. A genetic algo-
rithm was applied in Chikumbo and Nicholas [44], while
Eriksson [45] used simulated annealing in addition to NLP
with the gradient method. Tabu search was also used in
Wikström [46]. The main concern with these techniques is
that the final or Boptimal^ solution generally does not have
optimal attributes but is guaranteed to be the Bbest^ among the
generated group of solutions. They give us at least a feasible
and hopefully Bnear-optimal^ solution. Heuristics can be de-
scribed as trial-and-error techniques that seek a final solution
without being able to guarantee an optimal solution [47]. They
are designed to explore larger areas of the solution space ran-
domly or with semi-random sequences deterministically.
Heuristics are popular because of their flexibility and ease to
implement in programming. Some heuristic techniques are
deterministic: from the same initial solution, they always re-
turn the same final solution. Others are stochastic (e.g., simu-
lated annealing, tabu search, threshold accepting, genetic al-
gorithms), which means that from the same initial solution,
they may return a different final solution due to the random
characteristics of their search processes.

Although heuristics are generally simple to build and re-
quire only modest programming skills, they must be modified
to fit each planning problem. There is no universal algorithm
for all problems. Another concern, as outlined earlier, stems
from the quality of the solution produced, i.e., no guarantee
for locating an optimal solution. The advantage of heuristics is
mainly due to the quickness of generating very good and
feasible solutions to complex problems, once the heuristic is
developed appropriately. Previous research including
Bettinger et al. [48] and Pukkala and Miina [31] have shown
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in forest management that quality solutions can be obtained
using heuristics. If the quality of the solution is deemed high
compared to exact solution techniques, then heuristics are the
preferred solution technique.

Dynamic Programming (DP) Approach

Dynamic programming, unlike NLP only requires one
starting point for an iterative search. Once the DP net-
work is Bappropriately^ constructed for the target prob-
lem, Bellman’s principle of optimality works to seek an
optimal solution. That is, construction of the DP network
is the most important task for DP application. Bellman’s
principle of optimality states that BAn optimal policy has
the property that whatever the initial state and initial
decision, the remaining decisions must constitute an op-
timal policy with regard to the state resulting from the
first decision.^ Put in another way, it means that given
the current state, there exists an optimal policy for a sub-
problem from the current state to the final state of the
final stage regardless of the initial state and decision,
which consists of further local optimal policies between
two sequential stages connecting from the current state.
Thus, the current state can be a part of the final optimal
policy, but not necessarily. It is this property that allows
DPs to be broken up into a series of smaller, simpler
sub-problems, and there always exists an optimal policy
from each state to the final state of the final stage. DP
allows one to examine a large number of alternatives by
reducing the range of options examined and by thor-
oughly searching the solution space. DP is a powerful
approach to stand-level optimization problems because
growth models are dynamic in nature.

After the introduction of DP by Bellman [49], the first
application of DP in forestry was conducted by Arimizu [3]
for an optimal thinning regime in the USA. DP allows one to
solve many different types of sequential optimization prob-
lems in a reasonable timeframe. It is a recursive optimization
approach that simplifies complex problems by transforming
them into a DP network with a sequence of smaller simpler
problems [50].

DP has been used extensively in forest management
for several decades. Earlier applications revolved around
the use of DP to find the optimal scheduling of silvicul-
tural treatments or timber management in even-aged
stands within the Bclassical^ framework [51–53], includ-
ing the use of DP for intermediate treatments and opti-
mal forest rotations [54–59]. Schreuder [60] solved an
optimal thinning and rotation age problem using DP.
Assuming continuous time, he formulated the problem
in the form of calculus of variation but could not get a
close form solution. When he recast the same problem in
DP form, he was able to get a numerical solution. Brodie

et al. [54] employed forward recursion and developed a
method to find the optimal thinning schedule and rota-
tion length. They concluded that forward recursion is
more flexible for thinning analysis. One drawback in
their study was the fact that they did not consider more
intensive thinnings to speed up diameter growth. This
problem was solved by Brodie and Kao [61] who used
a biometric model instead of a yield table and developed
a DP model. Other similar studies include the works by
Kao and Brodie [55], Riitter et al. [56], Chen et al. [62],
Brodie, and Haight [63]. Integration of DP and stand
growth and yield models has allowed the simultaneous
determination of the timing and intensity of thinnings.
Successful integration of the two requires that one limits
the number of variables used to define thinning decisions
[57].

As the target growth model becomes more complicat-
ed for precise description of growth phenomena, con-
structing the DP network by the classical framework be-
gins to require more dimensions for the state descriptors
over stage defined by time. In other words, the DP net-
work is constructed by defining the main elements of
growth simulator for the state descriptors. As a result,
encompassing a higher number of main elements in-
creases the introduction of state descriptors into the DP
network, which results in the curse of dimensionality
[64]. A major breakthrough to overcome the curse of
dimensionality using a classical DP framework was
employed by Paredes and Brodie [65], who introduced
an efficient DP algorithm called PATH (Projection
Alternative TecHnique). They constructed a DP thinning
model with a whole stand growth model. This algorithm
reduces the scheduling problem to a Bone-state and one-
stage^ DP problem regardless of the number of the main
elements for the growth simulator. Yoshimoto et al. [66]
advanced scientific knowledge in this area by introducing
MSPATH (Multi-Stage PATH) algorithm to incorporate
all possible Blook-aheads^ in the optimization instead of
the one-stage Blook-ahead^ of the algorithm PATH. Two
years later, Yoshimoto et al. [36] introduced RLS-PATH
(Region Limiting Strategies PATH) for the multivariate
control problem. The advantage of this algorithm stems
from the ability of DP approaches to avoid including
multiple partial local optima in the solution. This algo-
rithm has been successfully employed by Bettinger et al.
[15] in density-dependent forest stand-level optimization
as well as by Graetz et al. [67].

Although DP has been used extensively in even-aged
stand-level optimization problems, for computational rea-
son within the classical framework, it has generally not
been used to optimize uneven-aged management deci-
sions. This has primarily been the results of large state
space [68]. Anderson and Bare [68] used deterministic
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DP formulation that maximizes net present value of har-
vested trees at each stage, to show that DP provides a
promising approach to analyzing uneven-aged stand
management problems. In their model, state variables
were described by the number of trees and total basal
area per hectare as is the case in the classical framework.
Uneven-aged stand management decisions have a long
history in forestry, including early works by Duerr and
Bond [69], Adams and Ek [70], Buongiorno and Mitchie
[71], and Chang [72]. Recent interest in uneven-aged
management has attracted a considerable amount of de-
terministic optimization studies especially in Europe,
where even-aged stand management has been dominantly
implemented [73]. Ribeiro et al. [74] applied DP by
MSPATH in the uneven-aged and distance-dependent
model for cork oak forests in Portugal without heavy
computational burden.

DP also offers the flexibility for addressing various
types of spatial considerations involving stand neighbor-
hoods [75]. DP models can be used to schedule core area
production over time as well as satisfy adjacency con-
straints. Hoganson et al. [76, 77] have tracked and valued
core area in forest management scheduling models based
on DP. More recently, DP has been used in some papers
as an approach to stand-level optimization with respect to
non-timber values such as carbon sequestration. Diaz-
Balteiro and Rodriguez [78] considered carbon payments
in their analysis of optimal coppice management strategies
for fast-growing species in Brazil and Spain using a DP
technique within the classical framework. Other re-
searchers such as Yoshimoto and Marušák [79], optimized
timber and carbon values in a forest stand using DP by
MSPATH where both thinnings and final harvest were
considered. Asante et al. [80] and Asante and Armstrong
[81] also used DP to determine the optimal harvest deci-
sion for a forest stand in the boreal forest of western
Canada that provides both timber harvest volume and car-
bon sequestration services without considering the inter-
mediate treatment such as thinning.

General Formulation of Forest Stand-Level Planning
Problem

When the dynamics of growth is considered, it is natural to
consider dynamic optimization approaches such as DP. In this
section, we generalize the forest stand-level planning problem
by the formulation of the common dynamic optimization and
propose a solution approach by DP within the one-state and
one-stage framework.

Let us introduce a vector of time-varying state vari-
ables, x(t) describing the state of forest stand and a vec-
tor of control variables, u(t) of thinning affecting the

growth of a forest stand at time t. All required input
components for the growth model could be handled by
x(t) and u(t). Introducing an instant performance index or
net present value functional, I x tð Þ; u tð Þð Þ, from the cur-
rent state of forest stand over the small interval of time
as a function of the state vector and the control vector.
The objective is to seek an optimal control or manage-
ment regime to maximize its summation of the integral
from time t0 to time tn.

max
u tð Þf g

J ¼
Z tn

t0

I
˙
x tð Þ; u tð Þð Þdt

subject to

x
˙
tð Þ¼ f x tð Þ; u tð Þð Þ

x t0ð Þ¼x0

ð1Þ

where f(⋅) is assumed to be continuously differentiable func-
tion of (x(t), u(t)) to describe a dynamic change of the state,
x(t) over small interval of time. Equation (1) is one of the
typical formulations of the continuous time optimal control
formulation with a dynamic change of the state by x tð Þ from
the initial state of x0.

Let us consider discrete thinning activities over time, with
final harvesting to maximize the net present value of the total
profit from these activities. Converting the above continuous
problem into a discrete thinning problem will result in the
following objective function:

max
u tið Þf g

J ¼
Xn−1
i¼0

Z tiþ1

ti

I
�

x tð Þ;u tð Þð Þdt

¼
Xn−1
i¼0

I x tiþ1ð Þjx tið Þ;u tið Þð Þ− I x tið Þjx tið Þ;u tið Þð Þf g
ð2Þ

given that thinning control, u(ti) at time ti only affects the state
of forest stand, x(ti + 1) at time ti + 1. Discrete dynamics of the
state is expressed by a function g(⋅) of (x(t), u(t)) over the
given time interval from ti to ti + 1:

x tiþ1ð Þ ¼ g x tið Þ; u tið Þð Þ ð3Þ

Note that I(x(ti + 1)| x(ti), u(ti)) is the net present value of
profit from a forest stand at time ti + 1 after having thinning
control, u(ti) at time ti but before any control at time ti + 1.
Thus, by setting I(u(ti)) equal to the net present value of
profit from thinning control, u(ti) itself such as that from
thinned trees, the second term of the right-hand side of
Eq. (2) becomes:

I x tið Þjx tið Þ; u tið Þð Þ ¼ I x tið Þjx ti−1ð Þ; u ti−1ð Þð Þ−I u tið Þð Þ ð4Þ

That is, I(x(ti)| x(ti), u(ti)) is the net present value of profit
from a forest stand at time ti just before having thinning

˙

˙

˙
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control, u(ti) at time ti. Figure 1 depicts examples of trajec-
tory of I(⋅) with thinning control over time. Figure 1a rep-
resents the case for considering volume of a forest stand,

while Fig. 1b represents some value of a forest stand con-
sidering other factors such as biodiversity, esthetic value,
and ecosystem services. As a result, Eq. (2) becomes:

max
fu t0ð Þ;…;u tn−1ð Þg

J ¼
Xn−1
i¼0

I x tiþ1ð Þjx tið Þ; u tið Þð Þ−I x tið Þjx tið Þ; u tið Þð Þ� �

¼
Xn−1
i¼0

I x tiþ1ð Þjx tið Þ; u tið Þð Þ þ I u tið Þð Þ−I x tið Þjx ti−1ð Þ; u ti−1ð Þð Þ� � ð5Þ

Note that when i = 1 in the above summation, we replace
I(x(t0)| x(t−1), u(t−1)) by I(x(t0)) as the initial state.

Within the one-state and one-stage framework for DP op-
timization, the optimality equation thus becomes

f *i ¼ max
u tið Þf g

f i

�
u tið Þ

� �

f i u tið Þð Þ ¼ I i þ Iui þ f *i−1−I
*
i−1

� � ð6Þ

where Ii = I(x(ti + 1)| x(ti), u(ti)), Iui ¼ I u tið Þð Þ,
I*i ¼ I x* tiþ1ð Þjx tið Þ; u* tið Þ� �

, and u * (ti) is the derived opti-
mal thinning control at time ti for x

*(ti + 1) = g(x(ti), u
*(ti)). The

resultant optimal objective value becomes:

f *n ¼ I*n þ Iu*n−1 þ Iu*n−2⋯þ Iu*0 ð7Þ

where Iu*i ¼ Iui u* ti−1ð Þ� �
. This is the optimality equation for

the case of no dependency of the thinning control over multi-
ple periods or stages. In other words, if the current thinning
control only affects the thinning control at the following peri-
od, Eq. (7) becomes valid, which is the case of PATH algo-
rithm, i.e., one-stage look-ahead. Applications of DP to thin-
ning optimization using the classical framework can be
regarded as one-stage look-ahead just like the PATH network,

since thinning at each period is assumed to be independent of
each other over multiple periods. The DP network of this is
depicted by Fig. 2a.

As pointed out by Yoshimoto et al. [66], when the
one-stage look-ahead period becomes insufficient to eval-
uate impacts on the future stand, then MSPATH becomes
necessary. Such situations include the following: (1)
when there is no thinning at the next stage, implying
too much thinning at the previous stage and (2) when
intensive thinning is required at the current stage,
allowing a great potential growth of the residual stand
over the long-term, not the short-term. Intolerant trees
show this type of growth over time with the heavy
sigmoid-shape of growth curve. If this is the case or
there exists influence of thinning control over multiple
periods, i.e., multi-stage look-ahead, the DP network
changes to the representation in Fig. 2b, with the opti-
mality equation now defined by,

f *i ¼ max
u ti− jð Þ; jf g

f i;i− j

�
ui ti− j
� �� �

f i;i− j ui ti− j
� �� � ¼ I i;i− j þ Iui;i− j þ f *i− j−I

*
i− j

n o ð8Þ

Fig. 1 Examples of trajectory of net present value functional. a Volume of a forest stand. b Biodiversity, esthetic value, and ecosystem services
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in order to search for an optimal thinning control as well
as optimal elapse of time, j, to implement the control.
More scripts are introduced to differentiate the thinning
control with different elapse of time. Note that Ii , i − j =
I(x(ti)| x(ti − j), ui(ti − j)), ui(ti − j) is the thinning control im-
plemented at time ti − j targeting the forest stand at time
ti, I

u
i;i− j ¼ I ui ti− j

� �� �
, j* is an optimal elapse of time (ti −

ti − j) targeting the state at time ti,

I*i− j* ¼ I i;i− j* x tið Þjx ti− j*
� �

; u*i ti− j*
� �� �

, and u*i ti− j*
� �

is an

optimal thinning control at time ti − j* targeting the forest
stand at time ti. This is the case for MSPATH algorithm,
which requires more computational time but can over-
come the effect of thinning control over multiple periods.
Applications of NLP to thinning optimization are catego-
rized in the Bmulti-stage look-ahead^ framework of
MSPATH, since the intensity and timing of thinning ac-
tivities can independently be searched over multiple
periods.

The algorithm for PATH and MSPATH is the forward re-
cursive process and works as follows. At each period, i, based
on the optimal state vector of a forest stand (if i = 0, it is an
initial state vector, x0), under the forward recursive procedure,
the best thinning control is sought by maximizing the sum of
the contribution from the thinning control,
Iuiþ j;i ¼ I uiþ j tið Þ� �

, and that from the forest stand toward the

target period, Ii + j , i = I(x(ti + j)| x(ti), ui + j(ti)), and saved the set
of the best thinning controls with different time elapse,

u**iþ j tið Þ
n o

, as well as the corresponding state vector toward

each ta rge t pe r iod wi th d i f f e r en t t ime e l apse ,
(j = 1, 2, ⋯ , n − 1). This generates the set of candidates for
each target period from the current. Next, after one period
growth, the best thinning control as well as time elapse from
the past periods is searched and the corresponding best state

vector with the best thinning control is selected and used for
the future projection for thinning until the end of the planning
period.

u*i ti− j*
� �

; j*
� � ¼ arg max

u**i ti− jð Þ; jf g
I x tið Þjx ti− j

� �
; u**i ti− j

� �� �þ I u**i ti− j
� �� �� � ð9Þ

At each period, the optimal thinning regime from the initial
state is obtained, so that the optimal rotation is derived as the
one with the optimal objective value over the planning hori-
zon. If ui(ti − j) is multivariate, the region-limiting strategies
(RLS) can be applied with PATH or MSPATH [15, 34, 65].
As Yoshimoto et al. [36] pointed out, computational efficiency
is performed by partitioning the entire problem into partial
optimization problems at each period for thinning control such
as in the concept of DP.

In order to overcome the multiple period dependency
problems due to development of more complicated
growth models and ill-behaved financial functions, there
is still a case where the thinning control affects the state
dynamics over periods, which is overlooked by MSPATH.
Such a case was found when we analyzed optimal thin-
ning regime under the thinning subsidy program in Japan.
The subsidy is applied at a certain period for a fixed
percent of thinning, resulting in conversion of a smooth
response surface into the ill-behaved response surface.
Too much thinning at an early stage would miss a great
opportunity for the subsidy. Whenever we use ill-behaved
financial function, there is always the risk of facing heavy
dependency of multiple periods. A new approach can be
proposed to overcome further dependency, which is two-
directional multi-stage PATH (called TMSPATH). In
TMSPATH, two types of an optimal time elapse for
implementing the thinning control are considered. One is
the same as above for the forward recursion, while the

Fig. 2 DP network within the
Bone-state and one-stage^
framework. a DP network of
PATH. b DP network of
MSPATH
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other is an elapse of time from the past thinning control
for the backward recursion. The backward recursive
search is only implemented among the derived candidates
by the forward recursive search from the past to the cur-
rent period. That is, the best combination from the Bpast^
and to the Bfuture^ elapse of time is obtained to search for
an optimal thinning control at each period. Although the
DP network for TMSPATH is the same as that for
MSPATH, searching is conducted in two directions (back-
ward and forward) for TMSPATH as opposed to one di-
rection (forward) for MSPATH as well as PATH. The
Bbest^ time elapse from the past is selected among those
time elapses to the current from the past with the corre-
sponding state and thinning control vector. The optimality
equation for TMSPATH becomes:

f *i ¼ max
u ti− jð Þ; j;kf g

f i;i− j ui ti− j
� �

; u**i− j ti− j−k
� �� 	n o

f i;i− j ui ti− j
� �

; u**i− j ti− j−k
� �� 	

¼ I i;i− j þ Iui;i− j þ Iu**i− j;i− j−k þ f *i− j−k−I
*
i− j−k

n o
ð10Þ

The difference between MSPATH and TMSPATH is the
third term in the right-hand side of Eq. (10) and an addi-
tional time elapse of ti − j − k toward time ti − j. Again,

u**i− j ti− j−k
� �n o

is the candidate best thinning control at

time ti − j − k toward a forest stand at time ti − j.
Figure 3 depicts the image of the different recursive pro-

cesses at time ti − 1 by PATH and ti − j by MSPATH and
TMSPATH. The dashed lines for PATH and MSPATH in
Fig. 3 are the selected optimal thinning control from the past
with one period elapse of time for PATH and multiple period
elapse of time for MSPATH and used for future search. On the

other hand, the dashed lines for TMSPATH in Fig. 3 are those

derived and selected thinning controls u**i− j ti− j−k
� �n o

from the

past different periods toward time ti − j. One solution from each
period is chosen. In TMSPATH, based on each solution from

the past u**i− j ti− j−k
� �n o

, one thinning control at time ti − j to-

ward a forest stand at time ti is selected among {ui(ti − j)}
derived, so that the same number of the candidate solutions
are derived as the number of the past periods to time ti − j. Once
all solutions from the different past periods are generated, one

set of the backward solution from the past u*i− j ti− j−k*
� 	on

and the forward solution u*i ti− j
� �� �

to the target period at time
ti − j is selected as the optimal thinning controls over two se-
quential controls toward time ti through time ti − j. This proce-
dure continues from the beginning of the period to the end
period.

One of the advantages of DP by the one-state and
one-stage framework defined by the above dynamic sys-
tem over other approaches as well as DP by the
Bclassical^ framework is that, the recursive procedure
provides useful information on the response surface from
the growth simulator used. By changing the degree of the
thinning control sequentially at each period, we can have
the contribution from the residual forest stand at the tar-
get period as well as the contribution from the thinning
control at the current period, so that we can investigate
how the response surface of the performance index
changes with respect to the degree of the control. As
long as the surface forms quasi-concave for maximiza-
tion, the derived solution becomes most likely optimal. If
the surface shows ill-behaved phenomena, then we could
expect local optima over searching. Figure 4 shows a
typical example of the relationship among contribution

Fig. 3 Comparison of recursive
process among PATH, MSPATH,
and TMSPATH
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from thinning control, residual stand, and the response
surface. Sequential change on the control is an important
process not only for seeking an optimal solution but also
for investigating the behavior of the growth simulator.
Since the growth simulator is becoming more and more
complicated, this kind of task is key for optimization.
Note that the DP approach by the classical framework
and other approaches do not have this characteristic from
the recursive procedures.

When dealing with multiple control variables such as
the ones in Yoshimoto et al. [36], Bettinger et al. [15],
and Graetz et al. [67], the region-limiting strategies un-
der PATH, MSPATH, or TMSPATH can be applied.
NLP approaches can also be used to search for the best
multiple control variables; however, again NLP cannot
provide information on the response surface but the
solution.

Several researchers including Miina [82], Vettenranta and
Miina [83], Miina and Pukkala [30], Möykkynen et al. [29],
Wikström and Eriksson [84], Wikström [46], Hyytiäinen and
Tahvonen [85], and Ribeiro et al. [74] tackled the thinning
optimization problems with distance-dependent control vari-
ables for the growth simulator. Only Ribeiro et al. [74] applied
DP by MSPATH. Distance-dependent growth simulator has
the site-specific tree growth dynamics, so that the thinning
control is to Bcut a tree^ or Bleave a tree^ in a forest stand
for future growth. Depending on a tree to be cut, the growth of
the residual stand differs. In such a case, we apply two phase
RLS for optimization. Let us defined the ordered control vec-

tor as follows. Let us set u kð Þ
i ti− j
� �

as the control vector of
having k trees to be cut. The question is which tree should
be included for thinning. RLS can be applied to seek the best

one u
k*ð Þ

i ti− j
� �

among candidates.

u
k*ð Þ

i ti− j
� � ¼ arg max

u kð Þ
i ti− jð Þ

I ; x tið Þjx ti− j
� �

;u kð Þ
i ti− j
� �Þ;þ; I ; u kð Þ

i ti− j
� �� 	� on

ð11Þ

Once we generate all u
k*ð Þ

i ; ti− j
� �� �

with different numbers

of trees for thinning, the corresponding response surface can
be created to seek the optimal among them as observed in
Fig. 5. Empty circles are those inferior to the filled circles with
the same number of trees for thinning. By performing this
process, we can find the optimal number as well as a set of
trees for thinning. PATH, MSPATH, or TMSPATH can be
applied to seek the optimal thinning regime for the distance-
dependent growth simulator.

Fig. 4 Response surface with respect to thinning control

Fig. 5 Performance frontier for
thinning control

Curr Forestry Rep (2016) 2:163–176 173



Conclusions

Forest stand-level planning has a long history of resource
managers using optimization techniques to assist them in
sorting through alternative management strategies available
to them. In this paper, we present an overview of some of
the operation research techniques used in forest stand-level
planning. We highlight the strengths and weaknesses of these
techniques to assist resource managers and operation re-
searchers in their model selection.

The review showed that optimization algorithms often need
to be embedded in growth models for iterative calculation, so
that development of an optimization model can be conducted
jointly with growth modelers and systems analysts. As can be
seen from this review, the NLP approach is used more often
than the other approaches due to the complexity of the growth
model such as distance-dependent and mixed forests. Most
growth and yield models are simulators that consist of several
sub-models which are difficult to maximize analytically. The
derivative-free NLP techniques such as Hooke and Jeeves are
suitable for optimizing non-smooth dynamics that are not
differentiable.

We also noted that there are many stand-level problems or
growth models that are too complex to be solved using most
optimization techniques within a reasonable timeframe. These
types of problems may be best handled by heuristic tech-
niques. However, the main concern with these techniques is
that the final or optimal solution searched generally does not
have optimal attributes but is guaranteed to be the best among
the generated group of solutions. A reasonable computational
time for seeking a feasible and near-optimal solution is the
main benefit of using heuristics.

Finally, we put together a strong reason to advocate for the
use of DP over other optimization techniques. DP has major
advantages that include the ability to find a global optimum.
Unlike NLP or heuristic approaches, they do guarantee the
finding of a global optimum as long as the DP network for
the target problem is Bappropriately^ constructed. In such a
situation, the DP approach is more efficient and permits prac-
tical consideration of a larger number of alternatives.

We concluded this review paper by providing the general
formulation and solution techniques for forest stand-level
planning, including PATH, MSPATH, and a newly proposed
TMSPATH algorithm within the one-state and one-stage
framework.With the use of the one-state and one-stage frame-
work, the recursive procedure provides useful information on
the response surface from the growth simulator used. The
form of the response surface plays a key role in judging if
the final solution becomes globally optimal or locally optimal.
When dealing with multiple control variables as well as
distance-dependent growth simulators, the region-limiting
strategies under PATH, MSPATH, or TMSPATH can be ap-
plied with the ordered control vectors. Note that the DP

network by MSPATH can describe most NLP and heuristics
searching networks as well, since NLP is seeking the best
combination of time elapse and controls over time. Only the
process and criterion to choose a solution path is different.
Another concern for forest stand-level planning is advanced
development of more complex growth simulators in user-
friendly applications. Although those growth simulators are
easy to use for the end-users, it seems difficult for systems
analysts to implement recursive procedure in modeling due
to programming language difficulty. In such a case, however,
if the growth simulator can provide information for the state
vector describing forest stand status at each period as well as
control, then the script type of iteration process can be con-
ducted and programmed to seek an optimal solution. That is,
we do not need to embed the iterative process into the
simulators.
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